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We discuss the implementation and properties of the quenched approximation in the calculation of the
left-right, strong penguin contributions (i.e. Q6) to �0=�. The coefficient of the new chiral logarithm,
discovered by Golterman and Pallante, which appears at leading order in quenched chiral perturbation
theory is evaluated using both the method proposed by those authors and by an improved approach which
is free of power divergent corrections. The result implies a large quenching artifact in the contribution of
Q6 to �0=�. This failure of the quenched approximation affects only the strong penguin operators and so
does not affect the Q8 contribution to �0=� nor ReA0, ReA2 and thus, the �I � 1=2 rule at tree level in
chiral perturbation theory.
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I. INTRODUCTION

There have been several recent applications of lattice
QCD to the calculation of Re��0=��, the direct CP violating
parameters in K ! �� decays. These include the attempts
using domain wall fermions by the CP-PACS [1] and RBC
[2] Collaborations. A notable feature of both of these
calculations is that their central values differ drastically
from experiment. The experiments at CERN [3,4] and
Fermilab [5,6] have yielded an experimental world average
of Re��0=�� � �1:8� 0:4� � 10�3 [7]. The RBC
Collaboration reported a value �4:0�2:3� � 10�4, and a
similar negative central value was reported by CP-PACS.
(See [8] for an earlier attempt using staggered fermions and
[9] for ongoing work also using staggered fermions.) The
stated errors in the RBC lattice calculations for �0=� were
statistical only, with an estimate of the size of the system-
atic errors requiring much further study, of which this work
is part.

A number of serious approximations were made in the
lattice calculations which introduced uncontrolled system-
atic errors. One of these was the quenched approximation,
in which the fermion determinant is ignored in the genera-
tion of the gauge configurations. This is a truncation of the
full theory that dramatically reduces the computer resour-
ces required, but is uncontrolled. Where quenched lattice
results have been compared to experiment, in simple quan-
tities such as masses of flavored mesons and decay con-
stants, the agreement is at or better than �15%. However,
there is no apparent reason for this level of agreement to
hold for all low-energy hadronic phenomena. Another
approximation made in all existing lattice calculations of

�0=�was the use of leading order chiral perturbation theory
(ChPT) to relate unphysical K ! � andK ! 0 amplitudes
to the physical K ! �� amplitudes, as first proposed by
[10]. This is also likely to be a serious source of systematic
error, although in this paper we focus on a particular
ambiguity present in the quenched approximation.

Since the original lattice calculations of [1,2], it was
shown in [11,12] that, at leading order in quenched chiral
perturbation theory there is a term logarithmic in the pion
mass which contributes to the matrix elements of the strong
penguin operators. This term is absent in full QCD, and its
contribution is proportional to an a priori unknown, new
low-energy constant (LEC). In terms of a representation of
quenched-QCD in which the fermion loops are cancelled
by the addition of ghost fields to the lagrangian, this LEC
can be associated with the presence of additional operators
in the effective hamiltonian mediating the weak decay of
K ! �� which contain both quark and ghost fields. The
presence of additional operators naturally calls for a reex-
amination of the way in which the quenched approximation
is implemented in such matrix element calculations; with-
out further guidance, a single strong penguin operator in
the full theory can be represented by any arbitrary linear
combination of its direct transcription into the quenched
theory (a four-quark operator) and these additional (two-
quark, two-ghost) operators.

Since this ChPT result only became known after the
original RBC analysis was completed [2], that work used
the leading order ChPT relevant for full QCD. As such, it is
useful to discuss how the presence of these new operators
might effect this result. We emphasize that this particular
quenching difficulty is present only for the strong penguin
operators and so does not affect the Q8 contribution to
�0=�. This quenching ambiguity also does not significantly
affect ReA0 and ReA2 and since Re A0 receives only a
negligibly small contribution from Q6 [2], the RBC result
for the �I � 1=2 rule remains unchanged. A recent paper

*Present address: Physics Department, Fermilab, Batavia,
Illinois 60510, USA

†Present address: School of Physics and Astronomy,
University of Southampton, Southampton, SO17 1BJ, England.

PHYSICAL REVIEW D 74, 034510 (2006)

1550-7998=2006=74(3)=034510(19) 034510-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.74.034510


by Golterman and Pallante [13] shows how similar
quenched penguin effects can arise in the �I � 1=2 rule,
and thus change the values of the underlying LEC’s that
one measures. However, the effects of Ref. [13] do not
change the tree-level results of Bernard, et al. [10], and as
the original RBC analysis was performed at tree level, this
does not affect the actual results for the �I � 1=2 rule. An
attempt to determine the systematic error due to quenching
for this quantity may, however, be influenced by the results
of Golterman and Pallante.

Since the quenched approximation is uncontrolled, a
rigorous matching of operators between the quenched
and full theories is not possible. However, we argue that
the coefficients of these new operators can be determined
by the same style of physical argument that is usually put
forward to motivate the quenched approximation. This
approach, which might be called ‘‘intermediate-energy
matching’’ can be described as follows. Since quark loops
play an important role in the renormalization group evolu-
tion of the weak amplitudes from the scale of the W, Z and
top quark down to the kaon mass, the quenched approxi-
mation must be applied in a discriminating fashion, simu-
lating the vacuum polarization of quark loops in the low-
energy lattice QCD calculation with a weakened bare
coupling while leaving the quark loops that appear in the
perturbatively computed Wilson coefficients intact.

Such a separation between short- and long-distance
vacuum polarization effects can be made quite precise in
the context of the effective weak Hamiltonian and gives a
prescription for carrying out the quenched calculation
which is close to that adopted by RBC and CP-PACS.
One simply requires at the intermediate-energy scale at
which the perturbatively determined weak amplitudes are
matched to the low-energy four-quark operators inHW that
the full- and quenched-QCD amplitudes agree. Since there
are no ghost quarks in the full theory, this requires that the
ghost-quark matrix elements of HW evaluated in the
quenched theory also vanish. This gives a physically mo-
tivated definition of the quenched approximation for the
energy scale at which this matching is performed. Of
course, as the quenched and full theories do not have the
same low-energy limit, physical results will depend on this
matching scale; for the quenched approximation to be
useful, the difference in these results as the matching scale
is varied over the range of energy scales important for the
quantities we are calculating must be numerically small.
The extent to which this condition is obeyed depends on
the quantity calculated; later we argue that for the strong
penguin operators, the quenched approximation is particu-
larly bad.

Another possible guide we may take in transcribing the
full QCD operators into the quenched theory is the ex-
tended chiral symmetry of this theory [11,12]. Recall that
when the ghost quarks are added to normal QCD, the
original chiral symmetry, SU�3�L � SU�3�R, which trans-

forms only the normal quarks, expands into a larger, graded
symmetry, SU�3j3�L � SU�3j3�R for the simplest case of
three quarks u, d and s and three ghost quarks ~u, ~d, and ~s.

As analyzed by Golterman and Pallante, the original
operators appearing in HW , transforming in specific repre-
sentations of SU�3�L � SU�3�R, take on new SU�3j3�L �
SU�3j3�R quantum numbers. The new operators containing
ghost quarks might then be chosen in a fashion to simplify
the resulting representation of the extended SU�3j3�L �
SU�3j3�R symmetry group while leaving the physical
SU�3�L � SU�3�R behavior unchanged. However, since
this extended SU�3j3�L � SU�3j3�R group is necessarily
unphysical it is difficult to provide a convincing motivation
for the mixture of ghost quarks chosen.

Thus, we believe that the quenched approximation can
be applied to weak decays in a well-motivated way. One
determines by ‘‘intermediate-energy matching,’’ the
quenched effective Hamiltonian, Hqh

W , and then examines
matrix elements of the resulting operators analytically for
possible quenched chiral logarithms and numerically to
make quenched predictions from the theory. The size of
the quenched chiral logarithms should be viewed as a
measure of the errors in the quenched approximation.

From this perspective, the study of the quenched chiral
logarithm discovered by Golterman and Pallante and the
new low-energy constant, �NS

q , which appears as its coef-
ficient, is of central importance. In fact, these authors have
proposed [12] a method for obtaining �NS

q , directly from a
lattice calculation. We show that there are difficulties using
their method to obtain �NS

q from lattice data using domain
wall fermions, due to the presence of power divergences.
However, motivated by their direct approach, we have
found an improved method for obtaining �NS

q that does
not have these divergences. This is done by constructing an
extension of the usual CPS symmetry arguments to the
quenched case where both quark and ‘‘ghost’’ quark de-
grees of freedom are present.

Using our proposed method, we obtain a value of �NS
q

which is consistent with the value given by the large Nc
approximation obtained by Golterman and Peris [14,15].
The value obtained from the method proposed by
Golterman and Pallante also yielded a value roughly in
agreement with the others, but with a larger systematic
error. This large value of �NS

q has two important conse-
quences: (i) Large, nonanalytic behavior in the quenched
chiral limit which is absent in full QCD provides clear
evidence of substantial systematic errors associated with
the quenched approximation. (ii) If these new quenched
nonlinearities are omitted from the functional forms used
to extract the quenched LEC’s, even the analysis within the
quenched approximation is likely to be incorrect.

In Sec. II we discuss the application of the quenched
approximation to weak decay amplitudes and motivate the
‘‘intermediate-energy matching’’ approach described
above. The chiral symmetry of partially quenched QCD
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and quenched chiral perturbation theory is reviewed in
Sec. III. We follow the approach of Ref. [11] and discuss
the ambiguities of determining Hqh

W from this perspective.
In Sec. IV we discuss Golterman and Pallante’s method
[12] for obtaining the low-energy constant,�NS

q . We extend
the usual CPS symmetry arguments for obtaining the form
of the power divergent contributions to �I � 1=2 matrix
elements to the quenched case involving external ghost-
quark states. In Sec. V we use this extended symmetry, as
well as numerical results, to show that the method of [12],
when evaluated using domain wall fermions, suffers from
ambiguities due to power divergent contributions.

In Sec. VI an alternative method for obtaining �NS
q is

proposed which does not have a divergent contribution and
this method is used in Sec. VII to obtain a numerical value
for this constant. Finally, the implications of this result are
discussed in the conclusion, Sec. VIII. Some useful for-
mulae are given in Appendix A, our conventions are speci-
fied in detail in Appendix B, and a discussion of the one-
loop ChPT calculation used in the numerical extrapolation
to obtain �NS

q is given in Appendix C.

II. QUENCHED APPROXIMATION IN WEAK
DECAY AMPLITUDES

While the quenched approximation is widely used as a
device to reduce the computational requirements of lattice
QCD calculations, its implementation in the calculation of
weak matrix elements deserves further discussion. The
physical justification for this approximation is the hypothe-
sis that the largest effect of the omitted quark loops is a
modification of the running QCD coupling constant �s���
because of the omission of quark vacuum polarization. To
the extent that this hypothesis holds true for a particular
quantity of physical interest we can then compensate to a
large extent for the effects of quenching on �s��� at a
relevant physical scale � by an appropriate weakening of
the bare lattice coupling �0 � g2

0=4� where g0 is the
gauge coupling which appears directly in the lattice QCD
Lagrangian. An important limitation of this justification is
apparent from the scale dependence of �s���. This scale
dependence will be different between the full and
quenched theories so the equality �s�����

qh
s ��� will be

approximately true only over a limited range of scales �.
Since a weak matrix element involves a large range of

energy scales from the top quark mass down to �QCD, a
naive application of the quenched approximation to this
entire energy range would be very inaccurate. However,
because perturbation theory is used to describe most of this
larger energy range, it is also not necessary to use the
quenched approximation over the entire range. A clear
view of this situation comes from considering some sample
Feynman graphs representing the various ways that quark
vacuum polarization loops can enter the gluonic penguin
diagrams of interest.

The possible effects of quark vacuum polarization are
illustrated in Figs. 1–4. In the first of these, Fig. 1, the
quark loop is entirely contained in the short distance part of
the graph. The vacuum polarization loop will be dominated
by momenta on the order of the top mass and can be
accurately treated in QCD perturbation theory.
Contributions with loop momentum on the order of
�QCD, where perturbation theory would not be accurate,
will be suppressed by a factor of ��QCD=mtop�

2

By contrast, the diagram shown in Fig. 2 contains a
vacuum polarization loop that can only contain low mo-
mentum. More precisely, once multiplicative charge and
wave-function renormalization constants have been re-
moved, any further contributions from large energies, for
example � � mW , will be suppressed by an additional
factor of �2=m2

W . Thus this graph represents a potentially
nonperturbative piece which requires lattice techniques to
evaluate. In fact, the above quenching hypothesis is simply
the statement that the most important effect of removing
this quark loop is a change in the charge renormalization, a

W

g

q

q
g

tt

g

s d

u u

FIG. 1. A K	 ! �	 diagram in which the vacuum polariza-
tion loop is entirely contained within a high-momentum sub-
graph.

W

tt

g

g
q

q

g

s d

uu

FIG. 2. A K	 ! �	 diagram in which the vacuum polariza-
tion subgraph must appear entirely within a low-momentum
subgraph.
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change that can be completely compensated by a corre-
sponding change in the bare lattice coupling g2

0.
The diagram shown in Fig. 3 contains a vacuum polar-

ization loop that can either enter a short- or long-distance
part of the graph. These two possibilities are represented by
the two dotted boxes shown in the figure. Because of the
presence of theW propagator, the inner box is necessarily a
‘‘high-momentum’’ subgraph. However, important contri-
butions can come from regions of momentum space in
which the lines entering the vacuum polarization subgraph
carry either small ( � �QCD) or large ( � mW) momentum.
In the case that large momentum is involved, the outer
dotted box surrounds what becomes a ‘‘high-momentum’’
subgraph with all internal lines carrying large momentum:
a regime that can be evaluated perturbatively and one in
which the quenched approximation should not be used. For
the ‘‘low-momentum’’ case, the contribution will be non-
perturbative and evaluation using lattice techniques, poten-
tially using the quenched approximation, will be needed.
Other momentum assignments for the lines in this outer
box which include only a portion of the vacuum polariza-
tion subgraph will have more than four external quark
lines, thereby having larger dimension and giving a con-
tribution that is suppressed by a factor of ��QCD=mW�

2.
Finally, Fig. 4 shows a potentially more ambiguous case.

Here, in addition to the possibility that the vacuum polar-
ization loop is contained entirely within a high- or low-
momentum subgraph, (the outer and inner dotted boxes,
respectively) it may also be partially in both, as indicated
by the middle dotted box. It is this intermediate subgraph
which requires special discussion. For the case that all the
momentum in the subgraph contained in the outer dotted
box is large, the vacuum polarization loop can be treated
perturbatively without recourse to the quenched approxi-
mation. For the case that only the momentum contained in
the inner loop is large and those in the remainder of the
graph are small, nonperturbative techniques will be needed
and the quenched approximation may be used. Thus, in this
case the vacuum polarization loop may be removed, or
equivalently, a cancelling loop of ghost quarks included.

However, for the case of the intermediate dotted box
which cuts the quark loop, the vacuum polarization piece is
one-half within the high-momentum part (the contents of
this intermediate dotted box) but one half is to be evaluated
in the low-momentum part. Here it is less obvious whether
this loop is to be included perturbatively (i.e. incorporated
in a Wilson coefficient) or to be cancelled by an added
ghost-quark contribution. In the language of the effective
weak Hamiltonian HW , such a cancellation of this vacuum
polarization graph would be achieved by including ghost
operators in HW .

This variety of roles played by QCD vacuum polariza-
tion graphs might suggest that a precise definition of the
quenched approximation for the evaluation of weak matrix
elements would require new and elaborate development.
However, as the above examples suggest, the standard
field-theoretic formulation of the ‘‘effective’’ low-energy
theory nicely deals with all of these questions, providing an
unambiguous separation of the decay amplitudes into
short-distance perturbative parts in which no quenched
approximation is made and long-distance parts that must
be evaluated nonperturbatively, possibly within a quenched
approximation. The potential ambiguity associated with
the inclusion of ghost operators is resolved by the matching
conditions that are imposed to define the quenched effec-
tive theory.

To be more concrete, consider the gluonic penguin
portion of the effective low-energy weak Hamiltonian
transforming in the (8,1) representation of SU�3�L �
SU�3�R and written as a sum of four independent,
dimension-six, four-quark operators:

 HW � c3Q3 	 c4Q4 	 c5Q5 	 c6Q6; (1)

where fcigi�3–6 are the four Wilson coefficients and
fQigi�3–6 the four, conventional gluonic penguin operators:

W

tt

g

q q

g

s d

uu

FIG. 4. A K	 ! �	 diagram in which the vacuum polariza-
tion subgraph can be partially contained within a high-
momentum subgraph.

g

Wq q

g

us

u d

FIG. 3. A K	 ! �	 diagram in which the vacuum polariza-
tion subgraph must be wholly inside or outside of any high-
momentum subgraph.
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 Q3 �
X

q�u;d;s

�sa�
��1� �5�da �qb�

��1� �5�qb; (2)

 Q4 �
X

q�u;d;s

�sa���1� �5�db �qb���1� �5�qa; (3)

 Q5 �
X

q�u;d;s

�sa���1� �5�da �qb���1	 �5�qb; (4)

 Q6 �
X

q�u;d;s

�sa�
��1� �5�db �qb�

��1	 �5�qa: (5)

A sum over the repeated color indices a and b is
understood.

The above discussion of the contributions of the various
vacuum polarization graphs to short- and long-distance
physics mirrors closely the usual field-theoretic derivation
of the effective weak Hamiltonian in Eq. (1). The usual
‘‘factorization’’ of weak amplitudes into short- and long-
distance parts realized by HW provides exactly the needed
separation of vacuum polarization effects into those that
are correctly included using perturbation theory and those
which are omitted in the quenched approximation—their
effects being partially reproduced by a decrease in the bare
coupling constant.

Let us briefly recall this correspondence. The matrix
elements of the local effective weak Hamiltonian given
in Eq. (1) will accurately reproduce those of the complete
theory if those matrix elements involve momenta which are
small compared to the scale of the W meson and top quark
masses—the scale at which nontrivial structure for the
weak interactions becomes visible.

Leading contributions in an expansion in 1=m2
top and

1=m2
W will come from regions of integration over internal

momenta in which: (a) All momenta in a particular sub-
graph are large. (b) That subgraph contains any top quark
andW boson internal lines, and (c) That subgraph has itself
the minimum number of external lines or, more precisely,
represents the lowest possible mass dimension or largest
possible degree of divergence. Under these circumstances,
this subgraph can be treated as a structureless local com-
posite operator made up of fields corresponding to the
external lines of the subgraph. When evaluated, integration
over this large-momentum region for the subgraph contrib-
utes to the coefficient ci appearing in HW .

In fact, the four coefficients fcigi�3–6 can be simply
defined as those required to make the complete and effec-
tive theories agree. Typically the Wilson operators
fQigi�3–6 will be defined by normalization conditions
specified at an energy scale � making both the operators
Qi and coefficient functions ci functions of this scale � as
well. Usually the scale � is also the scale at which the ci
are determined by requiring specific Greens functions
containing an HW vertex to agree with those predicted by
the complete theory.

The application of this effective field theory formalism
to the definition of the quenched approximation for the
evaluation of weak matrix elements is now quite straight-
forward. The vacuum polarization graphs which contribute
to the short-distance/high-momentum part of the above
analysis will necessarily contribute to the Wilson coeffi-
cients, can be evaluated in perturbation theory and need not
involve the quenched approximation. Vacuum polarization
effects which involve low momentum will enter the matrix
elements of the Wilson operators Qi, will likely require
nonperturbative techniques for evaluation and may be
computed in the quenched approximation.

Now the equality between matrix elements of the com-
plete and the effective theories, imposed for four specific
amplitudes at the scale�will hold for a range of scales and
a variety of matrix elements only to the extent that the
quenched approximation is accurate and the matrix ele-
ments (e.g. h��jQijKi) of theQi in the unquenched theory
agree with those evaluated in the quenched theory with the
bare coupling weakened to compensate for the omitted
quark-anti-quark screening. Note, in this definition of the
quenched approximation we are replacing the matrix ele-
ments of the operators Qi, originally to be evaluated in full
QCD, with matrix elements evaluated in a new theory: a
theory in which ghost quarks have been introduced, fol-
lowing the procedures of Bernard and Golterman [16], to
completely cancel the fermion determinant, and the gauge
coupling at short distances has been decreased to compen-
sate for this quark loop omission.

Finally, let us examine the potential ambiguity associ-
ated with vacuum polarization loops, such as those in
Fig. 4, which contribute partially to the short-distance,
perturbative Wilson coefficients and partially to the low-
energy nonperturbative matrix elements. The ‘‘quenching’’
of the loop cut by the middle dotted box in Fig. 4 reduces to
the question of whether we add to our four Wilson opera-
tors fQigi�3–6 of Eqs. (2)–(5) new operators which contain
ghost quarks. In fact, in the quenched theory there are four
additional operators which have the same symmetry under
SU�3�L � SU�3�R as these original four operators:

 Q
3 �
X

~q�~u;~d;~s

�sa���1� �5�da �~qb���1� �5�~qb; (6)

 Q
4 �
X

~q�~u;~d;~s

�sa���1� �5�db �~qb���1� �5�~qa; (7)

 Q
5 �
X

~q�~u;~d;~s

�sa���1� �5�da �~qb���1	 �5�~qb; (8)

 Q
6 �
X

~q�~u;~d;~s

�sa���1� �5�db �~qb���1	 �5�~qa: (9)

Including these operators in our quenched effective weak
Hamiltonian will have the effect of introducing ghost-
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quark loops which will (partially) cancel the problematic
quark loop in Fig. 4.

However, given the discussion above, the most consis-
tent approach to the quenched approximation is now clear.
The effective, quenched weak Hamiltonian, Hqh

w should
incorporate all eight possible operators:

 Hqh
w �

X6

i�3

fciQi 	 c
i Q


i g (10)

and the eight coefficients fcigi�3–6 and fc
i gi�3–6 should be
chosen to make the matrix elements ofHqh

w and those of the
complete theory agree as closely as possible. This ‘‘match-
ing’’ condition should be imposed at a sufficiently large
scale � that the required, perturbative evaluation of the
complete theory is justified. On the other hand, given the
inconsistent � dependence of quantities in the complete
and quenched theories, the scale � also should be chosen
as close as possible to the low energy region in which the
quenched matrix elements are to be evaluated to minimize
these inconsistencies. The scale � is thus an intermediate-
energy scale and this approach might be called
intermediate-energy matching.

How are these four new coefficients fc
i gi�3;4;5;6 to be
evaluated and what values are expected? These new coef-
ficients can be fixed by imposing conditions on the new
ghost-quark amplitudes that appear in the quenched theory.
They can be evaluated by comparing the complete theory,
evaluated perturbatively, with the quenched theory eval-
uated either perturbatively or nonperturbatively. Since the
complete theory does not contain ghost quarks, we should
require that specific two-quark/two-ghost-quark ampli-
tudes should vanish in the quenched theory. This would
appropriately be done at off-shell, nonexceptional momen-
tum at the scale � and be imposed on color mixed and
unmixed and left- and right-handed flavor-singlet combi-
nations of ghost quarks. If carried out in perturbation
theory, the absence of ghost-quark coupling in the com-
plete theory simply requires that all the c
i vanish to leading
order in �s. The choice c
i � 0ji�3;4;5;6 is precisely the
quenched approximation used by RBC and CP-PACS in
their quenched kaon decay calculations, [1,2]. Because of
the ghost-quark couplings introduced by the self-
contractions of Fig. 5, these c
i coefficients will be nonzero
at order �s. While it would not be especially difficult to
calculate the fc
i gi�3;4;5;6 to order �s in perturbation theory
or to evaluate them using the RI-MOM techniques em-
ployed for similar quantities by the RBC Collaboration in
Ref. [2], we expect that these effects will be quite small as
were similar disconnected amplitudes that were evaluated
in this earlier work.

The majority of numerical simulations and the discus-
sion above has been focused on the quenched approxima-
tion, in which all vacuum polarization loops are dropped
from the calculation. However, there is additional insight

and a useful framework for analysis to be obtained in the
case of ‘‘partial quenching’’ when a portion of the fermion
determinant is included in the calculation. An important
example involves the use of the wrong number of sea
quarks, working with two rather than three flavors as in
[17]. In fact with a positive Dirac operator (such as with
domain wall fermions) and the proper algorithm [18], one
can simulate with a value of Nf varying continuously
between 0 and 3. The discussion for the quenched case
applies quite directly to this partially quenched case as
well.

Again one attempts to approximate matrix elements
computed in the full theory with those computed in the
truncated theory without the full fermion determinant. The
effects of the missing determinant are partially reproduced
by adjusting the bare coupling to account for the missing
polarization effects. Again the effective weak Hamiltonian
to be used in a partially quenched theory should be chosen
so that at an intermediate matching point, the full and the
partially quenched theory agree. Clearly as Nf ! 3 this
approximation will become increasingly accurate as the
vacuum polarization effects of the two theories become
identical.

Even in the case Nf � 3 one can consider a partially
quenched theory in which the valence quark masses do not
match with the sea quark masses in the fermion determi-
nant. For this case, the above discussion of quenching is
simplified, since the differences between fermion masses
appearing in quark loops can be neglected at the matching
scale �. Thus, the effective weak Hamiltonian, written in
terms of the valence quark fields, will be the same as that in
the full theory. Often setting mval � msea, which can al-
ways be done, is less interesting than using mval � msea

together with analytic results to explore the chiral limit.
In this section we have proposed a definition of the

quenched approximation which provides a natural and
self-consistent application of the standard quenched ap-
proximation to the case of hadronic weak decays. Up to
corrections which are likely small, the calculations of both
the RBC and CP-PACS Collaborations use this definition
in their evaluations of the gluonic penguin contributions
[1,2]. However, since such an approximation is necessarily

q q

s Qi d

q̃ q̃

FIG. 5. An order �s diagram which generates a nonvanishing
ghost amplitude in a quenched theory from operators with no
direct ghost-quark coupling.
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ad hoc and not systematic it must be used with suspicion. If
unphysical effects, such as the quenched chiral logarithms
discovered by Golterman and Pallante and evaluated nu-
merically below, turn out to be large (as we will see they
do), then the quenched approximation to these gluonic
penguin amplitudes should be abandoned.

III. REVIEW OF STRONG PENGUINS IN
QUENCHED CHPT

Following Golterman and Pallante, we will now use
chiral symmetry and chiral perturbation theory to study
the effects of the quenched approximation on the gluonic
penguin contributions to K meson decay. Chiral perturba-
tion theory is an important tool which provides an approxi-
mation scheme in which two-pion decay amplitudes can be
computed from vacuum and single-pion transition ampli-
tudes. It can also provide an indication of the accuracy of
the quenched approximation by identifying unphysical,
quenched singularities which give rise to the infamous
‘‘quenched chiral logarithms.’’

In order to exploit chiral symmetry in the quenched
approximation, we must adopt a field-theoretic description
of quenching. This can be done in two ways: the super-
symmetric formulation [16] and the replica method [19].
As in the discussion above, we will adopt the original
supersymmetric formulation and use the quenched chiral
perturbation theory of Bernard and Golterman [16]. In this
method, the valence quarks are quenched by introducing
ghost quarks which have the same mass and quantum
numbers as the valence quarks but opposite statistics.
Therefore the ghost loops cancel the loops of the valence
quarks, effectively setting the fermion determinant to a
constant, which is precisely the quenched approximation.
The chiral symmetry group of this action is SU�njn�L �
SU�njn�R, a graded symmetry group, where n is the num-
ber of valence quark flavors. We adopt the definitions and
notation of Bernard and Golterman [16] needed for this
supersymmetric approach (see also Ref. [20]).

As in Ref. [21], one can also consider the partially
quenched case, in which N sea quarks are introduced
into the theory. In the notation of [21], one has n quarks,
N of which are sea quarks, so that there are n� N valence
and, in addition, n� N ghost quarks. The valence quarks
have arbitrary mass, while the sea quarks are chosen to be
degenerate. In this case, the graded chiral symmetry group
of the action is SU�njn� N�L � SU�njn� N�R.

A. Notation and graded groups

We will need to identify representations of the graded
symmetry SU�njn� N� group and will adopt the follow-
ing notation. Since the fundamental representation of
SU�N� and its complex conjugate are usually denoted, N
and �N, we will adopt a similar description of those repre-
sentations of SU�njn� N�: �njn� N� and �njn� N�.

Thus, for example, a quark bilinear of the form �Q�1	
�5�Q0, will belong to a representation easily identified as
��njn� N�L; �njn� N�R�. Here we use Q to represent a
column vector whose first n components are the anticom-
muting quark fields q and whose final n� N components
are the ghost-quark fields ~q. Likewise the quark bilinear
�Q���1	 �5�Q0 will belong to the product representation
�1�njn� N�L; �njn� N�R � �njn� N�R� where we use
the notation 1�njn� N� to identify the trivial representa-
tion of the group SU�njn� N�. This representation is
easily constructed as the �2n� N� � �2n� N� identity
matrix I�njn�N�a;b , where the indices a and b transform as

elements of the �njn� N� and �njn� N� representations
of SU�njn� N� respectively. This matrix has supertrace
(defined below in Eq. (18) and Ref. [20]) str�I�njn�N�� � N.

We will be interested in two irreducible representations
which appear in the product �njn� N� � �njn� N�
above. The first is the trivial representation 1�njn� N�
already discussed. The second is the adjoint representation
which we denote as adj�njn� N�. This is the representa-
tion formed from the �2n� N�2 � 1 generators Tia;b of the
group SU�njn� N�. Here i identifies the element of
adj�njn� N� while the indices a and b transform as ele-
ments of the �njn� N� and �njn� N� representations of
SU�njn� N� respectively. Since the matrices U defining
SU�njn� N� have unit superdeterminant, sdet�U� � 1,
the generators Ti each have vanishing supertrace: str�Ti� �
0. For the case N � 0, the trivial and adjoint representa-
tions are entirely distinct. Operators belonging to 1�njn�
N� cannot mix with those in adj�njn� N�; the latter have a
vanishing supertrace while the former do not.

However, for the quenched case where there are no sea
quarks, N � 0, their supertraces both vanish and an opera-
tor in the adj�njn� representation can mix with a 1�njn�
operator. In fact, in the quenched, N � 0 case, the multi-
plication of the 2n fields q and ~q by a common phase factor
has superdeterminant 1 making the unit matrix I�njn�a;b a valid
generator of SU�njn�which is no longer simple in thisN �
0 case. Thus, for the case N � 0 the adjoint representation,
adj�njn�, continues to have dimension �2n�2 � 1 but now
includes the identity matrix I�njn�. Of course there are still
anti-Hermitian matrices with nonvanishing supertrace. To
include these we must extend the adjoint representation to
a larger �2n�2-dimensional representation, denoted here
adj�njn� which includes the vectors in adj�njn�.

Therefore, the product representation �njn� � �njn�
must be decomposed in an unfamiliar way. In contrast
with the N � 0 case, this representation is not reducible
and cannot be written as a direct sum of adj�njn� N� and
1�njn� N�. The equation

 �njn� N� � �njn� N� � adj�njn� N� 	 1�njn� N�

(11)
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does not apply for the case N � 0. Instead this product
forms the irreducible representation adj�njn�. Contained
within the �2n�2-dimensional supervector space on which
this representation acts is an invariant supervector sub-
space of dimension �2n�2 � 1 which forms the representa-
tion adj�njn�. Finally this supervector subspace of
dimension �2n�2 � 1 itself contains a one-dimensional
subspace which is again invariant under the original
adj�njn� representation matrices, transforming as the trivial
1�njn� representation:

 �njn� � �njn� � adj�njn� � adj�njn� � 1�njn�: (12)

The characteristics of this quenched, N � 0 case will be
discussed further below.

B. Quenched chiral symmetry of Q6

Let us now examine the effect that the quenched ap-
proximation has on the chiral symmetry properties of the
gluonic penguin operator Q6, the four-quark operator
which is expected, along with Q8, to make the largest
contribution to �0=�. Our discussion builds on that of
Golterman and Pallante [11,12]. Recall that in the effective
weak Hamiltonian for the full theory the Q6 operator is
given by Eq. (5), repeated here for convenience:

 Q6 � �sa���1� �
5�db

X
q

�qb�
��1	 �5�qa: (13)

The right-hand factor in this operator is a sum over light
flavors, q � u, d, s, so in the full theory this factor is a
flavor singlet under the symmetry group SU�3�R. As dis-
cussed in the previous section, in the (partially) quenched
theory, vacuum polarization effects permit this operator to
mix with a new operator which contains sea and ghost
quarks and belongs to the singlet representation of
SU�njn� N�R:

 QS
6 � �sa���1� �5�db

X
Q

�Qb���1	 �5�Qa: (14)

where the sum over Q contains all valence, sea and ghost
quarks. An appropriate multiple of this operator can be
subtracted from the original Q6 operator, to create a new
operator which transforms in the adjoint representation of
SU�njn� N�R:

 Qadj
6 � Q6 �

3

N
QS

6 : (15)

Here the factor of 3=N is easily chosen so that the adjoint
operator Qadj

6 has a vanishing supertrace. Following
Golterman and Pallante, we reorder Eq. (15) to express
the original operator Q6 in terms of Qadj

6 and QS
6 :

 Q6 � Qadj
6 	

3

N
QS

6 : (16)

This is a useful equation because the adjoint representa-

tion, to which Qadj
6 belongs, also includes the usual electro-

weak penguin operator Q8 so the matrix elements of these
two operators are connected by a simple supersymmetry
transformation. In addition, the NLO chiral perturbation
theory for the relevant matrix elements of QS

6 has been
worked out.

As is evident from these equations, this useful decom-
position does not work in the truly quenched case where
N � 0. In this case, Golterman and Pallante propose defin-
ing a nonsinglet operator QNS

6 through the equation:

 Q6 � QQNS
6 	 1

2Q
QS
6 : (17)

where we have added the extra Q to the superscript of the
general operatorQS

6 defined in Eq. (14) to emphasize that it
is being defined for the quenched (N � 0) case. At first
glance, Eq. (17) might offer the possibility of distinguish-
ing two distinct contributions to Q6: due to QQNS

6 and QQS
6 ,

based upon their different chiral transformation properties
under the graded symmetry. In turn this separation could—
perhaps—be used to motivate an alternative definition of
the quenched approximation, in which the nonsinglet piece
is dropped. Unfortunately, the decomposition in Eq. (17) is
entirely arbitrary. The ‘‘nonsinglet’’ operator, QQNS

6 is not
protected by the graded symmetry from mixing with the
singlet operator. It is therefore ambiguous to separate out
the ‘‘singlet piece’’ of Q6; any amount of QQS

6 could be
added to the definition of QQNS

6 , allowing the coefficient of
1=2 in Eq. (17) to be replaced by any arbitrary number. In
the representation theory language of the previous section,
QQS

6 is actually contained within the representation to
which QQNS

6 belongs: 1�njn� � adj�njn�. Thus, we cannot
use Eq. (17) to identify a possibly preferred ‘‘singlet’’ part
of the original Q6 operator. It should be noted that QQS

6 is
protected by the graded symmetry from mixing with non-
singlet operators; our conclusion due to the preceding
arguments is simply that, since it is impossible to unam-
biguously define the singlet piece ofQ6, any such approach
is difficult to motivate physically.

For concreteness, we have focused on the specific op-
erator Q6. However, the transformation properties of the
other three gluonic operators are quite similar. The opera-
tor Q5 transforms in an identical fashion as does Q6 and
these will of course mix when the energy scale at which
they are defined is changed. The operators Q3 and Q4 are
somewhat different since they transform only under
SU�njn� N�L. While this increases the number of repre-
sentations that can appear, the absence of right-handed
indices makes their quenched chiral perturbation theory
less singular.

We will now exploit these quenched chiral symmetry
properties to study the matrix elements of these operators
in the chiral limit.
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C. Review of quenched ChPT

We now focus on the case of central interest in this work:
quenched QCD, as above concentrating on the operatorQ6.
Since there are separate ChPT predictions for the matrix
elements of the operators, Q6 and QQS

6 we will analyze
them both in this paper. To leading order in QChPT these
operators can be represented by
 

QQS
6 � �QS

q1 str
�6@��@��y�

	 2�QS
q2B0str
�6�M�y 	 �My�� 	 H:c:; (18)

 

Q6 �
1
2f�

�8;1�
q1 str
�6@��@��y�

	 2��8;1�q2 B0str
�6�M�y 	�My�� 	 H:c:g

	 �NS
q str
�6� �A�y� 	 H:c: (19)

where ��6�ij � �i3�j2 while

 M � �mu;md;ms;mu;md;ms�diag; (20)

 

�A � �1; 1; 1;�1;�1;�1�diag; (21)

 B0 �
m2
�	

mu 	md
�

m2
K	

mu 	ms
�

m2
K0

md 	ms
: (22)

The matrix �A is an element of the extended adjoint repre-
sentation adj�njn� and appears here because the corre-
sponding operator in the underlying quenched theory,
defined in Eq. (17), transforms in the same fashion. The
meson field � is defined by

 � � exp
�

2i�
f

�
(23)

with

 � �
� 	y

	 ~�

� �
: (24)

The quantity f is the pseudoscalar decay constant in the
chiral limit (In the normalization used the physical value of
the pion decay constant is f� ’ 130 MeV) while the 3� 3
matrices �, ~�, and 	y are constructed from Goldstone
fields which create and destroy particles made from va-
lence quarks and antiquarks (bosons), ghost-anti-ghost
quarks (bosons) and quarks and antighost quarks (fermi-
ons), respectively.

We note that the ChPT representation for the operatorQ6

given in Eq. (18) differs from the implications of the
original formula of Golterman and Pallante, Eq. 3.5 of
Ref. [11]. In particular, the quenched nonsinglet operator
QQNS

6 will be represented in chiral perturbation theory by
both singlet and nonsinglet operators. As a result, the low-
energy constants ��8;1�q1 and ��8;1�q2 which multiply the two
quenched singlet operators which appear in Q6 need not

agree with the coefficients �QS
q1 and �QS

q2 which appear in

the singlet operator QQS
6 .

In Eqs. (18) and (19) and those below, we combine the
2n� 2n matrix � together with the similar matrices �A and
M, which appear in the quark-level theory, to form the most
general set of operators that are invariant under the com-
plete graded symmetry S�njn�L � SU�njn�R of the
quenched theory, to a given order in the Goldstone particle
masses and momenta. As matrices transforming in the
product representation �njn� � �njn� they can be written as

 U �
A B
C D

� �
; (25)

where the submatrices have the same dimension as the
submatrices of �, above. The invariance under the graded
symmetry of the quenched theory requires the presence of
supertraces in the operators of Eqs. (18) and (19) defined
by

 str �U� � tr�A� � tr�D�: (26)

To tree-level in ChPT, a pseudoscalar meson mass is
given by

 m2
ij � B0�mi 	mj�; (27)

wheremi andmj are the masses of the two quarks that form
the meson. We define m33 to be the tree-level meson mass
of two valence strange quarks, as in [21]

 m2
33 � 2m2

K �m
2
�: (28)

The new nonsinglet operator of Eq. (19) is nominally of
O�p0� in ChPT, but its tree-level contributions to physical
matrix elements vanish because �A is proportional to the
unit matrix in the valence sector [12]. At O�p2� this is not
true and the one-loop insertions of QQNS

6 make a contribu-
tion of the same order as the tree-level insertions of QQS

6 .
Of course, there are additional nonsinglet operators that
can be constructed from the matrix �A which enter at O�p2�
whose presence is needed to compensate for the scale
dependence of the one-loop insertions of QQNS

6 . This in-
troduces three more LEC’s into the amplitudes we must
consider in this paper. The effective Lagrangian to this
order is [12]

 L �NLO�
NS �

X
i

cNS
i ONS

i ; (29)

with

 O NS
1 � str
�6L��y �A�L��;

ONS
3 � str
�6f�

y �A�; L2g�;

ONS
4 � str
�6f�

y �A�; Sg�;

(30)

and S � 2B0�My�	 �yM�, L� � i�y@��. In the fol-
lowing we work with operators renormalized in the MS
scheme, absorbing the divergence into the coefficients of
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the effective Lagrangian, which have the form

 cNS
i � cr;NS

i 	
1

16�2f2

�
1

d� 4
	

1

2
��E � ln4��

�
2�NS

q 
i:

(31)

The finite coefficients, cr;NS
i , are the renormalized low-

energy constants of the theory, while the factors 
i are
chosen to cancel the divergences of the one-loop insertions
of the tree-level operator. In the quenched theory we find

1 � 0, 
3 � 3, and 
4 � �3. The scale dependence of
the LEC’s is given to one-loop order by

 cr;NS
i ��2� � cr;NS

i ��1� 	
2�NS

q 
i
�4�f�2

ln
�1

�2
; (32)

where �1 and �2 are two different values of the chiral
scale. The result for physical amplitudes should be inde-
pendent of the scale and Eq. (32) is obtained by requiring
that all one-loop amplitudes for the Q6 operator be scale
independent when the O�p2� NLO LEC’s are included in
the calculation.

The relations between our conventions for the LEC’s
and those of Golterman and Pallante [11,12] are given
below. The constant �NS

q has been chosen to have a nor-

malization that agrees with that of ��8;8�q in Ref. [2]:

 �NS
q;GP �

2

f2 �
NS
q : (33)

In addition, we are working with the notation of Ref. [22]
for the NLO LEC’s. Although that work dealt with the
electroweak penguins, both transform in the �adj�njn�

N�L; adj�njn� N�R� representation of the partially
quenched graded symmetry in the case N � 0 and we
therefore keep that notation. The relationship between
the two is

 �NS
q1 � �4��

22cNS
3 ; �NS

q2 � �4��
22cNS

1 ;

�NS
q3 � �4��

22cNS
4 :

(34)

D. Q6 amplitudes in quenched ChPT

We now review the ingredients necessary to obtain the
contribution of both the operators QQS

6 and Q6 to the K !
�� amplitude to leading order, O�p2�, in quenched ChPT.
The chiral behavior of QQS

6 is the same as that of Q6 in the
full theory:

 h�	��jQQS
6 jK

0i �
4i�QS

q1

f3 �m2
K �m

2
��; (35)

where, as in the full QCD case, the needed LEC �QS
q1 can be

extracted from the K ! 0 and K ! � matrix elements:

 h0jQQS
6 jK

0i �
4i�QS

q2

f
�m2

K �m
2
��; (36)

 h�	jQQS
6 jK

	i �
4

f2 �
QS
q1mKm� �

4

f2 �
QS
q2m

2
K: (37)

The K ! �� matrix element of Q6 includes the one-
loop contributions of�NS

q and theO�p2� LEC’s, cNS
i . In this

case, K ! �� is given by [12]:

 

h�	��jQ6jK
0i �

4i

f3

�
1

2
��8;1�q1 � c

NS
1 � 2cNS

3

�
�m2

K �m
2
�� 	

2i

16�2f5
�NS
q

�
12�m2

K �m
2
��

�
ln
m2
�

�2 � 1
�

	

�
m6
K

m4
�
� 2

m4
K

m2
�
	 2m2

K

�
ln
m2
K

m2
�
	

�
m6
K

m4
�
� 6

m4
K

m2
�
	 10m2

K � 4m2
�

�
ln
m2

33

m2
�
	 2m2

K

�
F�m2

�;m2
�;�m2

K�

� 2i���m2
K � 4m2

��

�������������������
1�

4m2
�

m2
K

s
	
�
3

���
3
p �

	

�
m4
K

m2
�
� 2m2

K

�
�2F�m2

�;m2
K;�m

2
�� 	 F�m2

K;m
2
33;�m

2
���

	 6m2
K

�
1�

m2
K

m2
�

��
; (38)

where the function F is given in Appendix A. Note the
scale dependence in the logarithmic term proportional to
�NS
q . This scale dependence cancels that of cNS

3 , as can be
seen from Eq. (32). TheQ6 amplitudes forK ! 0 andK !
� are [12]:
 

h0jQ6jK0i �
4i
f

�
1

2
��8;1�q2 	 2cNS

4

�
�m2

K �m
2
��

	
8i

f3 �
NS
q

1

16�2

�
m2
K ln

m2
K

�2 � 2m2
� ln

m2
�

�2

	m2
33 ln

m2
33

�2 � 3�m2
K �m

2
��

�
; (39)

 

h�	jQ6jK
	i �

4m2
M

f2

�
1

2
��8;1�q1 �

1

2
��8;1�q2 � c

NS
1

� 2cNS
3 � 2cNS

4

�
; (40)

where in the expression for K ! � we have set the quark
masses to be degenerate (m2

K � m2
� � m2

M), as in the
numerical simulation [2]. Note, as discussed above, the
singlet LEC’s ��8;1�q1 and ��8;1�q2 entering the equations forQ6

[Eqs. (38)–(40)] need not be the same as the corresponding

LEC’s, �QSq1 and �QSq2 appearing in the corresponding ex-
pressions for QQS

6 [Eqs. (35)–(37)].
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Notice that the same linear combinations of LEC’s
appear in the above three equations, ��8;1�q1 =2� cNS

1 �

2cNS
3 and ��8;1�q2 =2	 2cNS

4 . If the value of �NS
q is small,

then the procedure for obtaining K ! �� in which one
neglects �NS

q reduces to that of the full theory. In this case,
the previously mentioned combinations of LEC’s replace
��8;1�1 and ��8;1�2 , respectively. The strategy that was em-
ployed in Refs. [1,2] implicitly made this approximation.

It has recently been suggested, however, that the value of
�NS
q is large compared to the other LEC’s in the amplitudes

and cannot be neglected [14]. A large Nc expansion was
used to obtain the result (in our conventions),

 �NS
q � �

1
4f

4B2
0: (41)

When quenched lattice values for these constants are sub-
stituted into this equation, one finds that the resulting value
of �NS

q is so large that it cannot be ignored. The nonline-
arities implied by the presence of �NS

q in Eq. (39) need to
be included when this expression is used to extract the
LEC’s from the K ! 0 lattice data and the explicit form of
the �NS

q -dependent term in Eq. (38) needs to be taken into
account in a quenched prediction for K ! ��. Of course,
with such large quenching artifacts, such a quenched pre-
diction will be of limited value.

It is therefore crucial to have a means for determining
�NS
q directly from a lattice calculation. Golterman and

Pallante have provided a method for doing just that.
However, we have found that their method suffers from
ambiguities which are power divergent in the lattice spac-
ing when employed in the case of domain wall fermions,
making accurate extraction of �NS

q from the lattice data
rather difficult. In particular, with a finite Ls (the separation
between the two physical, four-dimensional walls in the
fifth dimension), this power divergent contribution,
although suppressed by a factor of order of the residual
chiral symmetry breaking, O�mres�, could be large. We
discuss this difficulty in the following sections and present
an alternative method for obtaining �NS

q which avoids this
problem.

IV. LATTICE DETERMINATION OF �NS
q FROM

~K ! 0

In this section we review the method proposed by
Golterman and Pallante to obtain �NSq on the lattice [12],
together with the (CPS) symmetry arguments needed to
understand the form of the power divergences in the matrix
elements of four-quark operators. As will be explained in
the following, Golterman and Pallante introduced a new
operator, ~QQNS

6 , and extracted �NS
q from matrix elements of

this operator which included ghost particles in the external
states. By extending the standard CPS symmetry argu-
ments to include quark-ghost transformations, we show
that this method suffers from contamination from terms

which are power divergent in the lattice spacing.
Nevertheless, we present numerical results from this ap-
proach. While these results are in rough agreement with the
large Nc estimates [14], due to the ambiguities associated
with the power divergence the results must be considered
inconclusive; in Sec. VI we suggest an alternative approach
which does not suffer from this problem.

A. Review of Golterman and Pallante’s method

In Eq. (39) it is difficult to numerically disentangle the
logarithmic �NS

q term from the linear term and possible
higher order effects. It was for this reason that a new matrix
element was suggested in Ref. [12] to which �NS

q contrib-
utes atO�p0�, so that it may be obtained more readily in the
chiral limit. This can be done if one considers a matrix
element where the ghost quarks can appear on external
lines. In order to obtain such a matrix element, one must
perform an SU�3j3�L flavor rotation of the operator QQNS

6
into

 

~Q QNS
6 � �

1

2
�s���1� �5�~d

�X
q

�q���1	 �5�q

�
X

~q

�~q���1	 �5�~q
�

� �
1

2
�Q~�6���1� �5�Q �Q �A���1	 �5�Q;

(42)

where now the ~d is a ghost-quark field. The matrix ~�6 is
given by �~�6�ij � �i3�j5, a quenched chiral transform of
the matrix �6 defined earlier. To leading order in ChPT, this
operator is

 

~Q QNS
6 � �NS

q str
~�6� �A�y� 	 H:c: (43)

Note that some care must be taken in order to maintain
consistency in the sign conventions between the chiral and
quark-level operators. Our conventions are presented in
detail in Appendix B. Since the above operator is in the
same irreducible representation as QQNS

6 , it is parameter-
ized by the same low-energy constants. Considering the
matrix element ~K ! 0, we have, to leading order

 h0j ~QQNS
6 j ~K0i �

4i
f
�NS
q : (44)

Although this method isolates �NS
q at leading order, the

NLO contribution has a power divergent coefficient, mak-
ing the numerical extraction problematic. We discuss the
way in which the mixing of four-quark operators with
power divergent lower dimensional operators can be con-
strained by the symmetries of the theory in the following
subsection.
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B. Power divergences and CPS symmetry

In general, the �I � 1=2 matrix elements of four-quark
operators have a power divergent part, due to mixing with
lower dimensional operators. This power divergence will
involve the quark bilinears, �sd and �s�5d, times a momen-
tum independent coefficient [2]. One can define the follow-
ing quark bilinear operator [10],

 ��3;
�3� � �s�1� �5�d; (45)

which is equal to ��3;�3� Tr��6�� to lowest order in ChPT,
where in our conventions, ��3;�3� � � f2

2 B0.
We briefly review the use of CPS symmetry [23] to

determine the form of the power divergences that enter
our computations due to mixing with the lower dimen-
sional operator of Eq. (45). Here C and P are the usual
charge conjugation and parity inversion symmetries, while
S is the symmetry under exchange of the s and d quarks,
which is exact when the quark masses are equal.

The parity even part of the above operator, �sd, has a CPS
of 	1, while the parity odd part, �s�5d, has a CPS of �1.
The operator, QQNS

6 , has a CPS of 	1 and the matrix
element h0jQQNS

6 jKi is a parity odd transition. Therefore,
the power divergence of this matrix element must be
proportional to the matrix element of a lower dimensional
operator which is also parity odd and has CPS � 	1. We
see that the only operator with these symmetries that can be
constructed is �s�5d multiplied by ms �md. Thus, the
power divergent part of h0jQQNS

6 jKi is proportional to
ms �md.

For the parity even transition, h�jQQNS
6 jKi, the mixing

must be with a parity even lower dimensional operator with
CPS � 	1. In this case the only such operators are �sd and
�ms 	md��sd. The former is ruled out by chiral symmetry.
As domain wall fermions at finite Ls break chiral symme-
try such a mixing can occur, albeit greatly suppressed due
to the domain wall fermion mechanism. Thus, the domi-
nant part of the power divergence of the K ! � matrix
element is proportional to ms 	md. Since this is a state-
ment at the operator level, it is true to all orders in the chiral
expansion, an important result when dealing with the nu-
merical data of a lattice calculation.

We now wish to consider matrix elements of the operator
~QQNS

6 , since this will give us �NS
q at O�p0� in the chiral

expansion. In order to proceed, we construct a new graded
symmetry, CP~S, where now ~S not only exchanges s and d
quarks, but also exchanges all valence quarks with their
corresponding ghosts, i.e. under ~S the six ‘‘quark’’ fields
transform as

 �u; d; s; ~u; ~d; ~s� ! �~u; ~s; ~d; u; s; d�: (46)

In order to implement this CP~S symmetry, we need to
understand how C and P act on ghost-quark states.

Under C, the valence quarks have the following familiar
transformation properties

 q! C �qT; (47)

 �q! �qTC�1: (48)

Thus, the quark bilinears, �sd and �s��d transform as

 

�sd! �ds; (49)

 �s��d! � �d��s; (50)

where we have used the identities, Cy � C�1 and
C�1��C � ��

T
� and the fact that the quark fields

anticommute.
In the case of ghost quarks we can define C analogously

to the case of valence quarks, such that

 ~q! C �~qT: (51)

However, the antighost does not transform independently
from the ghost, because it obeys bose statistics. Taking the
transpose conjugate of both sides yields

 

�~q! ~qTC�1; (52)

which differs in sign from Eq. (48). Using the transforma-
tion rules in Eqs. (51) and (52) and the fact that ghost-quark
fields commute, we see that

 

�~s�� ~d! � �~d��~s; (53)

where the sign change demonstrates that this transforma-
tion for ghost quarks does indeed act as a charge conjuga-
tion. For bilinears that are made of a valence quark and an
antighost quark the fact that the fields commute will cause
a sign change compared to Eqs. (49) and (50). For ex-
ample,

 �s�� ~d! �~d��s: (54)

Under P, the quark fields transform as

 q! Pq; (55)

 �q! �qP; (56)

where PyP � 1. It is simple to recognize that the same
transformation under parity is also valid for the ghost
fields.

We are now ready to examine the CP~S transformation
properties of the relevant operators. The bilinear, �s ~d , has a
CP~S of �1, while �s�5

~d has a CP~S of 	1. The four-quark
operator, ~QQNS

6 , has a CP~S of 	1. Thus, the matrix ele-
ment, h0j ~QQNS

6 j ~Ki, which is a parity odd transition, must
have a power divergence given by the matrix element of a
lower dimensional operator which is both parity odd and
has CP~S � 	1. We see that the bilinear operator �s�5

~d,
which already has the same CP~S as ~QQNS

6 , can only have
the coefficient ms 	md. This is opposite to the situation
for theK ! 0 amplitude, where the CPS ofQQNS

6 and �s�5d
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was opposite, implying a power divergence proportional to
ms �md. The reason for the difference is the exchange of
valence and ghost quarks in the right-handed part of
Eq. (42) under ~S, yielding an extra relative minus sign.

Note, this same conclusion could also be reached by
starting with the dimension-3 operator which represents
the quadratic divergence present in the usual operator Q6:

 

�q�6M�1	 �5�q	 �qMy�6�1� �5�q

� �md 	ms��sd	 �md �ms��s�5d: (57)

Note, the form of the left-hand-side of Eq. (57) is deter-
mined by the chiral symmetry properties of the matrix �6

[an element of (8,1)] and the quark mass matrix M [an
element of �3; �3�]. The relative sign of the two terms on the
left-hand-side of this equation is determined by CPS sym-
metry. The corresponding dimension-3 operator that mixes
with ~QQNS

6 must have the same form except for the addition
of the matrix �A and a quenched chiral rotation of �6 to ~�6 to
agree with the quenched chiral symmetry properties of
~QQNS

6 :

 

�Q~�6M �A�1	 �5�Q	 �Q �AMy ~�6�1� �5�Q

� �ms �md��s ~d��ms 	md� �s�5 ~d: (58)

This argument demonstrates that ~K ! 0 has a power
divergence proportional to ms 	md. When the fermion
discretization does not preserve exact chiral symmetry
(such as domain wall fermions with finite Ls), there will
also be mixing with the operator �s�5d. For domain wall
fermions this is suppressed by a power of mres. Such power
divergences lead to large uncertainties when one tries to
obtain the chiral limit of a matrix element without exact
chiral symmetry on the lattice. However, these symmetry
arguments suggest a way around this difficulty and we
provide an alternative method for obtaining �NS

q in
Sec. VI which makes use of the following observation:
the matrix element h ~�j ~QQNS

6 jKi is parity even and since the
parity even bilinear, �s ~d , has CP~S � �1, the divergence of
K ! ~� must be proportional to ms �md. For degenerate
quark masses, the power divergence vanishes completely.
Again, this is a statement at the operator level and holds to
all orders in the chiral expansion.

C. Lattice contractions for Golterman and Pallante’s
method

Continuing the derivation of Ref. [12], we carry out the
Wick contractions for h0j ~QQNS

penguinj
~K0i, where we specialize

to the case, QQNS
penguin � QQNS

6 ,

 

h0j ~QQNS
6 j ~K0i � �i

X
q2fu;d;sg


IM�V; A; q� � IM�A; V; q��

	
1

2

iI0M�V; A; d� � iI

0
M�A; V; d�

	 iI0M�V; A; s� � iI
0
M�A; V; s��; (59)

with

 

IM�j; k; q� � TrcfTrs
�jSd�xop; x0�Ss�xop; x0�
y�5�

� Trs
�kSq�xop; xop��g; (60)

 

I0M�j; k; q
0� � TrsfTrc
�jSd�xop; x0�Ss�xop; x0�

y�5�

� Trc
�kSq0 �xop; xop��g: (61)

In these contractions, �V � �� and �A � ���5 and the
traces are over spin or color. The quantity Sq�x; y� is the
Dirac propagator connecting positions x and y for a quark
of type q � �u; d; s�. The position x0 locates the source for
the ~K0 meson while xop is the position of the operator
~QQNS

6 . The derivation of Eq. (59) makes use of the fact that
ghost and valence propagators are equal flavor by flavor
(when properly ordered; see Appendix B). As discussed in
Ref. [12], this is important because it allows us to obtain
�NS
q from contractions that have already been computed for
h0jQQCD

6 jK0i.
Golterman and Pallante make the additional observation

that the linear combination of contractions for h0jQQNS
6 jK0i

is the same as Eq. (59), but with opposite sign for all but the
I0M�j; k; d� terms. However, a careful treatment of the con-
ventions for external ghost states shows that the ~K ! 0
matrix element has the opposite sign compared to that
given in Golterman and Pallante [14], so that the contrac-
tions for h0jQQNS

6 jK0i are the same as Eq. (59), but with
opposite sign for only the I0M�j; k; d� terms. Thus, since
K ! 0 does not contribute at O�p0�, subtracting K ! 0
from ~K ! 0 yields

 h0j ~QQNS
6 j ~K0i � h0jQQNS

6 jK0i � i
I0M�V; A; d�

� I0M�A; V; d��

�
4i
f
�NS
q 	O�p2�: (62)

Again, we point out that the O�p2� terms are multiplied by
a quadratic divergence in the lattice spacing.

Using the leading order ChPT result,

 h0j��3;
�3�jK0i �

2i
f
��3;�3� � �h0j �s�5djK

0i; (63)

we obtain the following ratio:
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h0j ~QQNS
6 j ~K0i � h0jQQNS

6 jK0i

h0j �s�5djK
0i

� �2
�NS
q

��3;3�
	

const

a2 md 	O�p2�: (64)

Since we are dividing by precisely the matrix element that,
according to the operator level discussion of the previous
section, multiplies the power divergence, Eq. (64) explic-
itly gives the form of the power divergence, with the
neglected higher order terms in the chiral expansion being
free of these divergences. Again, �NS

q can be obtained in
the chiral limit. The power divergence of Eq. (64) is
proportional to md, since it is the sum of two terms, one
proportional to ms 	md and the other one proportional to
ms �md, with the ms term cancelling between them. The
only divergent term in this ratio depends linearly on md as
shown in Eq. (64). However, after this term proportional to
md has been removed by extrapolation to md ! 0 there
remains an O�mres=a

2� contribution for domain wall fer-
mions, due to the power divergence and the lack of exact
chiral symmetry for finite Ls [2]. For our simulations, this
effect could be as large as the constant we are trying to
extract, as we show in the next subsection.

V. NUMERICAL RESULTS FOR �NS
q FROM ~K ! 0

We now examine the ratio of matrix elements of
Eq. (64), which can be obtained from the contractions
given in Eq. (59) and the value for h0j �s�5djKi. We briefly
review the details of the ensemble used in Ref. [2] to
generate the needed contractions.

The quenched configurations were generated with the
Wilson gauge action at a coupling of � � 6:0 with lattice
volume 163 � 32. The ensemble is comprised of 400 con-
figurations, separated by 10 000 sweeps, with each sweep
consisting of a simple two-subgroup heat-bath update of
each link (Cabibbo-Marinari with Kennedy-Pendleton
accept-reject step). The lattice cutoff was a�1 �
1:922�40� GeV set by the 
 mass. The domain wall fer-
mion fifth dimension was Ls � 16 sites with a domain wall
height M5 � 1:8. The resulting residual quark mass was
0.00124(5) in lattice units. For comparison, the value ofmf

corresponding to a pseudoscalar state made of degenerate
quarks with mass equal to the physical kaon at � � 6:0 is
approximately 0.0185. The light quark masses in units of

the lattice spacing were taken to be mf � 0:01, 0.02, 0.03,
0.04, and 0.05.

The data for the ratio in Eq. (64) are given in Table I, and
are plotted in Fig. 6 as a function of md. We see from
Eq. (64) that the intercept of this graph allows one to obtain
�NS
q , modulo the effects of the residual chiral symmetry

breaking. The two lines in Fig. 6 represent linear fits to the
data, the top one plotted as a function of md, while the
bottom is the same data plotted against md 	mres. While
in the presence of residual chiral symmetry breaking ef-
fects neither of these two methods is known to be correct,
comparing these two approaches allows us to estimate the
order of magnitude of theO�mres�=a2 ambiguity. As can be
seen the difference is of the order of 30%, suggesting a
potentially large uncontrolled error due to the power
divergence.

The result of an uncorrelated fit to the form of 
0 	

1�md 	mres� was: 
0 � �5:94�14� � 10�3, 
1 �
�2:0781�33�, with a 	2=d:o:f: of 1.76(18). The value of

TABLE I. The ratio �h0j ~QQNS
6 j ~Ki � h0jQQNS

6 jKi�=h0j �s�5djKi for each of ten nondegenerate
pairs of quark masses. The chiral limit of this ratio (md ! 0) can be used to obtain �NS

q .

ms md � 0:01 md � 0:02 md � 0:03 md � 0:04

0.02 �2:898�13� � 10�2

0.03 �2:918�13� � 10�2 �5:010�13� � 10�2

0.04 �2:932�13� � 10�2 �5:020�12� � 10�2 �7:088�13� � 10�2

0.05 �2:941�13� � 10�2 �5:026�12� � 10�2 �7:093�13� � 10�2 �9:141�14� � 10�2

0 0.01 0.02 0.03 0.04 0.05

m
d
 (+ m

res
)

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

(<
0|

Q
~ 6Q

N
S |K

~ >
-<

0|
Q

6Q
N

S |K
>

)/
<

0|
sγ

5d 
|K

>

FIG. 6 (color online). The ratio �h0j ~QQNS
6 j ~Ki �

h0jQQNS
6 jKi�=h0j �s�5djKi versus md (circles) and md 	mres

(squares) for the ten nondegenerate quark masses. The lines
are linear fits to the data of the form 
0 	 
1md and 
0 	

1�md 	mres�.
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�NS
q obtained from this fit was�1:20�3� � 10�5, where the

error is statistical only. If one fits the data in Table I to a
linear function of md (instead of md 	mres), then the �NS

q

obtained is�1:72�3� � 10�5. For comparison, the largeNc
approximation, Eq. (41), gives a value of �NS

q �

�1:63�48� � 10�5 where, again, the error is statistical
only. Here we have used the quenched lattice values for
f and B0 reported in the previous RBC works, [2,24],
obtained on lattices with the same size and coupling as
those used here to determine �NS

q . In Ref. [24] it was found
that f � 0:0713�53� and B0 � 1:59�3� in the same lattice
units, for an earlier set of 85 configurations. We see that
there is rough agreement between the large Nc value and
the range of values given directly by the lattice ~K ! 0
matrix element in the chiral limit. Since an �NS

q of this size
would cause significant changes in the K ! �� amplitude
for Q6, as mentioned previously, it is crucial to remove the
large systematic error due to the residual power
divergence.

VI. LATTICE DETERMINATION OF �NS
q FROM

K ! ~�

As we proved in Sec. IV B, the matrix element,
h ~�j ~QQNS

6 jKi, does not have any power divergences when
the quark masses are degenerate. To NLO in ChPT, it is
given by

 h ~�	j ~QQNS
6 jK	i � �

4

f2 �
NS
q 	O�p2�: (65)

Again, we have an amplitude where �NS
q can be obtained in

the chiral limit, this time without any power divergent
ambiguities. As discussed in the next section on numerical
fits, the NLO logarithmic term vanishes for this matrix
element in the degenerate mass case (See Appendix C for
details of this calculation). The combination of contrac-
tions needed for the new amplitude (for degenerate quark
masses) is

 h ~�	j ~QQNS
6 jK	i � �

1

2

L8

M�V� � L
8
M�A��

	
X

q2�u;d;s�


LIM�V; q� � L
I
M�A; q��;

(66)

with
 

L8
M�j� � TrsfTrc
�jSd�xop; x1�Su�xop; x1�

y�5�

� Trc
�jSu�xop; x0�Ss�xop; x0�
y�5�g; (67)

 

LIM�j;q��TrcfTrs
�jSd�xop;x1��5Su�x1;x0�Ss�xop;x0�
y�5�

� Trs
�jSq�xop;xop��g: (68)

Here we use the same notation as in Eqs. (60) and (61) and
again exploit the fact that the ghost and valence propaga-
tors are equal flavor by flavor when properly ordered [12].

VII. NUMERICAL RESULTS FOR �NS
q FROM

K ! ~�

The results for the h ~�j ~QQNS
6 jKimatrix element are given

in Table. II and plotted in Fig. 7. The chiral limit was
obtained by a simple linear extrapolation of the form d0 	

d1�mf 	mres�, with d0 � 9:80�76� � 10�3, d1 �

0:624�17� and a 	2=dof � 0:10�11�. This yields a value
of �NS

q � �1:24�10� � 10�5. In this result we neglect the
small error in f2. It turns out that the linear fit is exact to
NLO in ChPT, as a direct one-loop calculation shows that
in this degenerate mass case the logarithmic term vanishes.
This calculation is discussed in Appendix C.

A comparison between the two methods for obtaining
�NS
q , from K ! ~� and from ~K ! 0, is shown in Fig. 8,

where f2=�2��3;�3��h ~�	j ~QQNS
6 jK	i is plotted over the ~K !

0 results. With this normalization the K ! ~� matrix ele-
ment given in Eq. (65) has the same analytical value for the
chiral limit (as determined in ChPT) as the ~K ! 0 formula

TABLE II. The matrix element h ~�j ~QQNS
6 jKi as a function of

mf, the single quark mass that appears in the degenerate kaon
and pion states. The chiral limit of this data can be used to obtain
�NS
q using Eq. (65).

mf h ~�j ~QQNS
6 jKi

0.01 1:702�69� � 10�2

0.02 2:293�68� � 10�2

0.03 2:910�70� � 10�2

0.04 3:545�72� � 10�2

0.05 4:199�74� � 10�2

0 0.01 0.02 0.03 0.04 0.05 0.06
m

f
 + m

res

0

0.01

0.02

0.03

0.04

0.05

<
π~ |Q

~ 6Q
N

S  |K
 >

FIG. 7 (color online). The matrix element h ~�j ~QQNS
6 jKi as a

function of mf 	mres. The solid line is a simple linear fit to the
data and the intercept can be used to obtain �NS

q from Eq. (65).
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given in Eqs. (64). The K ! ~� result does not have a
divergent part and the smallness of this amplitude in the
numerical data compared to the ~K ! 0 amplitude reflects
this fact. The chiral limit agrees within statistical errors for
both methods, which is better than expected, given the
systematic errors associated with the ~K ! 0 amplitude.

The NLO contribution to the matrix elementK ! ~�was
computed in order to control the systematic error associ-
ated with the extrapolation to the chiral limit. The linear fit
is exact to NLO since the log term vanishes, and as Fig. 7
illustrates, this fit is quite good. We therefore conclude that
the error in our value of�NS

q in lattice units is dominated by
the statistical uncertainty, which is around 10%. As men-
tioned previously, these results are in rough agreement
with the large Nc estimate of Ref. [14], and so, as these
authors pointed out, the term proportional to �NS

q will have
a large numerical effect on the matrix elements of Q6.

VIII. CONCLUSION AND OUTLOOK

The application of the quenched approximation to weak
decay matrix elements is made more challenging by the
combination of 1) the perturbative calculations (in which
QCD vacuum polarization effects are important) needed to

connect the high energy scale typical of the W, Z and top
masses with the low-energy scale of the actual decay and
2) the nonperturbative QCD calculations (in which the
quenched approximation might be employed) needed to
evaluate the relevant low-energy matrix elements. We have
demonstrated in some detail how the quenched approxi-
mation can be applied to the latter without altering the
calculations which underlie the former. The resulting ap-
proach is very close to that employed in the two large-scale
quenched calculations reported in Refs. [1,2].

We then reviewed the quenched chiral perturbation the-
ory results for the strong penguin amplitudes relevant for
�0=� as presented by Golterman and Pallante [11,12]. They
have shown that a new LEC, �NS

q , contributes to quenched
amplitudes of the strong penguin operators (specifically, to
Q6) and they have proposed a lattice method to obtain this
new constant.

In Ref. [14], �NS
q was calculated using the large Nc

approximation and the value was found to have a large
effect on theK ! ��matrix element ofQ6. Such an effect
could significantly alter the value of �0=� reported in
Ref. [2]. Therefore, we considered it essential that �NS

q

be computed directly on the lattice. The method proposed
by [12] to use the matrix element of ~K ! 0 to obtain �NS

q

from the lattice was implemented in this paper, but it was
shown that this method suffers from ambiguities due to
power divergent contributions when evaluated using the
domain wall fermion formalism. We have shown that the
amplitude, K ! ~�, provides an alternative method to ob-
tain �NS

q from the lattice but without power divergent
contributions. We implemented this method and obtained
a value of �NS

q which is indeed large enough to have an
important effect on the K ! �� matrix element for Q6,
and, therefore, also on the quenched determination of �0=�.

We conclude that we cannot reliably construct the ma-
trix element h�	��jQ6jK

0i within the quenched approxi-
mation using quenched ChPT and our lattice data. This is
due to the large value of �NS

q , a low-energy constant absent
outside of the quenched approximation, which was implic-
itly assumed to be zero in the previous RBC and CP-PACS
work. Such a large quenching artifact does not merely
make the extraction of h�	��jQ6jK

0i practically difficult,
but implies that the quenched approximation itself fails to
accurately describe the full theory. In fact, the motivation
for the definition of the quenched approximation outlined
in Sec. II is seen to be invalid, given the large differences in
the analytic structure of the full and quenched theories.
This clearly reduces the physical relevance of such a
calculation.

These arguments and results demonstrate that the errors
associated with the quenched approximation in the evalu-
ation of the strong penguin operators are likely to be quite
significant. Definitive answers will clearly have to await
dynamical simulations. The first steps in performing such
full QCD simulations have been underway for quite some

0 0.01 0.02 0.03 0.04 0.05
m

d
 (+ m

res
)

-0.1

-0.05

0

K
~
 to 0 vs m

 d

K
~
 to 0 vs m

 d
+m

 res 

K to π~
 vs m+m

res

FIG. 8 (color online). The matrix elements �h0j ~QQNS
6 j ~Ki �

h0jQQNS
6 jKi�=h0j �s�5djKi as a function of md (big circles) and

md 	mres (squares) and f2=�2��3;�3��h ~�j ~QQNS
6 jKi (small circles)

as a function of md equal to the degenerate masses of the quarks
appearing in the K meson. For comparison, we plot the ~K ! 0
matrix elements above. The prefactor of h ~�j ~QQNS

6 jKi rescales the
matrix element so that the chiral limits of the two methods are
expected to agree according to ChPT. This graph shows that the
chiral limits do agree, thus yielding similar values of �NS

q .

AUBIN, CHRIST, DAWSON, LAIHO, NOAKI, LI, AND SONI PHYSICAL REVIEW D 74, 034510 (2006)

034510-16



time with two dynamical flavors [17]; the more realistic
2	 1 flavor simulations have begun.
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APPENDIX A

The function, F, appearing in the one-loop contribution
to K ! �� is given by [12]
 

F�m2
1;m

2
2;p

2��

���������������������������
�
�
1;
m2

1

p2 ;
m2

2

p2

�s

� ln
p2	m2

1	m
2
2	p

2
����������������������������������������
��1;m2

1=p
2;m2

2=p
2�

q
p2	m2

1	m
2
2�p

2
����������������������������������������
��1;m2

1=p
2;m2

2=p
2�

q ;

(A1)

with

 ��x; y; z� � �x� y	 z�2 	 4xy:

APPENDIX B: NORMALIZATION CONVENTIONS

In this appendix we specify the sign and normalization
conventions used in this paper. This includes both the fields
and operators used in chiral perturbation theory (where we
follow in most cases the conventions used in the earlier
work of Golterman and Pallante) and the corresponding
quantities defined on the quark level where we follow the
conventions used in Ref. [2].

Eqs. (23) and (24) define the relative signs of the pseu-
doscalar fields�, the pseudofermion fields 	 and the ghost
fields ~� in the sense that a specific pair of SU�3j3�L �
SU�3j3�R matrices, �UL;UR� will transform these fields in
a determined fashion:

 �! �0 � UL�UyR: (B1)

Note this relation between the fields �, 	 and ~� is still
somewhat abstract because the 6� 6 matrices UL and UR
contain both commuting and anticommuting numbers.
However, this description will be sufficient for our pur-
poses because these same matrices transform the quark and
pseudoquark fields q and ~q:

 Q �

�
q
~q

�
!

�
q0

~q0

�
� UR

�
qR
~qR

�
	UL

�
qL
~qL

�

� �URPR 	ULPL�Q: (B2)

Here PR=L � �1� �5�=2 and as in the text, Q contains the
three flavors of quarks q and the three flavors of pseudo
quarks ~q and belongs to the Cartesian product representa-
tion SU�3j3�L � SU�3j3�R.

The absolute normalization and sign for the � field is
determined by the lowest order effective chiral Lagrangian
for quenched QCD:

 L �2�
QCD �

f2

8
strf@��y@��g 	

B0f2

4
strfMy�	�yMg

(B3)

(written in Minkowski-space) once we specify that the
parameter B0 is real and positive with a magnitude chosen
so that the 6� 6 matrix M is the quark mass matrix
appearing in the fundamental QCD Lagrangian written
below.

The Dirac fields q and ~q are conventional, with the
Minkowski-space Lagrangian given in terms of Q by

 L � �Qi��D�Q�
�Q�MyPL 	MPR�Q: (B4)

The connection between quark fields and the correspond-
ing quantities in the effective chiral Lagrangian is given by
the equation:

 �QL�j�
�QR�i �

B0f
2

4
�j;i: (B5)

This equation is a generalization of the usual relation
between � and the quark fields to include the new variables
which appear in the quenched case. It is uniquely deter-
mined by the combined requirements of flavor covariance
[the left and right-hand sides transform identically under
the SU�3j3�L � SU�3j3�R flavor transformations of
Eqs. (B1) and (B2)] and consistency with the equation
for the chiral condensate:

 huRuLi �
i@

@My11

lnZ
M;My� � �
B0f

2

4
h�11i; (B6)

where we examine the condensate associated with the up
quark, the first component of Q, and treat the matrix
elements M1;1 and M
1;1 as independent variables. Note,
the flavor covariance of Eq. (B5) is lost and the resulting
equation invalid if the order of the factors �QR�j and � �QL�i
is reversed, since these 6-component fields are a mixture of
commuting and anticommuting quantities.

Following standard conventions, we identify the field �
in Eq. (24) with meson fields according to
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�0=

���
2
p
	 
=

���
6
p

�	 K	

�� ��0=
���
2
p
	 
=

���
6
p

K0

K� K0 �2
=
���
6
p

0
B@

1
CA;

(B7)

where the specific fields appearing in Eq. (B7) above
destroy the corresponding mesons. Similarly the ghost field
	 of Eq. (24) can be written in an identical fashion if a tilde
is added to each of the meson fields, e.g. �	 is replaced by
~�	. With these conventions we can then examine specific
components of Eq. (B5) to lowest order in chiral perturba-
tion theory and obtain the useful relations:

 �s�5d � iB0fK0 �j � 2; i � 3�; (B8)

 �s�5 ~d � �iB0f ~K0 �j � 5; i � 3�: (B9)

This same identification can be made by an appropriate
generalization of the results in Appendix A of Ref. [2] to
the quenched case.

Remaining consistent with Eq. (B5), we can easily write
down expressions relating quark-level operator states and
chiral-level operator states. For a given meson operator in
terms of the underlying quark fields, we have

 

�d�5sj0i � iB0f �K0j0i � iB0fjK0i; (B10)

 

�~d�5sj0i � �iB0f� ~K
0�yj0i � �iB0fj ~K

0i; (B11)

where Eq. (B10) is the standard relation between states in
terms of the quark-level and chiral operators.
Equation (B11) is found by a chiral rotation on Eq. (B10)
to give the corresponding relation between these fermionic
meson states. To be concrete, we also include here the rules
needed for evaluating matrix elements of operators with
these 	 fields. These are given by chiral rotations on the
appropriate K0 field rules, and found to be

 h0j ~K0�x�j ~K0�k�i � eikx; (B12)

and

 h ~K0�k0�j ~K0�k�i � 2EK�2��3�3�k0 � k�: (B13)

Unlike the standard meson fields like K0, the ordering in
these expressions is rather important, since ~K0� ~K0�y �
�� ~K0�y ~K0. Additionally, as stated earlier in the text, the
quark and ghost-quark propagators are equal flavor by
flavor (when properly ordered), such that

 h0jd�x� �d�y�j0i � h0j~d�x� �~d�y�j0i � SF�x; y�; (B14)

where ���D� 	m�SF�x; y� � ��4��x� y�, for the case of
continuum, Euclidean fermions.

Next we apply this same approach to relate the various
components of the four-quark operator related to QQNS

6 as
they appear in chiral perturbation theory and at the quark
level:

 

OQNS
ji � trDf�QL�

a
j ��

��t� �QL�
b
i g trDfstr
Qb

R��
��t �Qa

R
�A�g

� �NS
q �� �A�y�j;i (B15)

where the diagonal matrix �A is defined in Eq. (21), a and b
are color indices, trD is a trace over the (implied) Dirac
indices, and we are exploiting flavor covariance and the
conventions of Ref. [15]. We can use this expression to
evaluate two cases of importance by using ��6�ij � �i3�j2
and �~�6�ij � �i3�j5. In other words, multiplying Eq. (B15)
by either �6 or ~�6 and taking the supertrace over the
SU�3j3� indices, we get

 QQNS
6 � str
�6O

QNS� 	 H:c: � �NS
q str��6� �A�y� 	 H:c:;

(B16)

 

~Q QNS
6 � str
~�6O

QNS� 	 H:c: � �NS
q str�~�6� �A�y� 	 H:c:;

(B17)

which are precisely the expressions we see in Eqs. (14) and
(19) for QQNS

6 , and Eqs. (42) and (43) for ~QQNS
6 .

APPENDIX C

The NLO corrections toK ! ~� are calculated from one-
loop insertions of the operator Eq. (43), as well as local
operators that begin at NLO:

 

~O NS
1 � tr
~�6L��y �A�L��; (C1)

 

~O NS
2 � tr
~�6L�� tr
�y �A�L��; (C2)

 

~O NS
3 � tr
~�6f�

y �A�; L2g�; (C3)

 

~O NS
4 � tr
~�6f�

y �A�; Sg�; (C4)

 

~O NS
5 � tr
~�6
�

y �A�; P��; (C5)

 

~O NS
6 � tr
~�6�y �A�� tr
S�: (C6)

Each operator has associated with it an a priori unknown
LEC which we call ~cNSi , with a scale dependence similar to
that of Eq. (32),

 ~c r;NS
i ��2� � ~cr;NS

i ��1� 	
2�NS

q ~
i
�4�f�2

ln
�1

�2
: (C7)

The coefficient of the scale dependence, ~
i, can be
determined as in [25], where the authors apply background
field and heat-bath methods. The values for ~
i are 0, �2,
�Nf=2,Nf=2, 0 and 1 for i � 1–6 respectively. In this case
Nf is the number of sea quarks, which for the quenched
case should naively be taken to zero. However one must
take care in this case because this operator [Eq. (43)] has
been introduced precisely to add contractions of the four-
quark operators that contribute to the fermion determinant
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which would otherwise be absent in the quenched approxi-
mation in which we are working.

We can determine the scale dependence in the quenched
theory by making use of the following trick. In the partially
quenched case, �A! �APQ � 2�1� 3=Nf; 1� 3=Nf; 1�
3=Nf;�3=Nf; . . . ;�3=Nf�diag, where the first 3 valence
entries are 1� 3=Nf, and the next Nf 	 3 ghost and sea
entries are �3=Nf. Taking the Nf ! 0 limit in this matrix
is singular, but when these factors multiply the ~
i factors
above, this limit yields the correct scale dependence for the
amplitudes in the quenched theory.

The scale dependence obtained in this way agrees with
that of a direct one-loop calculation of K ! ~�, which
yields precisely zero in the case of degenerate quarks.
Thus, the one-loop chiral log vanishes, and the only NLO
contribution in the degenerate case is proportional to m2

M
(mf 	mres in fits to DW fermions) with an unknown

coefficient. The diagrams needed are given in Fig. 9. The
wave-function renormalization vanishes for ~� and K for
this matrix element.
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A B C

FIG. 9. Diagrams needed to evaluate the NLO amplitude K !
~�. NLO corrections include tree-level diagrams with insertion of
the NLO weak vertices (crossed circle), one-loop diagrams with
insertions of the LO weak vertices (small filled circles) and the
O�p2� strong vertices (big filled circle). The lines represent the
propagators of mesons comprised of valence and ghost quarks.
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