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A decay width calculation for a hybrid exotic meson h, with JPC � 1��, is presented for the channel
h! �a1. This quenched lattice QCD simulation employs Lüscher’s finite box method. Operators
coupling to the h and �a1 states are used at various levels of smearing and fuzzing, and at four quark
masses. Eigenvalues of the corresponding correlation matrices yield energy spectra that determine
scattering phase shifts for a discrete set of relative �a1 momenta. Although the phase shift data is sparse,
fits to a Breit-Wigner model are attempted, resulting in a decay width of about 60 MeV when averaged
over two lattice sizes having a lattice spacing of 0.07 fm.
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I. INTRODUCTION

Hybrid mesons are quark-antiquark pairs having valence
gluons as a structural component. In some cases their
quantum numbers are not accessible with quark models,
and they are therefore called exotic. Examples of these
exotics are the JPC � 0��, 1��, and 2�� mesons. Because
these mesons contain valence gluons their verification is
one of the signature tests of quantum chromodynamics
(QCD).

Efforts to determine properties of these hybrid exotic
states are unsettled from both experimental and theoretical
viewpoints [1–3]. The experimental efforts date back over
a decade [4–10], and currently, considerable resources are
being devoted to their future study. The Jefferson Lab
GlueX experimental program is designed to investigate
exotic states. Hybrid meson studies are also part of the
COMPASS experiment at CERN and the CLEOc program
at Cornell.

Attempts to calculate decay widths of hybrid mesons
have been made using the bag model [11], the quark model
extended by gluon flux tube degrees of freedom [12,13]
and in lattice QCD [14,15].

Calculating properties of resonances using Euclidean
lattice QCD simulations is not straightforward for a variety
of reasons. On a finite lattice all states are bound, and
furthermore, the lattice total energy of a two-hadron state
in a decay channel is typically larger than the energy of the
original hadron thus preventing decay. Aspects of these
points have been discussed by Michael [16,17], DeGrand
[18], Lüscher [19], and by Lellouch and Lüscher [20].

Thus, lattice work on hybrid mesons has concentrated
mainly on their mass spectrum. It can be roughly classified
in terms of heavy quark systems using static quarks with
(excited) glue treated in the Born-Oppenheimer approxi-
mation [21–23], using nonrelativistic QCD [24–26], and
studies using actions with both quenched and unquenched
quark dynamics [27–34]. Lattice work on hadron reso-

nances, of which there is very little at this time, has
recently been reviewed by Michael [17].

Hybrid meson decay widths have been studied on the
lattice in the heavy quark limit [15] and, recently, for light
quarks [14]. In those studies the time dependence (slope) of
a normalized transition matrix element computed on the
lattice is related to a decay width via Fermi’s golden rule
[35]. For this approach to work the lattice parameters have
to be such that the resonance mass comes out close to the
threshhold of the decay channel.

We here choose to extract decay widths using Lüscher’s
finite box method [19,36,37]. In principle, Lüscher’s
method is rigorous: The two-particle energy spectrum in
a finite periodic box is related to continuum elastic scat-
tering amplitudes. The spectra allow calculation of the
scattering phase shifts at a discrete set of momenta owing
to exact formulas derived by Lüscher. A decay width can
then be extracted by fitting a Breit-Wigner function, pro-
vided a resonant state is actually present. The applicability
of this method to extract scattering phase shifts has been
demonstrated for the O(3) nonlinear sigma model in 1� 1
dimensions [38], the O(4) nonlinear sigma model in 3� 1
dimensions [39,40], meson-meson scattering in 2� 1 di-
mensions using QED [41], and resonance scattering of two
coupled Ising systems [42,43].

Application of Lüscher’s method to our desired goal
requires a set of operators that couple to the hybrid meson
state and to appropriate two-meson systems matching a
decay channel. The exotic 1�� meson can decay into �b1,
�f1, and �a1, which are relative S-wave channels. Other
decays are possible, but those involve relative P-waves,
where the relative momentum is at least 2�=L, and thus
give rise to large upward energy shifts which makes the
simulation more difficult [18,35,44]. We note that experi-
mentally [45] the three mesons b1�1235�, a1�1260�,
f1�1285� are close in mass, and that the a1 is a vector
meson with C � � so that it combines naturally with C �
0 of the (neutral) pion to the required charge conjugation,
C � �, of the exotic meson. Therefore, in this study, we
model our two-hadron operator after the �a1 decay
channel.
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II. LATTICE PARAMETERS

Obtaining excited state spectra from correlation matri-
ces that involve two-hadron operators presents a numerical
challenge in itself. On top of this more analysis steps are
required to obtain a decay width, which essentially
amounts to extracting a ‘‘derivative’’ quantity from the
simulation. While statistical errors, and also discretization
errors to some extent, can be easily controlled this is not
true for the systematic uncertainties indigenous to a task of
this kind. For this reason we have refrained from using
large computing resources and therefore employed a very
simple lattice action and moderate lattice sizes and pion
masses.

Simulations were performed using the Wilson gauge
field action and Wilson fermions in quenched approxima-
tion on anisotropic lattices. We will present results from
200 gauge configurations on 123 � 24 and 103 � 24
lattices.

The definition of the coupling parameters used for the
Wilson gauge action

 Sg�U� �
X
x

X
1	�<�	4

����1�
1
3 Re Tr�U���x��� (1)

is given by

 ��� � �
a1a2a3a4

�a�a��
2 ; (2)

where �� denotes plaquette planes and a1 � a2 � a3 �:
as is the spatial and a4 �: at the temporal lattice constant.
We have chosen the (bare) anisotropy � � as=at � 2 and
� � 6:15 for the global coupling parameter. Parameters
for the anisotropic fermion matrix
 

Q�x; y� � 1�x;y �
X
�

��

�
�1� ���U��x��x��̂;y

� �1� ���Uy��y��x;y��̂

�
; (3)

are given by

 �� � �
4

a�
P
	

1
a	

; (4)

where � is a global hopping parameter. With these con-
ventions the relation of the latter to the (bare) Wilson quark
mass parameter mq is

 � �

P
	

1
a	

8�mq �
P
	

1
a	
�
; (5)

which identifies �c � 0:125 as the critical value.
Correlation functions for mesons from standard local

operators �
 �5, 

 �i, and a1 
 �i�5, i � 1, 2, 3
were constructed as a matter of course employing three
iterations of quark field smearing [46] and gauge field

fuzzing [47]. Also, within this setting, we adopted the
hybrid meson operator proposed in [48] with magnetic
type gluons

 Oh�t� �
X

1	i<j	3

X
~x

�da� ~xt��iub� ~xt��F
ab
ij � ~xt� � F

yab
ij � ~xt��;

(6)

where a, b denote color indices and Fij�x� is a product of
SU(3) link matrices arranged in a clover pattern
 

F���x� � U��x�U��x� �̂�U
y
��x� �̂�U

y
� �x�

�U��x�U
y
��x� �̂� �̂�U

y
� �x� �̂�U��x� �̂�

�Uy��x� �̂�U
y
� �x� �̂� �̂�U��x� �̂� �̂�

�U��x� �̂� �U
y
� �x� �̂�U��x� �̂�

�U��x� �̂� �̂�Uy��x�; (7)

which is used in the spatial planes only. Under parity we
have POh�t�P

�1 � �Oh�t�, while for the charge neutral
� �du! �uu; �dd� version Oh0�t� of (6) under charge conju-
gation the derivation of COh0�t�C�1 � �Oh0�t� relies on
the presence of F� Fy, specifically CFij�x�C�1 � F�ij�x�.
We have enforced this relation in the simulation:
Observing that Sg�U� � Sg�U

�� the configurations �U�
and �U�� are equally probable. Thus with each �U� in the
ensemble of 200 configurations we also include �U�� and
compute fermion propagators for both of those. This strat-
egy doubles the number of fermion propagators that need
to be computed, however, charge conjugation is now nu-
merically exact, and this also appears to be the reason for
an observed noise reduction of simulation signals.

Meson masses were obtained at four values of the hop-
ping parameter �, see Table I. A multiple mass inverter
[49] was used to compute propagators. The resulting
ground state masses, coming from three smearing itera-
tions, sources set at t � 3, and effective mass function fits
in the range t � 6 . . . 11, are also listed in Table I.

In order to allow extrapolations to the small pion mass
region it is useful to study the dependence of the computed

, a1 and h masses on M� � atm�. Predictions for this

TABLE I. List of hopping parameters � and the resulting �, 
,
a1 and h meson masses in units of the temporal lattice constant
at for lattices 123 � 24 (upper table) and 103 � 24 (lower table).

� atm� atm
 atma1
atmh

0.140 0.53(4) 0.55(3) 0.65(4) 0.63(25)
0.136 0.64(3) 0.65(3) 0.75(3) 0.75(21)
0.132 0.75(3) 0.75(3) 0.86(3) 0.85(26)
0.128 0.85(4) 0.85(3) 0.96(3) 0.95(24)

0.140 0.54(5) 0.54(3) 0.64(4) 0.62(24)
0.136 0.65(3) 0.62(3) 0.75(3) 0.71(23)
0.132 0.74(3) 0.73(3) 0.85(4) 0.81(25)
0.128 0.85(4) 0.83(3) 0.96(3) 0.91(22)
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dependence may in principle come from chiral perturba-
tion theory [50], and will depend on the baryon being
studied. For a baryon of mass M � atm the expression

 M � p0 � p2M
2
� � p3M

3
� � p4M

4
� � qM

4
� ln�M��; (8)

contains a collection of terms typical for �PT inspired
models [51–53]. In the case of the hybrid exotic meson,
for example, the authors of [54] retain only the even
polynomial in (8). For the �a1 decay channel, which is
mostly relevant in this work, no predictions for the depen-
dence of the spectral masses, say W, on M� are available.
A three parameter model that reflects features of (8) is

 W � p� qx� r ln�1� x� with x � �atm��
2: (9)

The logarithmic term is purely heuristic. Its role is to

provide curvature to the model, just like the last three
terms in (8) do while vanishing as M� ! 0. As it turns
out this model yields fits that are on average optimal on our
spectral data for the combined h and �a1 systems.
Replacing the logarithmic term in (9) with x3=2 yields
nearly identical results.

We consistently use (9) to fit all masses emerging from
the simulation. Examples for the mesons listed in Table I
are shown in Fig. 1.

In particular the upper panel of Fig. 1 exhibits a level
crossing between the hybrid meson mass and the �� a1

mass, assuming a relative S-wave for the latter. The level
crossing emerges near x ’ 0 which is only reached through
extrapolation. The lower panel illustrates the effect of
P-wave vs S-wave decay on the lattice. The mass of the
�� � system is shown with pions having lattice momenta
2�=�asL�. Clearly a level crossing with the 
 meson
mass is harder to achieve.

The extrapolated 
 meson mass, at x � 0, shall be used
to set the physical mass or length scale for this simulation.
We obtain at � 0:33�5� GeV�1 � 0:07�1� fm (m
 �

776 MeV). If the a1 meson is used instead the scale is at �
0:30�3� GeV�1 � 0:06�1� fm (ma1

� 1230 MeV). The
above numbers are based on the 123 � 24 lattice. Unless
otherwise indicated we will quote results using the 

meson to set the scale.

As a sideline it is interesting to note that the level
crossing seen in Fig. 1, using both of the above scales,
thus occurs within 1.35–1.49 GeV, which overlaps with the
experimental mass of the ��1400� resonance, according to
[45]. Indeed the ��1400� has the quantum numbers 1�� of
the hybrid exotic meson. This observation coincides with
the findings of [54].

III. CORRELATION MATRIX

The description of h! �� a1 requires an operator for
the two-meson decay channel with suitable quantum num-
bers. Consider

 O��a0
1;k;~r�t� �

X
~x

X
~y

�~x� ~y;~r �da� ~xt��5ua� ~xt�

� � �db� ~yt��5�kdb� ~yt� � �ub� ~yt��5�kub� ~yt��;

(10)

where k � 1, 2, 3. The relative distance ~r may in principle
be used to construct operators that transform according to
an irreducible representation of the hypercubic group.
However, the simplest choice ~r � ~0 already leads to a
viable operator. Summing over all spatial directions we
thus adopt

 O�a1
�t� �

X3

k�1

O��a0
1;k;~0�t� (11)

for this simulation.

FIG. 1. Combinations of masses, as indicated, obtained from
single meson operators versus the squared pion mass x �
�atm��

2 and fits with the model (9). The relative S-wave ��
a1 mass (upper panel) reveals a level crossing near zero pion
mass through extrapolation. The �� � mass is shown with
pions having lattice momenta 2�=�asL�. The extrapolation
of the 
 meson mass to x � 0 is used to set the physical scale.
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The operators (6) and (11) are the basis for calculating
correlation functions

 CXY�t; t0� � hOX�t�O
y
Y�t0�i � hOX�t�ihO

y
Y�t0�i: (12)

Here X and Y stand for h or �a1, and thus establish a 2� 2
correlation matrix. The separable terms in (12) are zero
because of the quark flavor assignment in h and �a1. The
remaining (nonseparable) terms in (12) contain contrac-
tions between quark fields at equal times when worked out
with Wick’s theorem. For example, showing flavor struc-
ture only,

 Ch;�a1
�t; t0� 
 h� �du�t� �dd �ud� �uu �ud�t0i (13)

with time arguments t and t0 as indicated. Equal-time
contractions :d �d: and :u �u: occur only at the source time
slice t0. The corresponding propagator elements
Q�1� ~xt0; ~yt0� are calculated by default. This is different for

 C�a1;�a1
�t; t0� 
 h� �du �dd� �du �uu�t� �dd �ud� �uu �ud�t0i;

(14)

where we encounter equal-time contractions :d �d: and :u �u:
at t > t0. The computation of Q�1� ~xt; ~yt� is very resource
intensive and, if stochastic estimation is used [55], then it
contributes additional noise.

We shall now argue that this problem can be circum-
vented: At md � mu the contractions :d �d: and :u �u: give
rise to the same propagator elements Q�1� ~xt; ~yt�. Thus,
replacing the �. . .�t term in (14) by �2 �du �dd�t and reinstating
the �-matrices from (10) we observe that �dd
 �d�5�kd
couples to a1 and f1 mesons. Their masses are close
however, 1230 MeV and 1282 MeV respectively [45].
Invoking a similar argument, altering the quark flavor d!
s in the above operator entails �d�5�kd ���! �d�5�ks
 K1

and, again, should not significantly alter the mass spectra
because the K1 meson mass of 1270 MeV [45] again is
close to that of the a1 meson. In terms of (14) the effect is

 C�a1;�a1
�t; t0� ! h�2 �du �ds�t�2�sd �ud�t0i;

which now has no equal-time contractions, but otherwise is
not different from (14) when worked out in terms of quark
propagators. Hence, dropping equal-time contractions in
(14) should have little effect on the mass spectrum of the
�a1 system, and ultimately, on the resulting decay width,
because Lüscher’s method for computing scattering phase
shifts exclusively relies on the mass spectra, in a finite box.

We emphasize that the correlator element (14) is worked
out using the quark flavor structure exactly as it emerges
from (10) except that equal-time contractions are ne-
glected. All other matrix elements are not effected.

Finally, we do not explicitly compute C�a1;h�t; t0� but
rather infer it from the Hermicity of the correlation matrix.

IV. ANALYSIS

For every operator used in this simulation up to three
iterations of quark field smearing [46] and gauge field
fuzzing [47] were employed, using 2.5 as a strength pa-
rameter in both cases. The 2� 2 correlation matrix (12)
thus expands to size 6� 6,

 C �t; t0� �
Chfg;hfg�t; t0� Chfg;�a1fg

�t; t0�
C�a1fg;hfg�t; t0� C�a1fg;�a1fg

�t; t0�

� �
; (15)

where the entries are 3� 3 matrices with elements
CXfkg;Yf‘g�t; t0� built from operators OXfkg�t; t0�, etc., with
k � 1, 2, 3 levels of fuzzing and smearing. The latter is
done identically at both source and sink, and thus the
matrix C�t; t0� is Hermitian by construction.

A standard analysis method is based on solving the
generalized eigenvalue problem [38]

 C �t; t0���t� � C�t1; t0���t���t�; (16)

FIG. 2. Comparison of eigenvalues obtained from diagonaliz-
ing Ĉ�t� on every time slice (upper panel) versus projecting to
time slice t � 5 (lower panel), with t0 � 1. Results are for the
103 � 24 lattice at the lightest pion mass. Fluctuations are much
reduced using the projection technique.
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where t1 is fixed, ��t� is an N � N matrix, its columns
being the generalized eigenvectors, and ��t� is real diago-
nal. We further require that C�t1; t0� be positive definite. To
ensure the latter t1 should be an ‘‘early’’ time slice, here we
use t1 � t0 � 4. The generalized eigenvalue problem (16)
can then be cast into an ordinary one by first diagonalizing

 C �t1; t0� � V�t1; t0�D�t1; t0�V
y�t1; t0�; (17)

where V�t1; t0� is unitary and D�t1; t0� is real diagonal and
positive definite. Inserting (17) into (16) we are lead to
define

 Ĉ�t� �
1�����������������

D�t1; t0�
p Vy�t1; t0�C�t; t0�V�t1; t0�

1�����������������
D�t1; t0�

p :

(18)

Its eigenvalues are the same as those of the generalized
problem (16), ��t� � diag�	1�t� . . .	N�t��. Constructing
Ĉ�t� merely amounts to a linear transformation among
the set of operators OXfkg�t; t0� that define the correlation
matrix. Because of Ĉ�t1� � 1, the transformed set of op-
erators create quantum states that are orthogonal and nor-
malized at t � t1. Provided that these match the ‘‘true’’
states of the theory, the eigenvectors of Ĉ�t� will stay
orthogonal as t � t1 increases to the extent allowed by
the errors of the simulation. Consequently Ĉ�t� will be
diagonal dominated for t � t1.

From an analysis point of view there are now two
options: One may diagonalize Ĉ�t� on each time slice t
separately and thus obtain the eigenvalues 	n�t�, n �
1 . . .N, as proposed in [38]. Alternatively, the diagonal
elements of Ĉ�t� may be taken as an approximation to its
eigenvalues,

 	n�t� � Ĉnn�t�; n � 1 . . .N; (19)

which involves projecting Ĉ�t� into the eigenspaces at fixed
time slice t1, see (18). The latter approach has the advan-
tage that statistical fluctuations are reduced, see Fig. 2 for a
comparison. This is plausible because fluctuations of the
eigenvector components are effectively frozen. It also has
the advantage to tag the eigenvalues to a specific eigen-
vector, which is important for tracking the quark mass
dependence of the spectral levels.

Effective mass function plateaus typically develop in the
time interval 5 & t� t0 & 10, or so. In this region the
projection technique yields more stable results, particularly
for the excited states. An example for the 123 � 24 lattice
at � � 0:140 is shown in Fig. 3.

Thus we will continue our analysis with the projected
correlators and, for simplicity, refer to Ĉnn�t� as eigenval-
ues 	n�t�. Those then give rise to the spectral energies Wn,
n � 1 . . . 6, listed in Table II.

Fits to those spectra with the model (9) are shown in
Fig. 4. This figure sheds light on the volume dependence of
the spectral levels. Evidently the ground state mass is

relatively stable against changing the lattice volume. On
the other hand the effect on excited states is clearly sig-
nificant, even to the extent that level crossing patterns
differ for some of the states. This should not be surprising
because excited levels are likely to describe two-meson
states, which are spatially large. Nevertheless, anticipating
results, the volume effect on the scattering phase shift
ultimately turns out to be only moderate.

Another comment on Fig. 4 is that, although the 6� 6
correlation matrix gives rise to six eigenvalues, the number
of physical states on the lattice is likely to be a lesser
number because, typically, hadronic level spacings are of
the order of a few hundred MeV. Thus we entertain the
possibility that the group of the three lower levels in Fig. 4
describe the same state, the ground state, whereas the upper
levels belong to two-meson states with some degree of

FIG. 3. Example of effective mass functions for two (pro-
jected) eigenvalues of the correlation matrix Ĉ�t� on the 123 �
24 lattice at the lightest pion mass. The higher mass comes from
	5�t� and the lower mass from 	2�t�.

TABLE II. Energy spectra Wn, n � 1 . . . 6 from the 123 � 24
lattice (upper table) and the 103 � 24 lattice (lower table) at four
pion masses.

� 0.140 0.136 0.132 0.128

atW1 0.55(14) 0.69(2) 0.74(4) 0.82(10)
atW2 0.69(11) 0.79(3) 0.89(4) 0.93(9)
atW3 0.81(10) 0.81(4) 0.91(4) 1.03(7)
atW4 0.88(13) 1.03(11) 1.18(10) 1.26(5)
atW5 1.21(9) 1.13(3) 1.25(3) 1.31(4)
atW6 0.96(5) 1.42(4) 1.62(3) 1.85(4)

atW1 0.57(7) 0.69(11) 0.75(11) 0.78(6)
atW2 0.59(11) 0.71(5) 0.78(4) 0.81(5)
atW3 0.61(6) 0.74(5) 0.80(4) 0.91(5)
atW4 0.91(11) 1.12(8) 1.14(13) 1.24(9)
atW5 1.20(9) 1.42(11) 1.64(9) 1.78(9)
atW6 1.31(6) 1.43(6) 1.55(9) 1.62(13)
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interaction energy due to their relative motion. This point
will become more plausible in terms of the corresponding
scattering phase shifts.

V. SCATTERING PHASE SHIFTS

The spectral energies Wn computed on the lattice give
rise to a discrete set of relative �� a1 momenta kn by
solving the relativistic dispersion relation

 Wn �
������������������
m2
� � k

2
n

q
�

�������������������
m2
a1
� k2

n

q
: (20)

Note that the resulting momenta kn relate to spectral
masses and thus are continuous numbers (not subject to
lattice discretization). Only those levels Wn will be used
that fall within the elastic region,

 �m� �ma1
�<Wn < 2�m� �ma1

�: (21)

Continuum S-wave scattering phase shifts �0�k� are then

computed at a discrete set of momenta kn using Lüscher’s
formula [19],

 tan�0�kn� � �
�3=2qn
Z�1; q2

n�
; qn �

knLs
2�

: (22)

Here Z�1; q2� is a generalized �-function, and Ls � Las is
the physical size of the spatial box, using the bare anisot-
ropy as � 2at.

If the number of available data points is sufficient, then
one may attempt a fit to a Breit-Wigner function [56],

 tan�0�k� �
�=2

E0 �W�k�
(23)

 where W�k� �
������������������
m2
� � k2

q
�

�������������������
m2
a1
� k2

q
: (24)

The resonance energy E0 and the decay width � are fit
parameters. However, a successful fit can only be expected
if the underlying physics indeed supports an isolated reso-
nance. Such a fit actually fails for all spectra computed at
the four pion masses, or rather x � �atm��

2, as they appear
in Fig. 4. This is not be surprising because those data points
are far away from a level crossing between the h and the
�� a1 masses as evident from Fig. 1. It is necessary to
extrapolate the spectral masses to x � 0 near the level
crossing. The model (9) has been used for this purpose.
We present the extrapolated spectra in Table III along with
the corresponding momenta kn and scattering phase shifts
�0�kn� for those levels which fall into the elastic region
(21).

The phase shift data are very sparse and do not alone
resolve the functional form of the fit model, such as Breit-
Wigner. In fact, attempts of Levenberg-Marquardt fits us-

TABLE III. Extrapolated energy spectra Wn using the model
(9), resulting momenta kn, and S-wave scattering phase shifts on
lattices 123 � 24 (upper table) and 103 � 24 (lower table).
Missing entries for atkn and �0�kn� correspond to energy levels
outside of the elastic region (21).

n atWn atkn �0�kn�

1 0.64(16) 0.16(1) 74.6(11.6)
2 0.63(25) 0.15(2) 65.8(14.1)
3 0.19(5) � � � � � �

4 0.47(11) 0.03(1) 2.1(1.8)
5 0.31(11) � � � � � �

6 0.26(5) � � � � � �

1 0.66(21) 0.20(2) 77.1(10.5)
2 0.61(3) 0.16(1) 50.0(6.1)
3 0.49(4) 0.06(1) 6.0(3.1)
4 0.44(10) 0.01(1) 0.2(0.5)
5 0.36(10) � � � � � �

6 0.33(4) � � � � � �

FIG. 4. Mass spectra obtained from the 123 � 24 and 103 � 24
lattices versus x � �atm��

2. Error bars are omitted for clarity
except for one level where the errors shown are typical of all
levels. Fits with the model (9) are shown as lines.
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ing (23) only returned stable results for the resonance
energy parameter atE0, while the width parameter at�,
being an indicator for a derivative, was left undetermined
due to large standard errors. Nevertheless, it is evident
from Table III that the phase shift data are clustered around
two regions of atkn, namely � 0:15–0:16 and � 0:03 for
the L � 12 lattice, and � 0:16–0:20 and � 0:01–0:06 for
the L � 10 lattice. This suggests that no more than two
distinct physical states are uncovered by the simulation.
Under this assumption the data may be analyzed as fol-
lows: Denoting the weighted (�2 � min) averages for each
of the clustered momenta by �k1;2, the corresponding ener-
gies by !1;2 � atW� �k1;2�, and 1;2 � tan�0� �k1;2�, we ob-
tain a set of two equations from (23), for each lattice, which
are solved exactly by

 at� � 2�!1 �!2�
12

1 � 2
(25)

 atE0 �
!22 �!11

2 � 1
: (26)

The resulting parameter values are listed in Table IV.
There, the uncertainties for at� and atE0 are computed
as follows: The statistical ( jackknife) errors for atkn, as
they appear in Table III, give rise to errors 4 �k1;2 for the
weighted momentum averages �k1;2. Repeating the analysis
procedure described above a few thousand times with
momenta k1;2 � �k1;2 � �� �k1;2, where � is a normal dis-
tributed random deviate with variance one, then yields the
uncertainties given in Table IV. Also the a1 meson mass,
which enters the fit model via (24), was subjected to the
same randomization. The errors given in Table IV are the
standard deviations resulting from the randomization, they
are reminiscent of statistical errors. Table IV also contains
the physical values for the decay widths and the resonance
energies using the 
 meson to set the mass scale. Setting
the scale with the a1 meson mass, results in widths of
39(29) MeV and 108(48) MeV for the 123 � 24 and 103 �
24 lattices, respectively.

Finally, Fig. 5 shows the combined phase shift data from
the two lattices on a common physical scale. The curves
are Breit-Wigner interpolations as explained above.

VI. ERRORS

All errors cited in this paper are statistical, and are
derived from a standard jackknife procedure [57]. The
hybrid meson operator, involving gauge link paths, appears
to be the major source of those.

The effects of systematic errors on the results of this
simulation are difficult to assess. In principle this can only
be done by repeating it with various different choices of
lattice and analysis model parameters. Probably the largest
sources of systematic error stem from curve fitting and
extrapolation techniques. As a check on the extrapolations
we have also done fits with a x3=2 term in place of the
logarithmic term in (9). The results, Table IV, did not
change much, within statistical errors. If only linear terms
are retained the extrapolated masses slightly shift upward,
ultimately resulting in a slight increase of decay widths on
the order of � 10 MeV.

Another source of systematic error comes from postu-
lating a Breit-Wigner model. Given the sparsity of data
points it is inconclusive that the physical phase shifts will
indeed follow a Breit-Wigner form. In order to resolve this
problem the simulation would have to be repeated at
several values of the gauge coupling �, thus mapping out
some sort of continuous curve �0�k� vs k. The results of this
work do rely on the a priori assumption that the simulation
data follow a Breit-Wigner model.

TABLE IV. Results for decay widths � and resonant energies
E0 for two lattice sizes L in units of at, and with a physical scale
set by the 
 meson mass.

L at� atE0 � [MeV] E0 [GeV]

12 0.012(9) 0.63(3) 35(26) 1.88(8)
10 0.032(14) 0.62(3) 97(43) 1.84(9)

FIG. 5. Scattering phase shifts �0�kn� from the lattices 123 �
24 (filled circles) and 103 � 24 (open circles). The solid and
dashed curves are Breit-Wigner interpolations according to (25)
and (26). The filled and open box plot symbols indicate the
respective �2-weighted averages over data points.
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On the other hand, adopting the less stringent criterion
that a resonance is present if the phase shift data passes
through 90�, the simulation results clearly indicate the
presence of such. This, in itself, is a significant outcome
of this project. Although this does not help putting bounds
on the systematic error of �, the results for the resonance
energy, E0 � 1:9 GeV, are remarkably stable. A decay
width, on the other hand, essentially comes from derivative
data and as such is prone to a significantly larger error.

Systematic errors are also caused by finite size effects.
At first sight, judging by the small difference of the 

meson masses on the L � 12 and L � 10 lattices, see
Table I, those appear to be small. Finite size effects should
be expected to be much larger for larger-sized hadrons like
the a1 for example. This is particularly true for two-hadron
systems studied in this work. For example, the spectra
displayed in Fig. 4 are significantly different, particularly
for excited states on the L � 12 and L � 10 lattices, their
size though being quite similar. Again these effects can
only be studied by repeating this simulation with several
lattices of different sizes.

Obtaining a single scattering phase data point requires
evaluating up to three effective mass functions—one for
the correlator matrix eigenvalue, one for the 
meson to set
the physical scale, and one for the�meson. The variability
in choosing which time slices of the correlation functions
to use in fitting effective masses produces a variability in
the decay width. Here, one usually wants to maximize the
plateau width of the effective mass functions to optimize
the statistical error. Reducing the plateau width to estimate
a systematic error is of limited value.

VII. CONCLUSION

Decay widths for the hybrid exotic meson with JPC �
1��, calculated using Lüscher’s method, are in the range
35 to 97 MeV with statistical errors of about 30 MeV using
the 
 meson to set the scale. The lower value for the width

came from using extrapolated energy spectra on a 123 � 24
lattice and the higher value came from using extrapolated
spectra on a 103 � 24 lattice. If the a1 meson sets the scale,
then the widths for these two lattices range from 39 to
108 MeV with statistical errors of about 40 MeV.

The number of data points available to fit Breit-Wigner
functions is very sparse, the reason being that many energy
levels fell outside the elastic region where phase shifts
using Lüscher’s formulas cannot be computed. Over-
coming this limitation requires use of a larger correlation
matrix. This can be accomplished by adding more smear-
ing levels, and spatially extended operators in the individ-
ual correlators, or possibly by using a coupled channel type
analysis in which more than one decay channel is repre-
sented in the matrix. Several values of the coupling pa-
rameter � should also be employed to generate more phase
shift data points.

Using the 
 meson to set the scale, the resonance mass
of the hybrid meson in this simulation was 1.9(1) GeV, and
in contrast to the decay width, the resonance mass was well
determined by the simulation. This unexpected result leads
to a final comment that, historically, hadron mass calcu-
lations within lattice QCD have been done using single-
hadron operators, ignoring the fact that most hadrons are
resonances and thus are unstable [17]. We have taken this
decay aspect seriously. Although the numerical values
for the decay widths serve as a guide only, the approach
of extracting hadron masses as resonance energies,
using Lüscher’s method, should also be given serious
consideration.
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