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We evaluate the isovector nucleon electromagnetic form factors in quenched and unquenched QCD on
the lattice using Wilson fermions. In the quenched theory we use a lattice of spatial size 3 fm at � � 6:0
enabling us to reach low momentum transfers and a lowest pion mass of about 400 MeV. In the
unquenched theory we use two degenerate flavors of dynamical Wilson fermions on a lattice of spatial
size 1.9 fm at � � 5:6 and lowest pion mass of about 380 MeV enabling comparison with the results
obtained in the quenched theory. that unquenching effects are small for the pion masses considered in this
work. We compare our lattice results to the isovector part of the experimentally measured form factors.
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I. INTRODUCTION

The elastic nucleon electromagnetic form factors are
fundamental quantities characterizing important features
of neutron and proton structure that include their size,
charge distribution and magnetization. An accurate deter-
mination of these quantities in lattice QCD is timely and
important because of a new generation of precision experi-
ments. In particular, polarization experiments [1] that mea-
sure directly the ratio of the proton electric to magnetic
form factor, �pG

p
E=G

p
M, have shown a qualitative different

behavior than the traditional Rosenbluth separation. The
ratio �pG

p
E=G

p
M instead of being approximately constant

falls off almost linearly with the momentum transfer
squared, q2, which means that the electric form factor falls
faster than the magnetic. Recent reviews on the experi-
mental situation can be found in Refs. [2,3]. Precise lattice
data for the nucleon form factors for large values of q2 will
enable comparison with experiment and could lead to an
understanding of the approach to asymptotic scaling.
Furthermore, access to low momentum transfers will en-
able a better determination of phenomenologically inter-
esting quantities such as the root mean squared (r.m.s.)
radius of the transverse quark distribution in the nucleon
[4]. To access small momentum transfers we need a lattice
with large spatial extent, L, since the smallest available
momentum is 2�=L. Although large momentum transfers
are in principle available on typical lattices, the Fourier
transform of two- and three-point functions becomes
noise-dominated for momentum transfers beyond about
2 GeV2, limiting the range of high q2 values that can be
extracted accurately.

In this work we calculate the isovector nucleon form
factors as a function of the momentum transfer in lattice
QCD both in the quenched approximation and with two
dynamical Wilson fermions. A recent study of the nucleon
form factors was carried out in the quenched theory using
improved Wilson fermions [5]. The current work builds on

the ingredients of the previous lattice calculation and ob-
tains results with higher accuracy at lower momentum
transfers and pion masses. This enables us to determine
the momentum dependence of the form factors accurately
enough to have a meaningful comparison with experiment.
A number of phenomenologically interesting quantities
such as the r.m.s radii and dipole masses are extracted.
Furthermore, we improve the accuracy of the results by
constructing an optimal source for the nucleon allowing the
maximum number of lattice momentum vectors to contrib-
ute. The two form factors are then extracted using an
overconstrained analysis that includes all possible lattice
measurements for a given value of q2. For the quenched
calculation we use a lattice of size 323 � 64 at � � 6:0,
which corresponds to a lattice spacing a� 0:09 fm, ob-
tained either by using the nucleon mass at the chiral limit
or the Sommer scale. In order to assess quenching effects,
we also evaluate these form factors in the unquenched
theory using dynamical Wilson configurations simulated
for quark masses that give pions of mass 690 MeV and
509 MeVon a lattice of size 243 � 40 [6] and 380 MeVon a
lattice of size 243 � 32 [7] at � � 5:6. The lattice spacing
is about 0.08 fm determined from the nucleon mass at the
chiral limit. This value is consistent with the value ex-
tracted using the Sommer scale over the range of quark
masses used in this work.

In lattice QCD, elastic matrix elements involving one-
photon exchange require the evaluation of three-point
functions. The standard procedure to evaluate three-
point functions like the one we need here, namely,
GNj�N�t2; t1; p0;p; ��, is to compute the sequential propa-
gator. This can be done in two ways: In an early pioneering
work, where matrix elements of a number of different
hadronic states were evaluated [8], the method of choice
was to couple the photon to a quark at a fixed time t1
carrying a fixed momentum q. Within this scheme the form
factors can only be evaluated at one value of the momen-
tum transfer. Since the current must have a fixed direction
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and a fixed momentum, this approach is referred to as the
fixed current approach. This method allows one to use any
initial and final state without requiring further inversions,
which are the time consuming part of the evaluation of
three-point functions. In the second approach, which is the
method used in recent studies [5,9,10], one requires that
the initial state, created at time zero, and the final state,
annihilated at a later fixed time t2, have the nucleon quan-
tum numbers. The current can couple to any intermediate
time slice t1 carrying any possible value of the lattice
momentum and having any direction. Therefore, within
this scheme, with a single sequential propagator one is
able to evaluate all possible momentum transfers and
current orientations. Since the quantum numbers of the
final state are fixed, we refer to the second method as the
fixed sink method. Clearly the fixed sink method is supe-
rior if our goal is the accurate determination of the mo-
mentum dependence of the nucleon form factors.

II. LATTICE TECHNIQUES

The nucleon electromagnetic matrix element for real or
virtual photons can be written in the form
 

hN�p0; s0�jj�jN�p; s�i �
�

M2
N

EN�p0�EN�p�

�
1=2

� �u�p0; s0�O�u�p; s�; (1)

where p�s� and p0�s0� denote initial and final momenta
(spins) and EN (MN) is the energy (mass) of the nucleon.
The operator O� can be decomposed in terms of the Dirac
form factors as

 O � � ��F1�q
2� �

i���q
�

2MN
F2�q

2�; (2)

where F1�0� � 1 for the proton since we have a conserved
current and F2�0� measures the anomalous magnetic mo-
ment. They are connected to the electric, GE, and mag-
netic, GM, Sachs form factors by the relations

 GE�q2� � F1�q2� �
q2

�2MN�
2 F2�q2�;

GM�q
2� � F1�q

2� � F2�q
2�:

(3)

To extract the nucleon matrix element from lattice mea-
surements, we calculate, besides the three-point function
GNj�N�t2; t1; p0;p; ��, the nucleon two-point function,
GNN�t;p�, and look for a plateau in the large Euclidean
time behavior of the ratio

 

R�t2; t1; p0;p; �;�� �
hGNj�N�t2; t1; p0;p; ��i

hGNN�t2;p0; �4�i

�
hGNN�t2 � t1;p; �4�ihGNN�t1;p0; �4�ihGNN�t2;p0; �4�i

hGNN�t2 � t1;p0; �4�ihGNN�t1;p; �4�ihGNN�t2;p; �4�i

�
1=2

���!t2�t1�1;t1�1
��p0;p; �;��: (4)

We use the lattice conserved electromagnetic current,
j��x�, symmetrized on site x by taking

 j��x� ! 	j��x� � j��x� �̂�
=2 (5)

and projection matrices for the Dirac indices

 �i �
1

2
�i 0
0 0

� �
; �4 �

1

2
I 0
0 0

� �
; i � 1; . . . ; 3:

(6)

Throughout this work we use kinematics where the final
nucleon state is produced at rest and therefore q � p0 �
p � �p. Since we aim at obtaining the full q2 dependence
of the form factors, we evaluate the three-point functions
with sequential inversions through the sink. We fix t2 �
11�12� in lattice units for the quenched (unquenched)
Wilson lattices and search for a plateau of R�t2; t1;
p0;p; �;�� as a function of t1. Q2 � �q2 denotes the
Euclidean momentum transfer squared.

We can extract the two Sachs form factors from the ratio
of Eq. (4) by choosing appropriate combinations of the
direction � of the electromagnetic current and projection

matrices �. Provided the Euclidean times t1 and t2 � t1 are
large enough to filter the nucleon ground state, the ratio
becomes time independent. Inclusion of hadronic states in
the two- and three-point functions leads to the expressions
written in Euclidean space

 ��0;�q; �k;� � i� � C
1

2MN
�ijkqjGM�Q

2�; (7)

 ��0;�q; �4;� � i� � C
qi

2MN
GE�Q

2�; (8)

 ��0;�q; �4;� � 4� � C
EN �MN

2MN
GE�Q

2�; (9)

where C �
��������������������

2M2
N

EN�EN�MN�

r
is a factor due to the normalization

of the lattice states. The first observation regarding these
expressions is that the polarized matrix element given in
Eq. (7), from which the magnetic form factor is deter-
mined, does not contribute for all momenta q. In the lattice
study of the �N ! � transition [10,11], we dealt with a
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similar situation where the naive � source was not optimal
in the sense that, with one sequential propagator, not all
lattice momentum vectors resulting in the same value ofQ2

contributed and an optimal source for the � was needed.
Similarly, here one can construct an optimal linear combi-
nation for the nucleon sink that leads to
 

Sm�q; i� �
X3

k�1

���q; �k;� � i�

�
C

2MN
f�p2 � p3��1;i � �p3 � p1��2;i

� �p1 � p2��3;igGM�Q2� (10)

and provides the maximal set of lattice measurements from
which GM can be extracted requiring one sequential inver-
sion. No such improvement is necessary for the unpolar-
ized matrix elements given in Eqs. (8) and (9), which yield
GE with an additional sequential inversion.

Unlike the �N ! � transition, the �N ! N transition
contains isoscalar photon contributions. This means that
disconnected loop diagrams also contribute. These are
generally difficult to evaluate accurately since the all-to-
all quark propagator is required. In order to avoid discon-
nected diagrams, we calculate the isovector form factors.
Assuming SU�2� isospin symmetry, it follows that
 �
p
��������
�
2

3
�u��u�

1

3
�d��d

���������p
	

�

�
n
��������
�
2

3
�u��u�

1

3
�d��d

���������n
	
� hpj� �u��u� �d��d�jpi:

(11)

One can therefore calculate directly the three-point func-
tion related to the right hand side of the above relation
which provides the isovector nucleon form factors

 GE�q
2� � Gp

E�q
2� �Gn

E�q
2�;

GM�q2� � Gp
M�q

2� �Gn
M�q

2�:
(12)

The isovector electric form factor, GE, can therefore be
obtained from the connected diagram considering either
the spatial components of the electromagnetic current as
given in Eq. (8) or the temporal component given in
Eq. (9), while Eq. (10) is used for the extraction of the
isovector magnetic form factor, GM.

Besides using an optimal nucleon source, the other
important ingredient in the extraction of the form factors
is to take into account simultaneously in our analysis all the
lattice momentum vectors that contribute to a given Q2.
This is done by solving the overcomplete set of equations

 P�q;�� � D�q;�� � F�Q2� (13)

where P�q;�� are the lattice measurements of the ratio
given in Eq. (4) having statistical errors wk and using the
different sink types,

 F �
GE

GM

� �

and D is an M� 2 matrix which depends on kinematical
factors with M being the number of current directions and
momentum vectors contributing to a given Q2. We extract
the form factors by minimizing

 	2 �
XN
k�1

�P2
j�1 DkjFj � Pk

wk

�
2

(14)

using the singular value decomposition of D. Given
the fact that one can have a few hundred lattice
momentum vectors contributing in the evaluation of the
form factors, the statistical precision is highly improved.
Phenomenologically interesting quantities like the r.m.s.
radii and magnetic moments can thus be obtained with
increased precision. There is an additional advantage by
including momentum transfers q as well as �q in our
analysis. The lattice conserved current given in Eq. (5)
differs from the local electromagnetic current � �x��� �x�
by terms of O�a�. However when we average over q and
�q these O�a� terms vanish.

Smearing techniques are routinely used for achieving
ground state dominance before the signal from the time
correlators is lost in the noisy large time limit. We use
gauge invariant Wuppertal smearing, d�x; t� ! dsmear�x; t�,
at the source and the sink. We smear the fermion interpo-
lating fields according to [12]

 dsmear�x; t� �
X

z
F�x; z;U�t��d�z; t� (15)

with the gauge invariant smearing function constructed
using the hopping matrix H:

 F�x; z;U�t�� � �1� 
H�n�x; z;U�t��; (16)

where

 H�x; z;U�t�� �
X3

i�1

�Ui�x; t��x;y�i �U
y
i �x� i; t��x;y�i�:

(17)

It is well known that smearing introduces gauge noise
increasing the errors on the extracted effective masses, in
particular, when Wuppertal smearing is applied to both
source and sink. An efficient way to reduce the ultraviolet
fluctuations is to smooth out the gauge fields at the time
slice of the source and the sink. One can apply various
smoothing techniques such as APE [13], stout [14] or
hypercubic [15] smearing on the gauge fields that are
used in the hopping matrix. We found that both APE and
hypercubic smearing reduce the noise and at the same time
improve further the ground state overlap. In Figs. 1 and 2
we show the effective mass for the rho meson and the
nucleon, respectively, using a lattice of size 163 � 32
with dirichlet boundary conditions in the temporal direc-
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tion to utilize the full time extent of the lattice. When only
the source is smeared, both APE and hypercubic smearing
improve the ground state overlap to such an extent that the
plateau value is reached within a time separation as short as
two time slices. When we apply Wuppertal smearing both
to the source and sink, we see a reduction in the gauge
noise, in particular, when hypercubic smearing is used.
There is little effect on improving ground state dominance
since Wuppertal smearing on both source and sink very
effectively cuts down excited state contributions already
after a time separation of a couple of time slices. Given the
better noise reduction observed when we use hypercubic
smearing we choose to apply this smearing to the links that
enter the hopping matrix H. For the parameters that enter
the hypercubic smearing we use the same ones as those of
Ref. [15]. The parameters for the Wuppertal smearing are
then optimized so that ground state dominance for the

nucleon is optimal. that the parameters 
 � 4 and n �
50 produce optimal results. These values are the same as
those obtained without applying hypercubic smearing.
Whereas Wuppertal smearing is applied to the source and
the sink in all our computations to ensure ground state
dominance at the time slice of the insertion of the electro-
magnetic current, hypercubic smearing is only done in the
case of the unquenched configurations. This is because self
averaging is less effective on smaller lattices causing the
gauge noise to be more severe in the unquenched case
where the simulations were done on a smaller lattice.

III. DISCUSSION OF EXPERIMENTAL RESULTS

As explained in Sec. II, we only compute the isovector
part of the form factors given in Eq. (12). Therefore, to
compare with experiment, it is necessary to extract from
the experimentally available proton and neutron data the
isovector contribution. In order to do this we need to
interpolate the proton and neutron data to the same Q2

values.
In Fig. 3 we show the proton and neutron data for the

electric form factor [16,17]. As can be seen, we need to
extrapolate the neutron electric form factor Gn

E at low
momentum transfers and the proton electric form factor

FIG. 2 (color online). The nucleon effective mass as a function
of the time separation on a 163 � 32 quenched lattice at � � 6:0
and � � 0:153. The notation is the same as that of Fig. 1.

FIG. 1 (color online). The rho effective mass as a function of
the time separation on a 163 � 32 quenched lattice at � � 6:0
and � � 0:153 using Dirichlet boundary conditions in the tem-
poral direction. In the upper graph, filled triangles show results
obtained with local source and sink, crosses with Wuppertal
smeared source and local sink and open triangles (asterisks) with
Wuppertal smeared source using hypercubic (APE) smearing for
the gauge links used in the construction of the hopping matrix
H�x; z;U�t�� and local sink. The lower graph shows with crosses
results obtained using Wuppertal smeared source and sink and
with open triangles (asterisks) results with Wuppertal smeared
source and sink where hypercubic (APE) smearing is applied to
the spatial links entering the hopping matrix.
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Gp
E at intermediate Q2 values in the range 0:25<Q2 <

1:0 GeV. In order to interpolate the neutron data we con-
sider the Galster parametrization [18]

 GN
E �Q

2� �
��n�

1� 5:6�
Gd�Q2�; (18)

where � � Q2=4M2
N , Gd�Q2� � 1=�1�Q2=0:71�2 and

�n � �1:91315, which provides a good description of
the data. We calculate the derivative needed for the inter-
polation between measured data using the Galster parame-
trization. Similarly, in order to interpolate the proton data,
we fit to a dipole form and then use the fitted form to
compute the derivative needed for the interpolation.
Having Gn

E and Gp
E at the same value of Q2, we then find

the isovector contribution via Eq. (12) and plot the result-
ing isovector GE in Fig. 3. As expected, the difference
between Gp

E and the isovector part is small due to the
smallness of Gn

E. A similar analysis is done for the mag-
netic form factor using the data of Ref. [16,17]. The

derivative needed for the interpolation is computed either
from the best dipole fit function to the available data or, in
the cases where we have two measurements close to the
value of Q2 that we are interested in, by using a finite
difference approximation to the derivative. The resulting
isovector magnetic form factor is shown in Fig. 4. In Fig. 5
we compare the extracted isovector ratio �GE=GM to
recent measurements of the proton ratio �pG

p
E=G

p
M that

showed an unexpected Q2 dependence [1,19]. The isovec-
tor ratio for Q2 < 1 GeV2 decreases faster with Q2 than
�pG

p
E=G

p
M, whereas for Q2 > 1 GeV2 it remains approxi-

mately constant. One of the goals is to compare this
behavior with lattice calculations.

IV. LATTICE RESULTS

As pointed out in the Introduction, the purpose of this
work is to obtain accurate results over a large range of
momentum transfers. For this reason the quenched calcu-
lation is done on a lattice of size 323 � 64 enabling us to
reach momentum transfers as low as about 0:15 GeV2. The
highest momentum transfer that is accessible at � � 6:0 is
2�=a� 13 GeV. However statistical errors do not allow
us to reach this maximum value. For the unquenched
calculation we use configurations generated by the
SESAM Collaboration [6] on a lattice of size 243 � 40
and the DESY-Zeuthen group [7] on a lattice of size 243 �
32 at � � 5:6. At this value of� the lattice spacing is close
enough to the lattice spacing of the quenched lattice so that
finite a-effects are comparable. Differences between the
two evaluations can then be attributed to unquenching
effects. In Table I we give the parameters of our
calculation.

The lattice spacing is determined from the mass of the
nucleon in the chiral limit. We use two different Ansätze
for extrapolating to the chiral limit: one is aMN �
aMN�0� � c0m2

� and the other aMN � aMN�0� � c1m2
� �

c2m3
�. This provides an estimate for the systematic error in

FIG. 4 (color online). The isovector magnetic form factor, GM,
extracted by interpolation from the measured proton and neutron
magnetic form factors.

FIG. 5 (color online). The ratio of isovector form factors GE
over GM as compared to the corresponding ratio of proton form
factors from recent polarization experiments [1].

FIG. 3 (color online). The isovector electric form factor, GE,
extracted by interpolation from the measured proton and neutron
electric form factors.
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the extrapolated value of the nucleon mass which domi-
nates the overall error quoted in Table I for the lattice
spacing. We would like to point out that using the
Sommer scale to set the scale and taking r0 � 0:5 fm,
values that are consistent with the ones extracted from
the nucleon mass. For the quenched lattice using for r0=a
the values given in Ref. [20], we obtain a�1 � 2:15 GeV
(a � 0:093 fm). For the unquenched lattice, the same defi-
nition gives at � � 0:1575, � � 0:1580, and � � 0:15825
a�1 � 2:42�4� GeV, a�1 � 2:47�3� GeV, and a�1 �
2:56�6� GeV [7] respectively. These values are consistent
with the value of a�1 � 2:56�10� GeV extracted from the
nucleon mass at the chiral limit. The choice of the lattice
spacing affects the physical value of Q2 but not the values
of GE and GM since they are computed in dimensionless
units. In other words, a change in the lattice spacing a
stretches the curves for GE and GM along the Q2 axis and
thus changes the slope.

All the quenched results for the form factors are ob-
tained using 200 configurations and three values of the
hopping parameter �. The values of � chosen are 0.1554,
0.1558 and 0.1562 and give a ratio of pion to rho mass
m�=m � 0:64, 0.59, and 0.50, respectively. We compare
to unquenched results simulated using two flavors of
Wilson fermions at � � 0:1575, � � 0:1580 [6] and � �
0:15825 [7] that give a ratio of pion to rho mass of 0.69,
0.56 and 0.45, respectively. The nucleon isovector elastic
form factors are extracted by solving the overconstrained
set of equations defined in Eq. (13).

In Fig. 6 we compare results for the nucleon form factors
obtained in the quenched theory at � � 0:1554 using the
local current and the lattice conserved current. The renor-
malization constant of the local current is determined by

requiring charge conservation. The value of the renormal-
ization constant that is G�1

E �0� � Zv � 0:67. As we al-
ready pointed out, averaging over all directions of q,
eliminates order a-terms in the lattice conserved current
that arise from using fermionic fields at neighboring sites
and the link variable that joins them. Despite the elimina-
tion of order a-terms, Fig. 6 shows a discrepancy between
results obtained using the local current and the lattice
conserved current. In the case of the electric form factor,
the results from the local current have smaller values,
whereas for the magnetic case they have higher values.
This means that these differences will be amplified in the
ratio of the two form factors. Since in our approach the
order a-terms are eliminated in the conserved current, there
is no other obvious improvement, as far as the current is
considered, that we can implement. Given that the lattice
current is the one that ensures charge conservation, the
consistent approach is to use this current. A further argu-
ment for this choice is provided by considering the electric
form factor GE, which can be evaluated using Eq. (8) or
Eq. (9). In Fig. 7 we compare the electric form factor
extracted using Eq. (9) with that extracted from Eq. (8).
As can be seen for Q2 larger than about 0:5 GeV2 there is
perfect agreement when using the lattice conserved cur-
rent. The disagreement at lowerQ2 can be understood from

FIG. 6 (color online). GE and GM as functions of Q2 in the
quenched theory at � � 0:1554 extracted using the local current
� �x��� �x� (open circles) and the symmetrized lattice con-

served electromagnetic current (crosses).

TABLE I. In the first column we give the number of configu-
rations and in the second column the value of the hopping
parameter, �, that fixes the bare quark mass. In the third and
fourth columns we give the pion and nucleon mass in lattice
units. The values of the lattice spacing a are determined from the
mass of the nucleon at the chiral limit. The unquenched con-
figurations at � � 0:1575 and � � 0:1580 are provided by the
SESAM Collaboration [6] and at � � 0:15825 by the DESY-
Zeuthen group [7].

Number of confs. � am� aMN

Quenched 323 � 64 a�1 � 2:14�6� GeV
200 0.1554 0.263(2) 0.592(5)
200 0.1558 0.229(2) 0.556(6)
200 0.1562 0.192(2) 0.518(6)

�c � 0.1571 0. 0.439(4)
Unquenched 243 � 40 a�1 � 2:56�10� GeV

185 0.1575 0.270(3) 0.580(7)
157 0.1580 0.199(3) 0.500(10)

Unquenched 243 � 32 a�1 � 2:56�10� GeV
200 0.15825 0.150(3) 0.423(7)

�c � 0:1585 0. 0.366(13)
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the dependence on the momentum transfer appearing in the
right hand side of Eq. (8). As q! 0 the right hand side of
Eq. (8) tends to zero. Inverting to obtain GE from the
measured ��0;�q; �4;� � i� becomes inaccurate result-
ing in an erroneous value forGE. Using the local current on
the other hand, we observed small differences between the
results obtained using Eq. (8) and (9) up to values of Q2 as
large as 2 GeV2, which indicates a lattice artifact.
Therefore, given charge conservation and consistency of
the results coming from two different determinations of
GE, we conclude that the lattice conserved current is the
best choice for the evaluation of the form factors within our
current framework. Furthermore for Q2 < 0:5 GeV2, we
will only use Eq. (9) for the determination of GE whereas
for higher Q2 values both Eqs. (8) and (9) will be used.

In Fig. 8 we show the results for the electric form factor
at three values of � for the quenched and the unquenched
cases. On the scale of this figure, only a weak quark mass
dependence is seen. Both quenched and unquenched re-
sults decrease as the quark mass decreases, yielding a
larger slope at small Q2, which is the expected behavior.
In order to better resolve differences in our data, we plot in

Fig. 9 the ratio of the electric form factor to the proton
dipole form factor, GE=Gd. Both quenched and un-
quenched results are clearly higher than the experimentally
determined data, decreasing with the quark mass. The
unquenched results in general show a stronger quark
mass dependence leading to smaller values in the chiral
limit. The main observation, however, is that both
quenched and unquenched results have a different Q2

dependence as compared to the results extracted from
experimental measurements: The lattice data have a posi-
tive slope at small Q2 whereas experiment favors a nega-
tive slope. The two main uncertainties regarding the lattice
results are finite a-effects and whether we are close enough
to the chiral limit. Since unquenched Wilson configura-

FIG. 8 (color online). The isovector electric form factor, GE,
as a function of Q2. We show quenched lattice results at � �
0:1554 (crosses), at � � 0:1558 (open circles) and at � �
0:1562 (asterisks). The unquenched results are shown at � �
0:1575 (open triangles) � � 0:1580 (filled circles) and at � �
0:15825 (open squares). The filled triangles show experimental
results for the isovector electric form factor extracted using the
analysis described in Sec. III and data from Refs. [16,17].

FIG. 9 (color online). The isovector electric form factor, GE,
divided by the proton dipole form factor as a function of Q2. The
notation is the same as in Fig. 8.

FIG. 7 (color online). GE as a function of Q2 in the quenched
theory at � � 0:1554 extracted using Eq. (8) (open circles) when
the electromagnetic current is in the spatial direction and using
Eq. (9) (crosses) with the electromagnetic current in the temporal
direction. The top graph show results extracted using the local
current � �x��� �x� and the lower using the symmetrised lattice
conserved current.
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tions are only available at this lattice spacing, assessing
whether finite a-effects can explain this behavior is beyond
the scope of the present study. Also dynamical Wilson
configurations at smaller quark masses on large enough
volumes are not available so at present we cannot evaluate
these form factors closer to the chiral limit.

The evaluation of the magnetic form factor GM is done
using Eq. (10), which employs the optimal source. The
results for the magnetic form factor are shown in Fig. 10
and, on the scale of this figure, the lattice results are closer
to experiment than the results forGE. Again, quenched and
unquenched results decrease with the quark mass with the
unquenched results showing a stronger quark mass depen-
dence. The stronger quark mass dependence of the un-
quenched data at low Q2 is more clearly seen in Fig. 11
where we plot the ratio GM=Gd. Again in the chiral limit
we expected a reduction in the value ofGM bringing lattice
results closer to experiment. It is worth noting that the
experimentally determined isovector form factor is very
well described by the dipole form Gd�Q2� whereas the
lattice data clearly show deviations from the dipole form

at least for the mass range considered in this work. To
directly compare, however, to experiment one has to carry
out a chiral extrapolation of GE and GM. This is discussed
in the next section. Ideally one must also carry out the
continuum limit using lattices of different values of a,
which is however beyond the scope of the present work.
For completeness, we show in Fig. 12 the form factors F1

and F2, which are a linear combination of GE and GM.
What can be seen is that, in the case of F1, the lattice

FIG. 11 (color online). The isovector magnetic form factor,
GM, divided by the proton dipole form factor taking � � 4:71 as
a function of Q2. The notation is the same as in Fig. 8.

FIG. 12 (color online). The isovector form factors F1 (top) and
F2 (bottom), as a function of Q2. The notation is the same as in
Fig. 8.

FIG. 10 (color online). The isovector magnetic form factor,
GM, as a function of Q2. The notation is the same as in Fig. 8.

FIG. 13 (color online). The isovector ratio, �GE=GM, as a
function of Q2. The notation is the same as in Fig. 8.
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results show only a very weak increase in the slope as the
quark decreases. The slope of F1 is directly related to the
transverse size of the hadron [4] and one expects an in-
crease in the slope as the quark mass decreases, which is
not observed in the lattice data. On the other hand, in the
case of F2 one observes a stronger quark mass dependence.
This stronger quark mass dependence potentially can lead
to agreement with experiment after the chiral extrapolation
is carried out. In the case of F1, given the weaker quark
mass dependence and the larger deviation from experi-
ment, one would require a nontrivial mass dependence at
small quark masses to reconcile the lattice data with ex-
periment. The experimentally interesting ratio of form
factors, �GE=GM, is shown in Fig. 13. As can be seen it
shows very little dependence on the quark mass and,
modulo finite a-effects, it can already be compared to
experiment. The ratios obtained in the quenched and the
unquenched theory are in agreement with each other but
disagree with the behavior extracted from experiment. This
disagreement is also clearly seen in the ratio F2=F1 shown
in Fig. 14 especially at small Q2.

V. EXTRAPOLATION TO THE CHIRAL LIMIT

In order to compare our results for GE and GM with
experiment, we must extrapolate the lattice results to the
chiral limit. The quark masses used in this work correspond
to pion masses in the range 560 to 410 MeV in the
quenched theory and 690 to 380 MeV in the unquenched
theory. Pion cloud effects are expected to be small in this
range of pion masses and therefore we expect the results to
show a linear dependence in the pion mass squared,m2

�. To
carry out correctly the chiral extrapolation of the form
factors one would need chiral perturbation theory in the
range of pion masses that we have results and valid for
momentum transfers Q2 up to about 2 GeV2. The only
chiral expansion for the form factors presented recently is
limited to small momentum transfers [21]. On the other
hand, one expects that for values of Q2 * 0:5 GeV2 non-

analytic terms are suppressed and a linear dependence in
m2
� provides a good description to the data. In Fig. 15 we

plot the magnetic and electric form factors for the three
lowest Q2 values as a function of m2

�. We used Eq. (9) to
extract the electric form factor since Q2 < 0:5 GeV2 and
only Eq. (9) yields reliable results. For these lowest values
of Q2 nonanalytic terms could be important and should be
visible as the pion mass decreases. As can be seen in this
figure, a linear dependence is consistent for the quenched
data at the three lowest Q2 values. The unquenched data
are also consistent with a linear behavior. This is indeed
what is observed also for the higher Q2 values as can be
seen in Fig. 15 where we show the unquenched results at
Q2

0 � 1:37 GeV2 where by Q2
0 � 2MN�EN �MN� we de-

note the momentum transfer squared in the chiral limit
obtained by using the physical nucleon mass. It is therefore
reasonable to extrapolate the form factors linearly in m2

� to
obtain results in the chiral limit. Since Q2 depends on the
mass of the nucleon it changes with the quark mass and we

FIG. 15 (color online). The isovector electric (upper) and
magnetic (lower) form factors as a function of m2

� for the three
lowest Q2 values available on our quenched lattice. With Q2

0 we
denote the momentum transfer square in the chiral limit.
Unquenched results are shown with the filled circles at the lowest
available Q2-value and with the open triangles at Q2

0 �
1:37 GeV2.

FIG. 14 (color online). The isovector ratio, F2=F1, as a func-
tion of Q2. The notation is the same as in Fig. 8.
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need to extrapolate form factors evaluated at somewhat
different Q2. To leading order, Q2 decreases linearly with
m2
�. Therefore we perform a fit to the form

 f�Q2; m2
�� � f�Q2

0; 0� � Am
2
�; (19)

where we extract the form factor at the chiral limit at Q2
0.

As can be seen in Fig. 15 this linear behavior is well
satisfied for Q2

0 � 1:37 GeV2 the largest value shown in
the figure. Another option is to interpolate lattice data
obtained for different quark masses at Q2

0 and perform a
chiral extrapolation at this constant value of the momen-
tum transfer squared. Only the value A of the slope should
be affected whereas f�Q2

0; 0� should not change. We
checked these two procedures for various values of Q2.
We found that the results for f�Q2

0; 0� obtained using these
two procedures were indeed consistent. In what follows we
will therefore use Eq. (19) for the chiral extrapolation.

The resulting values at the chiral limit are shown in
Fig. 16 for GE and GM. The disagreement with experiment
is larger in the case of the electric form factor and can be
traced to its weak quark mass dependence. Lattice results
also show a different Q2 dependence as compared to

experiment. The linearly extrapolated lattice results are
closer to experiment in the case of the magnetic form
factor. For comparison, we show in Fig. 17 the lattice
results for F1 and F2 after linearly extrapolated to the
chiral limit. There is little deviation between unquenched
and quenched results at the chiral limit. In addition, for
Q2 > 0:5 GeV2 there is good agreement between the lat-
tice results for F2 and the results extracted from experi-
ment. This is not the case for F1 where the experimentally
determined isovector F1 decays faster as compared to the
lattice results.

In order to obtain the isovector magnetic moment
GM�0�, one needs to evaluate the magnetic form factor
GM at Q2 � 0. This requires an extrapolation of lattice
results to Q2 � 0. One fitting Ansatz commonly used to
describe the Q2 dependence of the form factors is a dipole.
We thus consider a dipole form with different isovector
magnetic and electric dipole masses squared, Mm and Me:

 GM�Q
2� �

GM�0�

�1� Q2

Mm
�2
; (20)

 GE�Q2� �
1

�1� Q2

Me
�2
: (21)

FIG. 17 (color online). The form factors F1 (upper) and F2

(lower) as a function ofQ2. Crosses show quenched results at the
chiral limit, and filled circles unquenched results. The results
extracted from experiment are shown by the filled triangles.

FIG. 16 (color online). The ratios GE=Gd (upper) and
�GM=Gd (lower) as a function of Q2 at the chiral limit. Open
triangles show quenched results obtained at the chiral limit by
linear extrapolation of the form factors GM and GE and filled
circles denote the corresponding unquenched results. The results
for these isovector ratios extracted from experiment are shown
by the filled triangles.
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A good fit giving 	2=�degree of freedom� � 1 is obtained
when the form factors are fitted for Q2 & 2:5 GeV2. The
quality of the fits is shown in Fig. 18, where we show
quenched and unquenched data at � � 0:1558 and � �
0:1580 respectively. On the same figure, we include a fit to
an exponential form. For the magnetic form factors, an
exponential Ansatz describes very well theQ2 dependence,
especially in the quenched case where it is in fact favored.

An exponential fit, however, does not provide a good fit to
the electric form factors. Therefore in order to extract the
r.m.s. radii we will use throughout a dipole Ansatz. In
Table II we give the magnetic moment, GM�0�, and the
magnetic and electric dipole masses extracted from the
dipole fits to the quenched and unquenched results at
each value of the quark mass. The dipole masses extracted
from the fits are generally larger than the value of Md �
0:71 GeV2 entering in the proton form factor Gd. This is
consistent with the fact that the lattice data normalized
withGd are not constant but increase as a function ofQ2 as
shown in Figs. 9 and 11. In the same Table we also give the
values extracted by applying dipole fits to the form factors
after they have been linearly extrapolated to the chiral
limit. Since the dipole masses decrease with the quark
mass, the fits of the form factors at the chiral limit yield
a smaller value for Me and Mm. In the unquenched case
these values are rather close to the value of the proton
dipole mass, Md.

The quark mass dependence of the magnetic moments
extracted from the dipole fits is presented in Fig. 19. A
linear extrapolation of the quenched results to the chiral
limit leads to GM�0� � 3:67�3�. As expected, this value is
in agreement with the value obtained from the dipole fit of
GM at the chiral limit quoted in Table II. This agreement
confirms that our extrapolation using Eq. (19) yields results
consistent to those obtained by extrapolating to the chiral
limit at constant value of Q2. The slope of F1 at Q2 � 0
determines the transverse size of the hadron, hr2

?i �

�4dF1=dQ
2jQ2�0. In the nonrelativistic limit the r.m.s.

radius is related to the slope of the form factor at zero
momentum transfer. Therefore the r.m.s. radii can be di-
rectly obtained from the values of the dipole masses by
using

 hr2
i i � �

6

Fi�Q
2�

dFi�Q
2�

dQ2

��������Q2�0
�

12

Mi
; i � 1; 2:

(22)

TABLE II.

� GM�0� Mm (GeV2) Me (GeV2) hr2
1i

1=2 (fm) hr2
2i

1=2 (fm)

Quenched 323 � 64 a�1 � 2:14�6� GeV
0.1554 4.11(7) 1.29(4) 1.24(1) 0.520(5) 0.64(1)
0.1558 4.02(8) 1.28(4) 1.15(1) 0.538(6) 0.64(1)
0.1562 3.90(9) 1.19(4) 1.08(1) 0.550(8) 0.66(1)
�c � 0:1571 3.73(13) 1.03(5) 0.90(2) 0.585(13) 0.72(2)

Unquenched 243 � 40 a�1 � 2:56�10� GeV
0.1575 4.45(14) 1.53(7) 1.55(1) 0.467(7) 0.58(2)
0.1580 4.34(43) 1.23(16) 1.41(2) 0.462(23) 0.67(5)

Unquenched 243 � 32 a�1 � 2:56�10� GeV
0.15825 4.10(46) 1.17(17) 1.19(4) 0.500(29) 0.68(6)
�c � 0:1585 3.25(48) 0.792(17) 0.66(4) 0.756(36) 0.79(13)

FIG. 18 (color online). The magnetic (upper) and electric
(lower) form factors for the quenched and the unquenched cases
with fits to dipole (dashed line) and exponential (solid line)
forms.
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The electric and magnetic radii are given by hr2
e;mi �

12=Me;m and can be directly evaluated from the values
given in Table II. We can also obtain hr2

i i in terms of Mm
and Me using the relations

 hr2
1i �

12

Me
�

3F2�0�

2M2
N

; hr2
2i �

12�1� F2�0��

F2�0�Mm
�
hr2

1i

F2�0�
:

(23)

In Eq. (23) we take F2�0� � GM�0� � 1 extracted from the
dipole fits. Alternatively, one can fit directly the F1 and F2

form factors and obtain the dipole masses M1 and M2.
What one finds via this procedure is that the values for hr2

i i
tend to be smaller than but consistent within errors with the
ones extracted using Eq. (23). The quark mass dependence
of the magnetic and electric dipole masses is also shown in
Fig. 19. A linear dependence in m2

� is consistent for the
quenched results yielding, at the chiral limit, Mm �

1:09�10� GeV2 and Me � 0:89�4� GeV2. Again, these val-
ues are in agreement with the values extracted by fitting the
form factors after they have been linearly extrapolated to
the chiral limit as can be seen from the values quoted in
Table II. After scaling the magnetic moments by the ratio
of the physical nucleon mass to the one measured on the
lattice, they become an increasing faction of m2

� as can be
seen in Fig. 19. In the same figure we also include the
quenched results obtained from Ref. [5], that used pertur-
batively improved Wilson fermions. We choose data at
� � 6:0 where the value of the lattice spacing extracted
from their nucleon mass is a�1 � 1:83 GeV. This is close
enough to our quenched lattice to allow a meaningful
comparison. It is reassuring that, despite the fact that
different currents and Wilson fermions were used in the
two calculations, results at a similar pion mass are
consistent.

As the pion mass decreases, one expects cloud pion
contributions to become important and deviations from
the linear dependence on m2

� should be observed, in par-
ticular, at low Q2, thus affecting the values of GM�0� and
the dipole masses and hence the r.m.s. radii. In a recent
calculation the quark mass dependence of the isovector
magnetic moment and radii was determined. This was done
within a chiral effective theory with explicit nucleon and �
degrees of freedom [5,22]. The isovector anomalous mag-
netic moment as a function of the pion mass to one-loop
order is given by [22]

 

�v�m�� � �v�0� �
g2
Am�MN

4�F2
�

�
2c2

A�MN

9�2F2
�

�
R1�m�� � log

�
m�

2�

��

� 8E1MNm2
� �

4cAcVgAMNm
2
�

9�2F2
�

log
�

2�

�

�

�
4cAcVgAMNm

3
�

27�F2
��

�
8cAcVgA�2MN

27�2F2
�

�

��
1�

m2
�

�2

�
R1�m�� �

�
1�

3m2
�

2�2

�
log

�
m�

2�

��
;

(24)

where

 R1�m� �

�����������������������������
�2 �m2 � i�
p

2�
log

�
��

�����������������������������
�2 �m2 � i�
p

��
�����������������������������
�2 �m2 � i�
p

�

(25)

and � � M� �MN is the �-nucleon mass splitting M� �
MN . Following Ref. [22] we fix gA, cA, F�, MN and � to
their physical values given in Table III and vary �v�0�, cV
and E1. The counter term E1 depends on the regularization
scale � for which we take � � 0:6 GeV in order to make
contact with Ref. [22]. As can be seen in Fig. 19 the

FIG. 19 (color online). The magnetic moment (upper), the
magnetic (middle) and electric (lower) dipole mass extracted
from fits, assuming a dipole dependence for the form factors, are
shown as a function of the pion mass squared. The dashed line is
a linear fit to the quenched results. The values at the chiral limit
are obtained from fitting the linearly extrapolated form factors at
the chiral limit to a dipole Ansatz. Our quenched data are shown
by the crosses, the unquenched data by the filled circles, our
scaled quenched (unquenched) magnetic moments by the open
triangles (open squares) and the quenched results from Ref. [5]
by the asterisks.
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magnetic moments in the quenched and unquenched theory
are in agreement and therefore we use both sets to fit to the
chiral effective theory result given in Eq. (24). Fitting to
the rescaled data we obtain the curve shown by the solid
line in Fig. 20. In Table III we give the values of �v�0�, cV
and E1 extracted from the fit. The dashed lines give the
maximal error band determined by varying the fitted pa-

rameters by the quoted errors. The extrapolated value of
the magnetic moment at the physical pion mass is in
agreement with experiment.

For the isovector Dirac and Pauli radii we use the one-
loop results given in Ref. [5]:
 

r2
1 � �

1

�4�F��
2

�
1� 7g2

A � �10g2
A � 2� log

�
m�

�

��

�
12B10

�4�F��2
�

c2
A

54�2F2
�

�
26� 30 log

�
m�

�

�

� 30R2�m��

�
(26)

and

 r2
2 �

1

�v�m��



g2
AMN

8F2
��m�

�
c2
AMN

9F2
��

2�
R2�m�� � 24MNBc2

�
;

(27)

where

 R2�m� �
�

2
�����������������������������
�2 �m2 � i�
p log

�
��

�����������������������������
�2 �m2 � i�
p

��
�����������������������������
�2 �m2 � i�
p

�
:

(28)

The only parameter that we vary in fitting the Dirac radius
is the counter term B10, which depends on the scale � and
parametrizes short distance contributions. Once the mag-
netic moment is fitted, the only parameter entering in the
Pauli radius that we vary is the counter term Bc2, which is
the analogue of B10. The resulting fits for the radii are
shown in Fig. 20. The pion mass dependence of the Dirac
radius is not well reproduced. Since this is related to the
slope of F1 this is not surprising given that the lattice
results have a different slope from the experimental one
and hardly show any quark mass dependence.

VI. CONCLUSIONS

The elastic isovector nucleon form factors are calculated
in lattice QCD with Wilson fermions both in the quenched
approximation and using unquenched configurations [6,7]
with two flavors of dynamical Wilson fermions. The cur-
rent work presents an improvement to a previous lattice
study [5], carried out in the quenched approximation, in a
number of ways: In the quenched theory we use a lattice of
twice the spatial and temporal size. This allows an accurate
determination of the form factors at lower values of Q2,
enabling us to extract more reliably the dependence on Q2.
In addition, the quenched calculation is carried out at
smaller quark masses, bringing us closer to the chiral limit.
Preliminary quenched results on a lattice of size 323 � 48
at � � 6:0 using Wilson fermions were presented in
Ref. [23]. Although the low Q2 range probed is the same
as in the current work, only results after linear extrapola-
tion to the chiral limit, using data computed at two light
quark masses and thus carrying large statistical errors,

FIG. 20 (color online). Chiral extrapolation of the magnetic
moment (upper) and the r.m.s radii r1 (middle) and r2 (lower).
The solid line is the best fit to the effective chiral theory results.
The dashed lines show the maximal allowed error band using the
errors on the fitted parameters.

TABLE III. The first column lists the fixed parameters and the
second their values at the physical pion mass. The third column
gives the fitted parameters and the fourth the values determined
by fitting to Eq. (24) for the magnetic moment, to Eq. (26) for r2

1

and to Eq. (27) for r2
2.

Fixed
parameter

Empirical value Fitted
parameter

Fitted value

gA 1.267 �v�0� 6.08(11)
cA 1.125 cV �2:75�50� GeV�1

F� 0.0924 GeV E1 �5:60�5� GeV�3

MN 0.9389 GeV B10 �0:3�3� GeV�3

� 0.2711 GeV Bc2 0.61(4)
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were discussed. Furthermore in this work we evaluated the
form factors in the unquenched theory allowing us to assess
unquenching effects for pion masses down to about
380 MeV. Finally, an improved overconstrained analysis
is carried out where the nucleon source is optimized and all
the lattice momentum vectors contributing to a given value
ofQ2 are taken into account. The resulting statistical errors
are therefore small enough that a comparison between
quenched and unquenched results is meaningful. What is
that both quenched and unquenched results for both form
factors decrease with the quark mass. Unquenching effects
are small and the results obtained after a linear extrapola-
tion in m2

� to the chiral limit fall on the same curve as can
be seen, for example, in Fig. 17 for F1 and F2. Assuming
lattice artifacts are under control, this improved analysis
gives results that can be compared to experiment by ex-
tracting the isovector form factors from the proton and
neutron measurements of these quantities. The largest un-
certainties regarding our lattice results are how close to the
continuum limit these results are and the chiral extrapola-
tion. With these caveats in mind, the comparison of the
results obtained here to experiment reveals interesting
features: Both quenched and unquenched results are higher
than the experimentally extracted form factors, with the
deviations being larger in the case of the electric isovector
form factor. In the quenched case, where we have very
accurate results at low momentum transfer, that the electric
form factor decreases slower with Q2 compared to what is
observed experimentally. This different behavior is also
reflected in the ratio�GE=GM, where the lattice results are
constant up to about Q2 � 2:5 GeV2 whereas the experi-
mentally determined data decrease as a function of Q2. In
the range of quark masses investigated in this work, the
quark mass dependence observed for �GE=GM is small
and so are unquenching effects. Using chiral effective
theory to one-loop to extrapolate the magnetic moment
to the chiral limit, that the lattice results extrapolate nicely
to the experimental value. The charge radius, on the other
hand, is constant over the range of quark masses used in
this work and therefore deviates from experiment. This is

again related to the deviation observed between experi-
ment and lattice results in the case of the charge form
factor. Since the lattice size in the quenched case is large,
we do not expect finite volume effects to be the reason for
the discrepancy. What needs to be checked is finite lattice
spacing effects and whether we are close enough to the
chiral limit. The observed disagreement with experiment in
the case of the charge form factor is puzzling and a study
using finer lattices should follow. If one requires in addi-
tion dynamical fermions and small quark masses to be
closer to the chiral limit, then such a study would require
large computer resources. Unquenched configurations with
pion masses down to 250 MeVon reasonably large and fine
lattices will become available in the near future enabling
us, using the techniques of the current work, to obtain
results closer to the physical regime avoiding uncontrolled
extrapolations.
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