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The mass spectrum of baryons in the spin-3=2 sector is computed in quenched lattice QCD using a
tadpole-improved anisotropic action. Both isospin 1=2 and 3=2 (the traditional decuplet) are considered,
as well as members that contain strange quarks. States with positive and negative parities are isolated by
parity projection, while states with spin-3=2 and spin-1=2 are separated by spin projection. The extent to
which spin projection is needed is examined. The issue of optimal interpolating field is also investigated.
The results are discussed in relation to previous calculations and experiment.
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I. INTRODUCTION

The mass spectrum of hadrons represents a fundamental
manifestation of the long-distance dynamics of quarks and
gluons as governed by QCD. Nonperturbative calculations
through numerical simulations on a space-time lattice pro-
vide a method to obtain this spectrum from first principles.
The computation of the hadron spectrum using lattice QCD
started in the early 1980’s [1,2]. The modern era in lattice
QCD calculation of the hadron spectrum started with the
results of the GF11 group [3]. The benchmark calculation
of the quenched light hadron spectrum using the standard
Wilson action has been performed by the CP-PACS col-
laboration [4,5]. For state-of-the-art computations using
dynamical configurations that involve the study of baryon
mass spectrum, see, for example, [6–9]. For reviews on
baryon mass spectrum, see, for example, [10].

Most of the lattice computation of the light hadron
spectrum has been limited to the ground states. It is im-
portant to extend the successes beyond the ground state.
The rich structure of the excited baryon spectrum, as
tabulated by the Particle Data Group [11], provides a fertile
ground for exploring how the internal degrees of freedom
in the nucleon are excited and how QCD works in a wider
context. One example is the parity splitting in the low-lying
N� spectrum. The nucleon N�938� has positive parity,
while its negative parity excitation, S11�1535�, has a much
higher mass. The spontaneous chiral symmetry breaking in
QCD is thought to be responsible for the splitting. Without
it, QCD would predict exact parity doubling in the baryon
spectrum. The study of the excited mass spectrum is a
critical part of the experimental program at Jefferson
Lab. Lattice QCD has a number of advantages in helping
understand the N� spectrum. One can systematically study
the spectrum sector by sector, with the ability to dial the
quark masses, to separate the parities exactly, to project out
the spin components, and eventually to dissect the degrees
of freedom in the QCD vacuum most responsible for the
spectrum. There have been a number of lattice calculations
of the N� in the spin-1=2 sector [12–21].

In this work, we focus on the spin-3=2 sector. In addition
to the usual baryon decuplet with isospin-3=2 and

spin-3=2, we study the isospin-1=2 and spin-3=2 family
which has only received limited attention so far. A pre-
liminary study was reported in Ref. [22]. A calculation
using the FLIC fermion by the Adelaide group was done in
Ref. [23]. Other methods for constructing higher spin states
have been proposed by the LHPC collaboration [24–26].
Here, we use a different interpolating field as the one used
in Ref. [23]. We also extend the calculation to include
states that contain the strange quark. The goal is to estab-
lish the basic features in terms of spin-parity on the lattice.

II. CALCULATION DETAILS

Excited states composed of light constituents are both
large in size and mass. Their calculation imposes severe
signal-to-noise problems. The use of an anisotropic lattice
can help alleviate the problem. A fine lattice in the tempo-
ral direction enables the correlator to be observed over
many time slices at short separations, while the coarse
spatial spacing allows large spatial volumes the states
demand. We use the anisotropic gauge action given in
Ref. [27]:
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3 Re TrPss0 i

1=4 is the spatial tadpole factor,
Pss0 denoting the spatial plaquette. ut is the temporal tad-
pole factor, we set ut � 1 in this simulation. �C �P
C

1
3 Re Tr�1�WC�, with WC denoting the path-ordered

product of link variables along a closed contour C on the
lattice. �sp includes the sum over all spatial plaquettes on
the lattice, �tp indicates the temporal plaquettes, �sr de-
notes the product of link variables about planar 2� 1
spatial rectangular loops, and �str refers to the short tem-
poral rectangles (one temporal link, two spatial).

For the quarks, the anisotropic D234 action of
Ref. [28,29] is used with the following Dirac operator,
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Here ��n�� is the nth order lattice covariant derivative,
��3� � ��1���2� � ��2���1�, and ��4� � ��2���2�. The
terms proportional to r are generated by a field redefinition
and thus represent a redundant operator. With the help of
the gauge-covariant first- and second-order lattice deriva-
tives,
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the action can be cast into the standard form of
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With the specific choice of the factors b� �
1
6 , c� �

rat
24a�

,
and r � 2=3, and an improved version of the field-strength
operator free of O�a2� errors, F�clover�

�� , and a relative O�a2�
correction,
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the action has only O�a4
t ; a4

s� classical errors. This action
consists of three types of interaction terms: nearest-
neighbor, next-nearest-neighbor, and the clover term.
Both gauge action and quark action have tadpole-improved
tree-level coefficients to reduce unwanted quantum fluctu-
ations. The hopping parameter � is related to the bare
parameters by
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In this calculation, we use an 103 � 30 anisotropic lattice
with anisotropy � � as=at � 3. The spatial lattice spacing
as � 0:24 fm determined from the Sommer scale r0. The
lattice coupling � � 2:4. In all, 100 configurations are
analyzed. On each configuration 9 quark propagators are
computed using a multimass solver, with quark masses
ranging from approximately 780 to 90 MeV. The nine �
values are: �1�9 � 0:30, 0.31, 0.32, 0.33, 0.34, 0.345, 0.35,
0.355, 0.36 They correspond to pion mass in the range of
2.11 to 0.68 GeV, and the mass ratio �=	 from 0.95 to 0.65.

The strange quark mass corresponds to the seventh kappa
value (� � 0:350). The critical kappa value determined
from m2

� is �c � 0:3705�3�. The source is located at
�x; y; z; t� � �1; 1; 1; 2�. We use Dirichlet boundary condi-
tions in the time direction.

A Gaussian-shaped, gauge-invariant smearing function
[30] in spatial directions,
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was applied both at the source and at the sink to increase
the overlap with the states in question. So for a given
interpolating field operator, one can construct four types
of correlation functions with the source-sink combinations
of local-local (LL), smear-local (SL), local-smear (LS),
and smear-smear (SS). In Eq. (8), 
 is the coupling
strength at which the neighboring links are brought in,
and N is the number of iteration times. We used 
 �
0:25 and N � 10 in all cases. We found that the SL gives
the best signal so the results presented in this work are from
this combination.

We consider the full interpolating field with the quantum
numbers I�JP� � 1

2 �
3
2�� as proposed in Ref. [31],

 �� � �abc�u
aTC�5�	d

b�

�
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4
���	

�
�5u

c: (9)

It satisfies the condition ���� � 0 for spin-3=2 fields. The
superscript T denotes transpose. The C � �4�2 is the
charge conjugation matrix. The Dirac � matrices are
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Hermitian and satisfy f��; �g � 2��, with �� �
1
2i �

���; �	. We follow the gamma-matrix notation of Sakurai
[32]. The�, 	 are Lorentz indices and summation over 	 is
implied. The antisymmetric �abc ensures that the state is
color-singlet. The interpolating fields of the spin-3=2 ��

and �� are obtained by properly changing the quark field
operators. For example, one can get the spin-3=2 �� state
interpolating field by substituting d with s; and �� by
replacing u with s. This interpolating field has 5 terms as
compared to the standard interpolating field for the nu-
cleon,

 ��x� � �abc�u
aT�x�C�5d

b�x��uc�x�: (10)

So computationally, it is 25 times more expensive.
Furthermore, since the full 4� 4 matrix in Dirac space
(as opposed to only diagonal elements) is needed to carry
out the spin projection described below, an extra factor of 4
is needed, making this interpolating field 100 times more
expensive than a standard nucleon mass calculation.

Despite having an explicit parity by construction, the
interpolating field couples to both positive and negative-
parity states. A parity projection is needed to separate the
two. In the large Euclidean time limit, the two-point cor-
relation function with Dirichlet boundary condition in the
time direction and at zero spatial momentum becomes
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where f�� is a function common to both terms. The
relative sign in front of �4 provides the solution: by taking
the trace of G���t� with �1� �4�=4, one can isolate M�
and M�, respectively.

The interpolating field in Eq. (9) couples to both
spin-3=2 and spin-1=2 states. To project a pure spin-3=2
state from the correlation function G��, we use a spin-3=2
projection operator [23,33],
 

P���3=2� � g�� �
1

3
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3p2 ��  p��p� � p����  p� (12)

The corresponding spin-1=2 state can be projected by
applying the projection operator

 P���1=2� � g�� � P���3=2� (13)

The projection is done after the correlation functions are
generated, with no need to generate new quark propagators
at the source. Only zero spatial momentum ( ~p � 0) is
considered in the projector. To use this operator and retain
all Lorentz components, one must calculate the full 4� 4
matrix in Dirac and Lorentz space of G���t�. Using the

projection, we have

 G1=2
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X4
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They satisfy the relation

 G���t� � G1=2
�� �t� �G

3=2
�� �t�: (16)

However, to extract the mass, only one diagonal pair of
Lorentz indices is needed, reducing the amount of calcu-
lations required by a factor of 4. We calculate G1=2

33 and
G3=2

33 .

III. ISOSPIN-1=2 AND SPIN-3=2 BARYONS

Figure 1 demonstrates results for the correlation func-
tion for both parities in the nucleon channel at the smallest

FIG. 1 (color online). The various correlation functions (un-
projected, spin-3=2 projected, spin-1=2 projected) for the nu-
cleon states in the positive-parity (top) and negative-parity
(bottom) channels at the smallest quark mass (� � 0:36).
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quark mass considered. In the positive-parity channel, one
can see that this correlation function is almost completely
dominated by the 1=2� component. Spin projection re-
veals two different exponentials from the spin-3=2 and
spin-1=2 parts, with the spin-3=2 state being heavier than
the spin-1=2 one (a steeper fall-off), in agreement with the
ordering in experiment. The expected relation in Eq. (16) is
indeed satisfied numerically, providing a nontrivial check
of the calculation.

A further check of the calculation is provided by the fact
that the mass extracted fromG1=2

�� �t� is degenerate with that
from the conventional G�t� for the nucleon ground state
using the standard interpolating field in Eq. (10). One can
see that spin projection is crucial in this channel. Without
it, one would get a false signal for spin-3=2 since it is
dominated by the spin-1=2 component state. The large
error bars is a sign of sensitive cancellations in the projec-
tion procedure.

The situation in the negative-parity channel is opposite,
as shown in Fig. 1. Here the signal is dominated by the
3=2� state, so one would get a spin-3=2 signal without
spin projection. The results also show a similar fall-off for
the 1=2� state and the 3=2� state, in accord with the
experimental states of N��1535� 1

2� and N��1520� 3
2�

which are close to each other. We checked that the condi-
tion in Eq. (16) is also satisfied. According to Fig. 1, we can
get a rough idea about the range of time slices we should
choose to extract the baryon masses. For example, to get
good fitting result of N��3=2��, we should choose time
slices earlier than 12, however, the mass of N�1=2�� can
be extracted from much later time slice. To find out more
specific fit time window, we use effective masses and
extract the baryon masses from a plateau area. Figure 2
presents the effective masses in the spin-3=2 sector at four
quark masses that correspond to the heaviest quark mass,
and two quark masses in the middle, and the lightest quark
mass). For N��3=2�� the signal is weak because the cor-
relation function for positive-parity is dominated by the
N��1=2�� state. Only a rough plateau from time slice 7 to
9 can be found and the mass ofN��3=2�� is extracted from
this time window so the results for this state should be
taken with caution. To access later time slices, a large
number of configurations are needed to increase the
signal-to-noise ratio. The signal forN��3=2��, on the other
hand, is much stronger since it is the dominant component
in the negative-parity channel. A nice flat area can be found
between time slices 8 and 12. The mass of the N��3=2�� is
extracted from time slice 10 to 12.

Figure 3 displays the effective masses in the spin-1=2
sector. Here N�1=2�� is the dominant component, while
N�1=2�� is the weaker one, in their respective parity
channels. The N�1=2�� state is extracted from time slice
11–14. For N�1=2��, a rough flat area can be found from
time slice 7 to 12, but we use 9 to 11 since the value from
later time slice has smaller systematic error. To show the

quality of the nucleon from the two different measure-
ments, a comparison of the effective masses of the nucleon
at two kappa values is given in Fig. 4. The projected
nucleon at the smallest pion mass shows some instability
beyond time slice 15.

Figure 5 presents results of the mass ratios extracted
from the correlation functions for the N� states to the
nucleon ground state as a function of the mass ratio
��=	�2. We use mass ratios because they have minimal
dependence on the uncertainties in determining the scale
and the quark masses, and have smaller statistical errors. In
this figure, we slightly shift the points for the N��1=2��
state to the right hand side to avoid overlapping. The mass
of the nucleon ground state we use in the mass ratios is
produced on the same configurations from the standard
interpolating field. It is encouraging to see that the 1=2�
nucleon obtained from the standard operator agrees with
that from the projected 1=2� nucleon in the spin-3=2
operator (as indicated by the ratio of 1). Clear splitting is
seen between the N�1=2�� state and its parity partner
N��1=2�� state in this figure. The two negative-parity

FIG. 2 (color online). Effective mass plot for the N��3=2��
state (top) and N��3=2�� state (bottom) at selected quark
masses.
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states N��1=2�� and N��3=2�� are degenerate within
errors, which is consistent with the fact that the corre-
sponding states N�1535�1=2�� and N�1520�3=2� in the
observed spectrum are very close to each other. We do
similar calculations in the �� and �� channels. The results
for the �� channel is shown in Fig. 6. In the PDG [11] the
two positive-parity states ��1193��1=2�� and ��1385��
�3=2�� are well established, which we identify as
��1=2�� and ���3=2�� on the lattice, respectively. The
situation in the negative-parity is unclear. The two possible
candidates for the lattice states ���1=2�� and ���3=2��
are 2-star states ��1620�1=2� and ��1580�3=2� , respec-
tively. In the figure, they have question marks, and the four
lattice states are matched one to one with the experimental
candidates.

FIG. 4 (color online). Comparison of nucleon effective masses
at the smallest and largest pion masses from two ways: one from
the standard operator in Eq. ((10)), the other from the 1=2�
component of the full operator in Eq. ((9)).

FIG. 5 (color online). Mass ratio of the projected N� states to
the ground-state nucleon as a function of the mass ratio squared
��=	�2. The four lattice states with separated spin-parity are
symbol-coded with the experimental candidates which are in-
dicated on the left at the physical point.

FIG. 3 (color online). Effective mass plot for the N��1=2��
state (top) and N��1=2�� state (bottom) at selected quark
masses.

FIG. 6 (color online). Same as in Fig. 5, but for the � states.
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A similar situation exists in the � channel shown in
Fig. 7. The two well-established positive-parity states
��1318�1=2� and ��1530�3=2� are identified with their
lattice counterparts. The two possible candidates for the
negative-parity lattice states ���1=2�� and ���3=2�� are
3-star ��1690� state with unknown spin-parity and the 3-
star ��1820�3=2� state, respectively. All of the mass
ratios in this sector are listed in Table I.

IV. THE ISSUE OF INTERPOLATING FIELDS

The computational cost of evaluating each Lorentz com-
bination in Eq. (9) is relatively high, about 100 times that
for the ground-state nucleon. Therefore, it took a long time
for us to get the 100 configurations. In Ref. [23], only the
first term of the full interpolating field,

 �� � �abc�u
aTC�5��d

b��5u
c; (17)

was considered. In our calculation, we deliberately sepa-
rated the contributions from individual terms, so we are in a
position to investigate possible differences between the
two interpolating fields.

We found that the projected spin-3=2 components are
the same within statistical errors. In the spin-1=2 sector,
however, the situation is different. Figure 8 shows the
comparison in the 1=2� channel. There is a significant
difference (up to 30%) between these two results. Similar
difference is found in the 1=2� channel. This result is
different from that in Ref. [23]. So as far as spin-3=2 states
are concerned, the first term of the interpolating field can
be used to do the calculation. However, if the masses of
spin-1=2 states are desired from such interpolating fields
via spin projection, the full interpolating field is required.

V. ISOSPIN-3=2 AND SPIN-3=2 BARYONS

For a �� state, the interpolating field is

 ���
� �

1���
3
p �abc�2�uTaC��db�uc � �uTaC��ub�dc	: (18)

Interpolating fields for other decuplet baryons can simi-
larly be obtained by appropriate substitutions of quark
fields.

First of all, we would like to show the correlation
functions since these are the bases of mass extraction. Fig-
ure 9 presents the correlation functions for � states in both
parity channels. Again, the relation in Eq. (16) is satisfied.
The spin-3=2 component almost completely dominates in
both channels. The 1=2� component is weaker by several
orders of magnitude. This indicates that the interpolating

FIG. 7 (color online). Same as in Fig. 5, but for the � states.

TABLE I. Mass ratios for the four states in the isospin-1=2 and spin-3=2 family after parity and spin projections. The results are from
the full interpolating field in Eq. (9). The numbers in brackets are statistical errors in the last digits. The last column indicates the time
window from which the results are extracted. The absolute values for the pion mass and the nucleon mass are also given for conversion
purposes.

m� (GeV) 2.10(1) 1.87(1) 1.65(1) 1.43(1) 1.20(1) 1.08(1) 0.96(1) 0.82(1) 0.68(1) 10–15

mN (GeV) 3.45(1) 3.12(1) 2.80(1) 2.49(1) 2.19(1) 2.04(1) 1.88(1) 1.72(2) 1.56(2) 10–15
m�=m	 0.948(1) 0.935(1) 0.916(2) 0.889(2) 0.847(2) 0.817(3) 0.777(4) 0.723(4) 0.643(5) 10–15

N�1=2��=N 1.00(0) 1.00(0) 1.00(0) 1.00(0) 1.00(0) 1.00(0) 1.00(0) 1.00(1) 1.00(2) 11–14
N��1=2��=N 1.14(3) 1.16(3) 1.19(4) 1.22(5) 1.28(6) 1.32(8) 1.36(10) 1.42(13) 1.50(17) 9–11
N��3=2��=N 1.28(4) 1.31(4) 1.36(4) 1.41(4) 1.48(5) 1.52(6) 1.56(6) 1.61(7) 1.67(8) 7–9
N��3=2��=N 1.15(1) 1.17(1) 1.20(1) 1.24(2) 1.30(2) 1.33(2) 1.38(3) 1.44(3) 1.53(4) 10–12

���1=2��=N 0.85(0) 0.87(0) 0.90(0) 0.93(0) 0.97(0) 1.00(0) 1.04(1) 1.09(2) 1.16(3) 15–17
���1=2��=N 1.03(6) 1.07(7) 1.12(8) 1.18(10) 1.27(12) 1.33(14) 1.40(15) 1.49(18) 1.60(22) 10–12
���3=2��=N 0.96(9) 1.00(9) 1.05(11) 1.10(12) 1.18(14) 1.22(14) 1.27(16) 1.32(17) 1.38(18) 10–12
���3=2��=N 1.03(1) 1.07(1) 1.12(1) 1.18(2) 1.26(2) 1.32(2) 1.38(3) 1.46(3) 1.56(4) 10–12

���1=2��=N 0.71(0) 0.75(0) 0.79(1) 0.84(1) 0.91(1) 0.95(1) 1.00(1) 1.05(1) 1.13(2) 11–14
���1=2��=N 0.89(2) 0.95(3) 1.02(3) 1.11(4) 1.22(4) 1.29(5) 1.38(6) 1.48(7) 1.62(8) 10–12
���3=2��=N 0.84(7) 0.88(7) 0.93(7) 0.99(8) 1.07(9) 1.12(10) 1.18(10) 1.26(11) 1.36(13) 11–13
���3=2��=N 0.89(3) 0.95(4) 1.03(4) 1.12(5) 1.24(7) 1.32(8) 1.41(10) 1.52(12) 1.66(14) 13–15
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FIG. 10 (color online). Mass ratio of the projected � states to
the ground-state nucleon as a function of the mass ratio squared
��=	�2. The four lattice states with separated spin-parity are
symbol-coded with the experimental candidates which are in-
dicated on the left at the physical point.

FIG. 12 (color online). Same as in Fig. 10, but for the � states.

FIG. 11 (color online). Same as in Fig. 10, but for the � states.

FIG. 9 (color online). The various correlation functions (un-
projected, spin-3=2 projected, spin-1=2 projected) for the Delta
states in the positive-parity (top) and negative-parity (bottom)
channels at the smallest quark mass.

FIG. 8 (color online). The mass difference between the result
from the full interpolating field and that from the first term of the
interpolating field for the N�1=2�� state.
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field in Eq. (18) has a small overlap with spin-1=2 states.
Nonetheless, we could extract a discernable signal with
300 configurations. The mass of the spin-3=2 states can be
extracted from relatively large time slices, while the mass
of the spin-1=2 states are extracted before time slice 10
since the data becomes very noisy beyond that point.
Another observation is that ��1=2�� is heavier than
��3=2��, while ��1=2�� is about the same as ��3=2��.

As usual, the fitting is done on the effective masses,
using the same spin and parity projection techniques. Here
we show the results directly without showing the effective
mass plots. Figure 10 shows the results in the � channel.
The trend of the ��3=2��=N data points with decreasing
quark masses is clearly toward the observed ratio of
��1232�=N�938�. The splitting between ��3=2�� and
��3=2�� is consistent with that in experiment
(470 MeV). There is a small hint that ��3=2�� lies above
��1=2��, but the errors are too big to resolve the two states
which are close to each other in experiment. For better
viewing, the points for the ��1=2�� state have been
slightly shifted to the right hand side, and the points for
the ��1=2�� state have been shifted to the left hand side.
The large errors show that this state is difficult to extract
with limited statistics. The splitting between ��1=2�� and
its parity partner ��1=2�� also appears consistent with that
in experiment (290 MeV). The signal of this ��1=2�� state
is the weakest in the four � states. In all, the splitting
pattern of these states is consistent with that observed in
experiment and with. Reference [23], despite weak signals
for the ��1=2�� states.

Similar patterns exhibit in the �� and �� states in the
decuplet, as shown in Fig. 11 and 12. Strong signals and
stable results for the spin-3=2 states, relatively weak sig-
nals and big error bars for the spin-1=2 states. Note that
there is a systematic improvement in the signal for the
1=2� states as the number of the strange quarks increases
from 0 in � to 1 in �� to 2 in ��. This can be attributed to

the stabilizing effects of the heavier strange quark. The
experimental situation for the �� states is not clearly
settled yet [11]. That is why we put question marks on
some of the states. The ��1820��3=2�� state has 3-star
status which we identify with our 3=2� state on the lattice.
There is a 3-star state ��1690� with unknown spin-parity.
We identify this state with our 1=2� state on the lattice.
Our highest state ���1=2�� is identified with the 3-star
state of ��1950�which also has unknown spin-parity in the
Particle Data Group. All of our results in this sector are
summarized in Table II.

VI. SUMMARY AND OUTLOOK

In this exploratory study, we have computed the mass
spectrum of spin-3=2 baryons using the method of
quenched QCD on an anisotropic lattice. The full
isospin-1=2 and spin-3=2 interpolating field in Eq. (9) is
used. We analyzed 100 configurations despite a big in-
crease in computing demand as compared to a truncated
version of the interpolating field. Four states with definite
spin-parity are isolated for each particle type using parity
projection and spin projection. The need for spin projection
is clearly demonstrated in the positive-parity channel
whose correlation function is dominated by the spin-1=2
component. Clear signals are obtained for both the spin-
projected N��3=2�� and the N��1=2�� states, although the
latter are usually weaker, resulting in relatively large er-
rors. The results in the �� and �� channels are reported for
the first time. Some of our lattice result can be considered
as predictions in cases where the spin-parity assignment is
unknown in the PDG. The spin-1=2� states extracted from
the spin-3=2 interpolating fields are in good agreement
with those from the standard spin-1=2 interpolating fields,
providing a nontrivial check of the calculation. Further-
more, we find that the projected spin-1=2 states are quite
different in the full and the truncated interpolating fields.

TABLE II. Mass ratios for the four states in the isospin-3=2 and spin-3=2 family (baryon decuplet) after parity and spin projections.
The numbers in brackets are statistical errors in the last digits. The last column indicates the time window from which the results are
extracted.

m�=m	 0.948(1) 0.935(1) 0.916(2) 0.889(2) 0.847(2) 0.817(3) 0.777(4) 0.723(4) 0.643(5) 10–15

��1=2��=N 1.35(33) 1.38(34) 1.42(36) 1.47(35) 1.53(36) 1.57(35) 1.62(37) 1.68(37) 1.76(40) 7–9
��1=2��=N 1.17(2) 1.19(3) 1.21(4) 1.25(5) 1.29(7) 1.33(8) 1.37(10) 1.42(13) 1.47(18) 10–12
��3=2��=N 1.03(1) 1.03(1) 1.04(1) 1.06(1) 1.08(1) 1.09(2) 1.11(2) 1.14(2) 1.18(3) 11–13
��3=2��=N 1.16(1) 1.18(2) 1.22(2) 1.26(2) 1.32(3) 1.36(4) 1.41(5) 1.46(6) 1.54(8) 11–13

���1=2��=N 1.07(9) 1.12(11) 1.18(13) 1.26(15) 1.35(17) 1.40(19) 1.47(21) 1.54(23) 1.63(26) 7–9
���1=2��=N 1.02(2) 1.06(3) 1.11(3) 1.17(5) 1.26(7) 1.31(8) 1.37(10) 1.44(12) 1.53(17) 10–12
���3=2��=N 0.89(1) 0.92(1) 0.95(1) 0.98(1) 1.04(1) 1.07(2) 1.11(2) 1.16(2) 1.23(3) 11–13
���3=2��=N 1.03(1) 1.08(2) 1.13(2) 1.20(2) 1.28(3) 1.34(4) 1.41(5) 1.49(6) 1.59(7) 11–13

���1=2��=N 0.96(8) 1.03(10) 1.11(11) 1.20(13) 1.32(16) 1.39(18) 1.47(21) 1.56(24) 1.68(27) 7–9
���1=2��=N 0.88(2) 0.94(3) 1.02(4) 1.10(5) 1.22(7) 1.29(8) 1.37(10) 1.46(12) 1.58(15) 10–12
���3=2��=N 0.75(1) 0.79(1) 0.85(1) 0.91(1) 1.00(1) 1.05(2) 1.11(2) 1.19(2) 1.29(3) 11–13
���3=2��=N 0.90(1) 0.96(2) 1.04(2) 1.13(2) 1.25(3) 1.32(4) 1.41(5) 1.51(6) 1.65(7) 11–13
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This means that as far as spin-3=2 states are concerned, the
first term of the interpolating field is sufficient. However, if
the masses of spin-1=2 states are computed from such
interpolating fields via spin projection, the full interpolat-
ing field is required.

As an independent check of the calculation, we carried
out a parallel calculation of the usual baryon decuplet
(isospin-3=2 and spin-3=2) on the same lattice with 300
configurations, using the same projection techniques. The
pattern in the � states is consistent with the previous
calculation [23] and with experiment. This reinforces the
efficacy of the methods used in separating the spins and
parities. The results in the �� and �� channels are new and
are used to shed light on the spin-parity of some states in
the PDG.

Having established the signals and the methods used to
isolate the 3=2� and 1=2� states, improvement can be
made in a number of areas in future studies. First, higher

statistics (probably on the order of 1000 configurations) are
needed to beat down the errors in the weaker spin-projected
states. Second, smaller pion masses are desired to perform
a chiral extrapolation and make better contact with experi-
ment. Third, both the lattice spacing and the box size
should be varied to assess possible discretization effects.
In the long run, the calculations should be done with
dynamical gauge configurations in order to assess the
effects of quenching in this sector.
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