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The next-to-leading-order (NLO) term in the operator product expansion (OPE) of the quark propagator
vector part Z,, and the vertex function g, of the vector current in the Landau gauge should be dominated
by the same (A2) condensate as in the gluon propagator. On the other hand, the perturbative part has been
calculated to a very high precision thanks to Chetyrkin and collaborators. We test this on the lattice, with
both clover and overlap fermion actions at 8 = 6.0, 6.4, 6.6, 6.8. Elucidation of discretization artifacts
appears to be absolutely crucial. First hypercubic artifacts are eliminated by a powerful method, which
gives results notably different from the standard democratic method. Then, the presence of unexpected,
very large, nonperturbative, O(4) symmetric discretization artifacts, increasing towards small momenta, is
demonstrated by considering Z}°M, which should be constant in the absence of such artifacts. They
impede in general the analysis of OPE. However, in two special cases with overlap action—(1) for Z;
(2) for g,, but only at large p>—we are able to identify the (A%) condensate; it agrees with the one
resulting from gluonic Green functions. We conclude that the OPE analysis of quark and gluon Green
function has reached a quite consistent status, and that the power corrections have been correctly
identified. A practical consequence of the whole analysis is that the renormalization constant Z,, ( =
Z5! of the momentum-subtraction (MOM) scheme) may differ sizably from the one given by democratic
selection methods. More generally, the values of the renormalization constants may be seriously affected
by the differences in the treatment of the various types of artifacts, and by the subtraction of power

corrections.
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I. INTRODUCTION

The study of the quark propagator and vertex functions
in momentum space has been extensively pursued in the
literature starting in the 70’s with analytical considerations
[1-3], later completed by the discovery of the presence of a
contribution of the A operator, due to gauge fixing [4].
Numerical lattice QCD has more recently treated this issue
[5-13]. The scalar part of the quark propagator is related
via axial Ward identities to the pseudoscalar vertex func-
tion. The role of the Goldstone boson pole in the latter has
been thoroughly discussed [14-17].

In our paper Ref. [18], we have initiated a new study of
the propagator and of the vector vertex function, which we
pursue here. This paper has been devoted to an improved
treatment of hypercubic artifacts. Now we present the
whole of the work, which also includes the analysis of
the other types of artifacts and the extraction of the power
corrections.

We mainly study the vector part of the inverse quark
propagator, the one which is proportional to p, Z,,, and the
vector vertex function g, related to it by the Ward identity,

2
Z"’(pz) . One of the
g1(p?)

or, equivalently, on the ratio ZY°M(p) =
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reasons is to check for the effect of the {A2) condensate
which has been discovered via power corrections to the
gluon propagator and three point Green functions at large
momenta [19-22] (let us recall that, in order to perform
trustable perturbative calculations, we take always p >
2.6 GeV). OPE shows that the effect of the (A%) condensate
should have almost the same magnitude in the Z(/,( p?) of
the quark as in the gluon propagator. Moreover, the
perturbative-QCD corrections are known to be varying
especially slowly (the anomalous dimension being zero
at one loop in the Landau gauge), as we shall recall later.
This should give a favorable situation to display the power
corrections (recall that in the gluon case, it was difficult to
disentangle the power and the logarithmic corrections,
which were moreover very sensitive to the value of
Aqcp)- Now, for the clover action, the crude values plotted
in literature (with only a selection of democratic points) for
Z,(p?) are extremely flat above 2 GeV [23]. This was for-
merly considered as being natural, as a consequence of the
vanishing of the one-loop anomalous dimension. However,
thinking more about it, it must be considered on the con-
trary as very worrying since it means that the decrease
predicted both by the perturbative-QCD corrections and
the (A%) condensate would not be seen. This leads us to
start a very systematic study of the problem, with the
following series of improvements on earlier works:
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(i) We reach an energy of 10 GeV by matching several
lattice spacings so that we are in a better position to
eliminate lattice artifacts and also to identify power
corrections, which requires a large momentum
range.

(ii)) We make use of a very efficient way of eliminating
hypercubic artifacts. A first version was used to
study gluon Green functions [24,25]. In Ref. [18],
this method has been improved for the specific case
of the quark Green functions, where such artifacts
are huge, especially in Z, and for the overlap
action. Hypercubic artifacts have often been cured
by the “democratic’’ method which considers only
momenta with equilibrated values of the compo-
nents. This method points in the right direction but,
as we shall discuss in more details, is by far in-
sufficient when the hypercubic artifacts reach such
a level as illustrated in this article. In fact, we are
then led to qualitatively different conclusions.

(iii)) We make systematic use of Ward-Takahashi iden-
tities relating the quark propagator and the vertex
function. According to these Ward identities, Z}1°M
should be independent of p? up to artifacts. Then,
ZMOM is a very sensitive test of the presence of
artifacts. The fact that we observe a strong depen-
dence of the lattice Z)}M on p? shows unambigu-
ously the existence of large remaining discret-
ization artifacts, this time respecting O(4) symme-
try, and decreasing with negative power of momen-
tum. We can also check the consistency of Z}OM
with other determinations of Zy.

(iv) The above mentioned O(4) symmetric artifacts
could constitute a very serious problem, since we
do not know how to eliminate them, and they would
hide the OPE power corrections. Fortunately, in the
case of overlap fermions (with s = 0), we find that
for Z,, there remains only very small O(4) arti-
facts. Then, we can obtain a satisfactory estimate of
the 1/p? correction due to the (A%) condensate. For
this reason, we consider mainly overlap fermions
(with s = 0), although they have some specific
inconveniences (for example very large perturba-
tive corrections).

This work, as well as the preceding one, clearly shows
that lattice artifacts are overwhelming at the start, both
the hypercubic and O(4) ones. The hypercubic ones have
been shown to be cleanly eliminated by our method. The
remaining O(4) ones, on the other hand, cannot, and we
do not foresee the possibility of a similarly efficient
method, wherefrom we have to rely on situations where
they are small for reasons which are not known, so that
their smallness appears accidental. In that respect, it may
seem worrying; but, on the other hand, we are very happy
to have found that the OPE can be checked to a good
accuracy and power corrections are found consistent with
the gluon analysis. It must be noted that on the whole, the
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main body of the analysis relies on the overlap data,
because we have found that they exhibit smaller O(4)
artifacts.

Another obvious interest of the study is then to improve
the determination of the momentum-subtraction (MOM)
renormalization constants, by taking into account both
continuum power corrections and artifacts; and, indeed it
indicates that much care must be exerted in using the MOM
renormalization approach when high precision will be
required, a point which has already been illustrated by
the Goldstone contribution to ZMOM,

In Sec. II, we will recall theoretical premises; in Sec. I1I
we will indicate the lattice conventions and the simulations
which we have performed, as well as recall the general
problems of the improvement; the three following sections
are devoted to artifacts, with a large development justified
by the importance of the topic: in Sec. IV, we will recall the
method to eliminate hypercubic lattice artifacts, and em-
phasize the difference with the democratic method; in
Secs. V and VI, we discuss the other artifacts (Lorentz
scalar artifacts, volume effects); in Sec. VII, we will give
the results of the overlap action; in Sec. VIII, we perform
several consistency checks: chiral symmetry of the overlap
action VIII A; comparison with clover action VIIIB; fi-
nally, we note the agreement with the previous gluon
analysis, Subsection VIIIC. In Sec. IX, we will give our
conclusions and further discussions.

II. THEORETICAL PREMISES

We work in the Landau gauge. Let us first fix the
notations that we will use in the continuum, the precise
lattice definitions being given later. We will use all along
the Euclidean metric. The continuum quark propagator is a
12 X 12 matrix S(p,,) for 3-color and 4-spinor indices. The
inverse propagator is expanded according to:

S7Hp) = 8apZy(p*)if + m(p?)), (D

where a, b are the color indices. Z,(p?) being a standard
lattice notation (for the precise lattice definition, see below,
Sec. III). Obviously, one has in the continuum, with trace
on spin and color:

Zy(p?) = 1/12Te(S()y u P )/ P> (2)
Sometimes one uses the alternative quantity:
b(p?) = Z,(p*)m(p?) 3)

to describe the scalar part of the propagator.
Let us consider a colorless vector current gy, q. The
three point Green function G, is defined by

G,(p,q) = [ dxdyeP N (g()G()y . g () FO).
“4)
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The vertex function is then defined by
Tu(p,q) =S p)G.(p,9)S"(p + q). 5)

In the whole paper, we will restrict ourselves to the case
where the vector current carries a vanishing momentum
transfer g,,. In the following we will omit to write g, = 0
and we will understand I',,(p,,) as the bare vertex function
computed on the lattice.

From Lorentz covariance and discrete symmetries

Lu(p) = 8,5l1(pPH) v, +ig2(pPp, + &3P

which should be obeyed approximately on the lattice, as
we checked.

A. Renormalization and Ward-Takahashi (WT)
identities

The renormalized vertex function is then Z,ZyI", (p).
Here we must say something of conventions for renormal-
ization constants. The standard definition of renormaliza-
tion constants has been to divide the bare quantity by the
renormalization constant to obtain the renormalized quan-
tity (except for photon or gluon vertex renormalizations Z;
which we do not use). Z, is the standard renormalization of
fermions d’bare = \/Z'vlfR’ S(P) = ZZ(ﬂz)SR(p)- In pl"iIlCi—
ple renormalization of composite operators, for instance
Zy, should be defined similarly. We have followed this
convention in our works on gluon fields. But, in the case of
quark operators, an opposite convention has become stan-
dard in lattice calculations: (YOW)pue = Zg' (FOP)g; we
feel compelled to maintain this convention for the sake of
comparison with parallel works on the lattice. This ex-
plains our writing of the renormalized vertex function. In
the continuum Z, = 1 (conserved current). We keep Zy
since the local vector current on the lattice is not con-
served, and the discrepancy, which is of course an artifact,
generates however finite effects in graphs due to additional
divergencies multiplying the a terms (which have higher
dimension).

The Ward identity in the renormalized form tells us that
at infinite cutoff:

C0)u(p) = =i 2S5 (). )

After multiplying both sides by Z;! to return to bare
quantities

d
Zyl',(p) = _iap—#S_l(P), 3

which from (1)—(6) implies
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200 = 200D, Zusap?) = 255 2,007),
€))
“Zysa?) = 255000, silp?) =0
We note that the first Eq. (9) implies that Zy, is independent
of the renormalization scheme up fo artifacts (it is a ratio of
bare quantities). Of course, this will hold up to terms
vanishing as inverse powers of the cutoff at infinite cutoff,
which are called artifacts in the lattice language. It must be
recalled that, on the lattice, the Ward identity is not exact,
but holds only up to artifacts, because we work at finite
cutoff, and the deviation will be found very large in some
cases. A very important consequence of the Ward identity
for our study is that the ratio g,(p?)/Z,(p?) is constant up
to artifacts, or that deviations of this ratio from a constant
are pure artifacts.
Defining analogously the vertex function of the pseudo-
scalar (g7ysq) density

I's(p,) = gs(p?)vs, (10)
the axial Ward identity implies
Z
—omygs(p?) = b(p?), (11)
s

where m, is 1/(2a)(1/k — 1/k,).

B. MOM renormalization; radiative corrections

To perform renormalization on the lattice, we appeal as
usual to the convenient MOM schemes, which does not
refer to a specific regularization. To speak technically, the
precise renormalization scheme that we use is the one
called RI’ by Chetyrkin, Eq. (26) in Ref. [26]. This is in
fact the most standard MOM scheme in the continuum,
developed a long time ago by Georgi, Politzer, and
Weinberg. It consists of setting the renormalized Green
functions to their tree approximation at the renormalization
point p? = w2, in the chiral limit. The inverse bare propa-
gator S~ !(p) is normalized through:

Se (Pl pmye = 84(if + m(p?)). (12)

Making p?> = u? shows that
ZYOM(p?) = Z,(p») ™! (13)

up to artifacts. To renormalize the bare vertex function
g1(p?), we multiply it by the factor ZYOM(u?)ZMOM(u2).
The MOM renormalization for g; must be chosen so that
the renormalized WT identity (Eq. (7)) gR(p?) = Zﬁ(pz)
holds, therefore gR(p?> = u?) =1, we deduce that
ZYVOM(u?) is the ratio Z,(u?)/g(n?) up to artifacts, but
as remarked above, this must be nothing but the scheme
independent Zy: therefore this ratio Z)°M(u?) is indepen-
dent of w2, up to artifacts. From now on, we define Z}M
as the ratio Z,,(p?)/ g, (p?) (measured in fact on the lattice);
we write
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ZyMa™!, p?) = Z,(p*)/&:1(p?) (14)
which recalls that Z)OM, which should be in fact indepen-
dent of p? in the limit where the cutoff a ! is infinite, is not
so at finite ! —i.e. there are artifacts.

The Ward identity implies that Z,,(p) and g, (p) have, in
particular, the same perturbative p scale dependence. From
the calculations of Chetyrkin et al. [26,27], we may ex-
press, for example, the perturbative running of Z, at large
p as a function of the running apom(p). This is our main
choice throughout this paper, although we discuss the
effect of substituting an expansion in ayg(p). More pre-
cisely, we will always choose to use the definition of
anom(p) by the symmetric three-gluon vertex. The advan-
tage of quarks is that we can reach an accuracy of four
loops in the renormalization group (RG) expansion, be-
cause we do not need BYOM (for symmetric ayom(p)).
since the dimension of the fermion is O at lowest order in
the Landau gauge. Since the expression is lengthy and not
necessary for present understanding, we refer the reader to
Appendix A. Of course, even with such accuracy, such an
expression cannot be expected to hold for too small p; we
esteem the lower bound to be p.;, = 2.6 GeV, from our
experience in the case of gluons; indeed, we must avoid
going down too close to the “bumps” which manifest
clearly that the gluon Green functions become
nonperturbative.

The perturbative calculation requires a value of Agcp;in
order to compare with existing values from a different
origin, it is convenient to reexpress all values in terms of
the equivalent Ay, whatever the scheme employed to
make the perturbative expansion of the Green functions.
One advantage of Z,( p)? is that it is not as sensitive to the
Aqcp value as the gluon quantities, because of the vanish-
ing of the LO fermion anomalous dimension in the Landau
gauge; we choose Ay = 0.237 GeV from a previous
analysis [19], not far from the ALPHA estimate [28],
Ags = 0.238(19) GeV; we will discuss in the end the
sensitivity of our results to this choice.

Z,(p?) and g,(p?) should have also the same nonper-
turbative power corrections, up to a constant. We consider
them now.

C. Power correction from the (A?) condensate

An OPE analysis as those performed in Refs. [19-22]
leads to consider a (A%) condensate coupled to the quark
propagator and vertex in Landau gauge. Let us recall that
such a condensate could not contribute to gauge-invariant
Green functions, and is present only in (gauge fixed)
gauge-noninvariant Green functions. The meaning and
magnitude of such a condensate has been extensively dis-
cussed in the recent literature. Our aim here is to detect its
effect on the Green functions through OPE, which provides
a way of testing theoretical ideas on its existence and
magnitude.
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For the propagator, we can write

. d are a are :Azare :
S7H(p) = Spen(p) + ip . I()zb ) 4<(N%b_ 1>)

Sa,b+"'J

(15)

where we only keep the leading term in p. The calculation
of the coefficients of the OPE has been performed in the
chiral limit, and therefore one has as far as possible to stay
near this limit.

In the renormalization prescription denoted by “RI’” in
Chetyrkin papers (which amounts to the standard MOM of
Georgi and Politzer in the chiral limit), and expanding
everywhere in terms of oM, we obtain from Eq. (15)
(see Appendix B)

Z(/,(pz) B prert(pz) 327 ) a(p)\~ ('3 =70)/Bo)
ZyNw? 2w 3 (a(/L))

(ADe(w) 1
4NZE—1) p*’

(16)

where S™!' = ip8,,Z, and Sy = ipd,,Zy" up to
O(m,p/p*)-terms. The condensate ((A%)g(u)) is renor-
malized at the scale w. Z&m is given in Eq. (2) and the
coefficients (vy, being the fermion anomalous dimension to
lowest order) are

_ © _ 35N, 35
Yo =0, Va2 B 1 (17)

As we have noted, Z)M(p?) should be constant in p?
from the Ward identity (9), up to artifacts; then it cannot
receive any power correction from A2, and therefore g,
receives exactly the same contribution from the condensate
as Z,,. We will use this as a very useful test.

The essential step is then to fit this formula on the lattice
data to extract (A2). The renormalization constants at each
B, Z,(u?, B) will enter in the fit as free parameters to be
determined, although they would be expected a priori to be
close to lattice perturbation theory predictions. Of course,
in general, we have to add lattice artifacts to Eq. (16), and
one of the main problems we will discuss is how to
determine them accurately.

An important warning must be made here, concerning
the low accuracy in the perturbative calculation of the
Wilson coefficient of A> written above, namely, it is only
tree order with renormalization group improvement.
Expanding in terms of oMM, although it may seem natu-
ral, is completely arbitrary, and one would wish the results

Bo =11,

to be the same with oMS. While this is the case to a good

precision for Zf;n, this is obviously not the case here, due

to the low order of the expansion: a,(p) is quite different in
the two schemes. At p = 2.6 GeV, the ratio MOM/MS is
around 2 and decreases slowly down to 1.4 at 10 GeV;
taking into account the anomalous dimension amounts
roughly to replace a,(p) by a,(u), then the ratio of
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coefficients in terms of the two coupling constants is only
slightly closer to 1: it is 1.5 in average over the whole
range. This means that the coefficient is reduced by 50%
when using oMS. This is due to the fact that the ratio of
coupling constants decreases only very slowly up to the
largest available momenta. As a consequence, the deter-
mination of (A%) obtained by fitting the lattice data will be
automatically affected by the same amount. We will give
the results with the convention of using everywhere oMM,
as we have done for gluons. We shall first show that the
power correction is indeed present and well determined,
and then express it in terms of the condensate value, which
suffers from the above uncertainty. We also note that the
ratio of condensates fitted from gluons and quark Green
functions, which should be 1 ideally, is not affected by this
uncertainty, since the Wilson coefficients relative to the
various Green functions differ mainly by purely algebraic
numbers (the anomalous dimensions differ only slightly)."

III. LATTICE CALCULATIONS

A. Actions and parameters

We have first used Sheikholeslam-Wohlert improved
Wilson quarks (here called clover) with the cqw coeffi-
cients computed in [30]. 100 quenched gauge configura-
tions have been computed at 8 = 6.0, 6.4, 6.6, 6.8 with
volumes 24*, 16*, and 8*. We have performed the calcu-
lation for five quark masses but in practice, for what is our
concern in this paper, the quark mass dependence has not
surprisingly proven to be negligible; anyway, since the
theoretical calculations are performed in the chiral limit,
we have to work as close as possible to the chiral limit;
then, we present only for simplicity the results for the
lightest quark mass, about 30 MeV, i.e.

k = 0.1346,0.13538,0.13515,0.134 89
for B = 6.0,6.4, 6.6, 6.8. (18)

It should also be mentioned that all the results presented for
clover action refer to the 24* lattices unless stated
otherwise.

In addition to clover fermions, the use of overlap fermi-
ons [31] has been revealed to be necessary, and even
crucial, to obtain a good determination of the power cor-
rection, because the most embarrassing type of artifacts,
the O(4) invariant ones, have been found to be smaller in
certain cases with the overlap action (see Sec. VII). We
have used approximately the same physical masses, i.e. as
in the clover case

amy = 0.03,0.016 67, 0.0125, 0.01
for B =6.0,6.4,6.6,6.8 (19)

'"While finishing the article, we have become aware, thanks to
D. Becirevic, of the calculation of the two-loop anomalous
dimension of A% by [29], in the MS scheme.
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TABLE I. Lattices spacings.
B 6.0 6.4 6.6 6.8
a ! (GeV) 1.966 3.66 4.744 6.1
a (fm) 0.101 0.055 0.042 0.033

with s = 0 and volumes of 16*. The bare mass m,, and s are
defined from

Dy = (1 + s+ amy/2) + (1 + 5 — amy/2)

% D,(=(1+5) ’ (20)

D (=1 + D, (=1 + 5))

where D,,(—(1 + s)) is the Wilson-Dirac operator with a
(negative) mass term —1 — s,
D,(—1—5s)= %y#(vﬂ + Vi) — %QVZVM —1-s.
(21)

We use s = 0. s = 0.4 is considered preferable from
locality requirements [32], however the difference is slight
as soon as (3 is larger than 6.0. The reason for using only the
small lattice 16* is well known; it is due to limitation in the
special treatment needed for small eigenvalues of the
Neuberger operator. In practice, as for clover action, we
discuss only the lightest quark mass, roughly correspond-
ing to the same 30 MeV.

We express everywhere quantities in physical units.
Throughout this paper we will use for the lattice spacings
the values in the following Table I which follow the
dependence found in Ref. [33], Appendix C, Formule C.1.

B. Improvements

The propagators S(x, 0) from the origin to point x have
been computed and their Fourier transform is defined as:

S(p) = Ze—iP'XS(x, 0). (22)

They have been averaged among all configurations and all
momenta p,, within one orbit of the hypercubic symmetry
group of the lattice, exactly as for gluon Green functions in
[24].

The two actions are O(a) improved; however, this is not
sufficient to improve the propagator itself, which is an off
shell quantity. In the case of overlap quarks, the propagator
and other Green functions can be improved according to a
standard and exact procedure [34] which should eliminate
O(a) discretization errors in Green functions, at large p, in
the perturbative regime®:

’Indeed, in our opinion, the argument on the vanishing of
artifacts uses chiral symmetry of vacuum matrix elements, which
holds only when spontaneous symmetry breaking can be ne-
glected. Therefore, it should hold only at large p although this is
not stated explicitly.
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S(p) -3

S.(p) =T ami2

(23)
On the other hand, such a well-defined improvement recipe
for the propagator with the clover action does not exist: we
would have to fix the counterterms necessary to eliminate
the O(a) terms from the numerical study of the propagator
itself. Note that the standard contact term with a perturba-
tive evaluation of the coefficient leads to subtract from
Z,(p) a term of the type a/p?. Indeed, it subtracts a term
of the type a m(p?), where m(p?) is the continuum mass
term, vanishing at large p, with a rather small absolute
value less than 30 MeV for p > 2.6 GeV, i.e. in the region
where we are working. But this term happens to be much
smaller than the observed artifacts. We indeed find a
decreasing artifact: a 1.9 GeV?/p? Eq. (40), which
amounts to a 280 MeV at p = 2.6 GeV. This suggests
that the standard perturbative improvement is rather inef-
fective. Anyway, the analysis of the artifacts is included in
our discussion of remaining O(4) invariant artifacts, and in
fact, as we shall see, this is not feasible with accuracy.

From now on, the notation S(p) will represent the im-
proved quark propagator in the case of overlap quarks and
the standard one in the case of clover quarks. Now there are
still various ways to define the Z,(p) and m(p) of Eq. (1)
on the lattice.

In both cases we fit the inverse quark propagator by

S7Up) = 84pZy(p)ipp + m(p?)) (24)

according to Eq. (1) and where p, = % sin(ap,,). We write
Z,(p) and m(p) because of the loss of the Lorentz invari-
ance. Z,(p) can then be written as:

Zy(p) = 5Tily b S~ (p)/ (D)~ (25)

We could have chosen instead of p, any other definition
equivalent to p,, up to terms of order O(a?), for example
P, or 2/asin(ap,/2). It is important to stress that after
eliminating the hypercubic artifacts as explained in
Sec. 1V, the different definitions give similar results; how-
ever, the definition we choose here permits to reach the
final result with smaller hypercubic corrections. Note that
in our first gluon papers, we did not extract the hypercubic
artifacts in this manner, and therefore the choice of an
appropriate definition for the lattice gluon propagator
was very important, as well as the one of the gluon vertex
function.

The three point Green functions with vanishing momen-
tum transfer are computed by averaging analogously over
the thermalized configurations and the points in each orbit

G,.(p. g =0)=(ysS(P)tysy,.S(p)) (26)

where the identity S(0, x) = ysS(x, 0)y5 has been used.
The vertex function is then computed according to Eq. (5)
and we choose for the lattice form factor g
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1 .
g1(p?) = % Tr[FM(p, q= 0)<7,L ~ Dy Pﬂ’ 27)
where the trace is understood over both color and Dirac
indices.

Finally, according to the Ward identity (9) we compute
ZMOM simply from Eq. (14) where any effective p? depen-
dence of Zy, should come only from lattice artifacts.

C. Classification of remaining artifacts

The question of eliminating lattice artifacts has been
perhaps our main difficulty in this work. Let us stress
that the discretization artifacts we will discuss are all due
to the QCD interaction. Indeed, our definition of Z,,(p?) is
such that it is equal to 1, as in the continuum limit, when
interaction is switched off, and we have also g; = 1 in that
case. This illustrates that, in general, it may not be suffi-
cient, by far, to extract the free case artifacts, or to use such
prescriptions as replacing p, by p,,.

Note that we have used O(a) improved actions. But of
course, there still remains artifacts of higher order in the
lattice spacing, and furthermore, the Green functions are
not thereby improved. In the overlap case, a simple definite
recipe exists, as we have explained above, to improve
exactly the propagator and the other Green functions at
large p, but obviously O(a) artifacts at small p and O(a?)
remain.

Since we will have a detailed discussion, it is useful first
to remind of the main species of artifacts which are ex-
pected. First, we have discretization artifacts,3 which them-
selves split into two:

(i) hypercubic artifacts, treated in Sec. IV which are the

most visible because they break the elementary
O(4) symmetry; they are seen, as we plot invariants
of Green functions as a function of p?, as a large
discrepancy between the value for different orbits at
the same p?. With some simple democratic treat-
ment, it is easy to get a relatively regular function of
p?. Nevertheless, in general, there remain nonana-
Iytic oscillations, and to eliminate them will be
shown to be very important to obtain the final physi-
cal result, and requires sophisticated methods.

(ii) O(4) invariant discretization artifacts, which remain
after elimination of the hypercubic ones, and which
will be discussed in Sec. V. Let us say that this is the
weakest point, because we do not have theoretical
principles to determine their form, neither is there a
systematical empirical method to determine them.

Second, there may be finite volume artifacts which will
be discussed in Sec. VI, and very shortly since they do not
seem sizable.

*We will use the term “discretization artifact” preferably to
the other common one, ‘“‘ultraviolet artifact’” because, as we
shall find, these artifacts may show up at small p as well, due to
nonperturbative effects.
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IV. ELIMINATION OF HYPERCUBIC LATTICE
ARTIFACTS

A. Generalities

Since we use hypercubic lattices our results are invariant
under a discrete symmetry group H,, a subgroup of the
continuum Euclidean O(4), but not under O(4) itself. This
implies that lattice data for momenta which are not related
by an H, transformation but are by a O(4) rotation will
in principle differ. Of course this difference must vanish
in the continuum limit, i.e. when a — 0. It must be con-
sidered as one species of the so-called discretization ef-
fects, or ultraviolet artifacts. They also may be termed
as ““anisotropy artifacts.” The hypercubic artifacts turned
out to be particularly striking for Z,,. The results, includ-
ing overlap-computed quantities, have already been pre-
sented in [18]. The raw lattice data for Z, and Z}!°M
exhibit dramatically the ‘‘half-fishbone” structure which
is a symptom of strong hypercubic artifacts, and we re-
call that these effects are especially strong in the overlap
case.

Altogether we would like to recall the following hier-
archy: first, the hypercubic artifacts are 1 order of magni-
tude larger for overlap quarks than for clover ones. Second,
for both types of quarks the hypercubic artifacts for Z,, are
1 order of magnitude larger than those for g;.

These hypercubic artifacts have been of course a long
standing problem in lattice calculations, and methods have
been devised for a long time to handle them. A general idea
has been the so-called democratic one: the hypercubic
effects are minimal when the four components of the
momentum for a given p? do not differ too much (this is
democracy between components; ideal democracy is for
diagonal p « (1, 1, 1, 1)). Then the question is how to make
this criterion quantitative, the rationale being to find a
compromise between two contradictory requirements:
(1) to be as democratic as possible, which tends to reduce
the number of points and (2) to retain enough points to
have a real curve.

The precise criterion is often something of a secret
recipe, not communicated in papers. On studying the gluon
propagator, the authors of Ref. [35] have made explicit a
selection method, keeping only the orbits having a point
within a cylinder around the diagonal. Several other similar
criteria have been written. As it can be seen, the compro-
mise is never very good, leaving rather large oscillations in
Green functions. Moreover, it is not suitable for a precision
treatment.

The alternative idea which we propose, on the contrary,
relies on the use of all the orbits, and a method to extract
the physical point from an extrapolation of the different
orbits.* A first successful application of this idea was for
the gluon propagator [36].

“The initial idea is due to Claude Roiesnel.
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B. Our method: the p!2"! extrapolation method

We use here the final refined form of the method, the so-
called p!2 extrapolation method, presented in [18], and
which has been shown to be necessary to obtain satisfac-
tory results for Z,,.

In order to perform a global fit, we start from the remark
that we are dealing with dimensionless quantities g; and
Z,. It is thus natural to expect that hypercubic artifacts
contribute via dimensionless quantities times a constant.”
Next we assume that there is a regular continuum limit. We
denote the generic Green function as Q; it depends a priori
on p?, but also a?pt, a*plol: Q(p? a?pl¥ a*plo),
a*pl¥, ), where p?" =¥ _ |, p2"; we Taylor expand
it around the O(4) symmetric limit Q(p?,0,0,0, - - -). Of
course we must truncate this Taylor expansion of Q in a
and we choose to expand it up to a*. Note that at this stage,
the function Q(p?0,0,0, ) may still depend on a
through terms of the form a”p?, etc., but we do not con-
sider presently this further dependence; it will be discussed
in the next sections.

As a conclusion, we have fitted our results over the
whole range of p? according to the following formula,
where the ¢;’s are constants independent of p:

a’pt
Q(p?, a*pt, a*plf), - - ) = 0(p?,0,0) + ¢ pe

2 5[4\ 2 4 6]
+ C2<a pz ) + C3 a pz
p p

+ cua*pt], (28)

with indeed small y?’s. We have also checked the validity
of this expansion for the free propagator.

The functional form used for Q(p?, 0, 0) does not influ-
ence significantly the resulting artifact coefficients. We can
even avoid using any assumption about this functional
form by taking the value for Q(p?,0,0) at each p” as an
independent parameter to be fitted.

C. Quantitative comparison with the democratic
method

We would like now to recall the quantitative comparison
of our “ p!?"l extrapolation method”” Eq. (28) with the
more common ‘“‘democratic selection’ methods; the latter
method is carefully defined in [35]. This comparison is
important, since almost all works up to now are using some
variant of the democratic method, and since the difference
with this method is crucial, as we show, to extract power
corrections.

Let us consider the overlap case. If we try to select [35]
the orbits which are in a cylinder around the diagonal with
a radius 27r/L, this is too restrictive anyway for our 16*

>We neglect a possible logarithmic dependence on p>.
“We have enough data for that.
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overlap case, where we have only 22 orbits at the start. In
order to have a less restrictive democratic criterion and to
make a bridge with our own method, we will use the p[2"]’s
defined above. In our language, democracy can be trans-
lated as having a small enough ratio p*l/(p?)2. Momenta
proportional to (1, 1, 1, 1) and (1, 0, 0, 0) have ratios 1/4
(minimum ratio, maximally democratic) and 1 (maximum,
totally undemocratic), respectively. We then retain the
democratic orbits defined by an intermediate pl*l/(p?)? =
.5. This leaves already only 7 orbits out of 22 for every B.

In Fig. 1 we plot for Z, the result of this selection, as
compared with our own method. Figure 1 clearly shows
visible oscillations in the democratic curve demonstrating
that the hypercubic artifacts have not been totally elimi-
nated, while after applying the p2"] extrapolation method,
Eq. (28), the curves are perfectly smooth; they do not either
exhibit the oscillations which remain in previous methods.

We prefer our own method for this reason and also
because of the loss of information due to the rejection of
“undemocratic” points, which leaves one with very few
points. This appears crucial in the overlap case, where one
is constrained to use small lattices.

Then another very important aspect appears: while com-
pletely eliminating the hypercubic oscillations, we also
considerably modify the mean value of the curve, as de-
fined by an analytic fit; for the present case, as seen in the
figure, our curve is considerably lower, with a quite steeper
descent than the democratic one.

We will return later to the fact that Z}/°M remains not at
all constant in p after this treatment.

S e B I
I I « B =6.0 without hypercubic artefacts |
B =6.4 without hypercubic artefacts
3 » B=6.0 democratic selection —
= B=6.4 democratic selection
z, | I i
25 ﬁ% |
3
L 1 I L EE ] 4
i
i i E% . x | S x
3
2 II%H T _
E R : s,
Ifzg
l 5 1 l 1 l 1 l 1 l 1 l 1
1 2 3 4 5 6

FIG. 1 (color online). Comparison between the democratic
method and our refined treatment for the overlap Zl/,(pz) at 6.0
and 6.4. Above 2 GeV, precisely where one must study the power
corrections, the difference is striking.
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D. The importance of optimizing the elimination of
hypercubic artifacts

Let us stress then that, as is particularly visible from this
comparison, the difference of the ap!?"] method with the
standard democratic method is not at all academic in the
context of the study of power corrections and renormaliza-
tion constants. The difference with the previous versions of
our method is also not negligible, as we have found.

(1) It is obvious that with the standard democratic
method, we would obtain quite different results for power
corrections and O(4) symmetric artifacts, and therefore for
the resulting perturbative contribution. In fact, it has not
even been really considered that Z,, could be affected by
such power corrections. (2) Moreover, we observe that the
power corrections, as well as the residual O(4) symmetric
discretization artifacts, extracted by the previous variants
of our method for treating the hypercubic artifacts are not
the same; indeed, when using a previous cruder treatment
for overlap action, we have found an important a’p?
artifact, which disappears with the more refined treatment,
and we were also finding different power corrections (with
a weaker condensate). The clover case shows similar spu-
rious issues. This means that for a too crude treatment,
some hypercubic artifacts can be spuriously mimicked as
part of O(4) symmetric discretization artifacts or contin-
uum power corrections. This does not imply that the deter-
mination of power corrections is uncertain in this respect,
but rather that it is very important to push hypercubic
artifact elimination to the best to obtain the genuine con-
tinuum power corrections.

Let us finally mention an interesting consequence; as is
well known, the values of Green functions at different
momentum points in a Monte Carlo lattice calculation
are highly correlated, which should lead to very small
x?/d.o.f. for fits describing the p dependence by smooth
analytic expressions (by small, we mean well below one).
It is not found so with too crude treatments of the hyper-
cubic artifacts, because of the erratic oscillations which
always remain in the latter methods mimicking statistical
deviations. We observe however an impressive decrease of
the x? down to its expected small value when we improve
the treatment of the data, showing that we are now obtain-
ing indeed very smooth functions as physically expected.

Another encouraging fact is that, after having eliminated
consistently hypercubic artifacts, the different definitions
of Z, on the lattice converge to the same final result (see
the comments around Eq. (24)).

V. PROOF OF THE PRESENCE OF 04)
SYMMETRIC “NONCANONICAL”
DISCRETIZATION ARTIFACTS

‘We now start, in the rest of the discussion, from the data
obtained through the above treatment of the hypercubic
artifacts. They still differ from the continuum by renor-
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malization and by O(4) symmetric discretization artifacts.
It happens that the determination of these artifacts is still
harder in general than for hypercubic ones (as for finite
volume artifacts, which we estimate to be weak, see the
corresponding short section below).

Indeed, in practice, there is no similar unambiguous
method to determine the O(4) symmetric discretization
artifacts. True, they manifest themselves by a residual
variation with B, and, in principle, we could study the
variation with 8 at each momentum, and then extrapolate
to the continuum. However, this requires too many mo-
menta and too much accuracy, if we want really to extract
the power correction from the extrapolation to the contin-
uum.

(a) A possible general method for treating O(4) scalar

artifacts.

Then, a more practical method consists in assuming
a prescribed analytical form for both the continuum
and the artifacts, with some unknown parameters to
be determined by the y? adjustment.

One has therefore to appeal to our a priori knowl-
edge (a) of the continuum, as a function of p; (b) of
the structure of O(4) symmetric artifacts, as a func-
tion of p and a, so that we could make fits with
prescribed functions depending on a limited number
of free parameters. For the continuum, this is exactly
what is provided by the OPE, with the renormaliza-
tion constants z;, and (A?) as free parameters. For
O(4) symmetric artifacts, a standard idea is to re-
course to lattice perturbation theory, in which the
structure of artifacts is easily explicited. After all,
this is what we have invoked for the hypercubic
artifacts. As for O(4) symmetric artifacts, the result
is quite simple: in the case of a scalar function, and
in the chiral limit, where there is no other dimen-
sioned parameters than a and p, there can be no
other artifacts than a” p", with n > 0. Then we could
work with a few parameters only.

(b) Why it fails.

But now, there appears a very unfortunate circum-
stance. It is seen that this usual assumption of a
perturbative structure of artifacts does not work at
all, at least in general. We observe undoubtedly O(4)
symmetric artifacts decreasing with p, i.e. for in-
stance of the form 1/p" and n >0 times some
positive power of a. To show it, the best way is to
consider the p dependence of ZYM =g,/Z,,
which should be momentum independent close to
the continuum limit. Any p dependence is therefore
to be attributed to artifacts. Now, the lattice data
show quite clearly a very strong p dependence of
ZMOM except at large p. This is true for clover
action, and for overlap action as well, see Fig. 2
for overlap fermions.

The artifacts are similar; they decrease monoto-
nously with increasing p for 8 = 6.4, 6.6, 6.8;
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FIG. 2 (color online). Overlap ZIQ,AOM as a function of momen-

tum, respectively, for 8 = 6.0 and 6.4, and 8 = 6.6 and 6.8, for
the overlap action. The huge momentum dependence which is
displayed must be entirely attributed to discretization artifacts.

they could be fitted by negative powers of the mo-
mentum squared; for the overlap case, this is also
true for S = 6.0.
(c) Consequences for
corrections.
The necessity of taking into account such negative
powers of p is very embarrassing because, as we
explained, we cannot distinguish the O(4) symmet-
ric discretization artifacts by the sole 8 dependence;
we have to rely on the p dependence. Now it is clear
that we will have much difficulty in distinguishing
the power corrections and the artifacts decreasing
with p, and therefore to determinate the condensate.
One of the problems is that when increasing the
number of negative power terms in the description
of the artifact, the tendency is to get alternating
signs, and therefore rather unstable results. There
is no rationale as to where we should stop. In addi-
tion, we must consider that we have also as parame-
ters in the fit the renormalization constants z;,, which
are practically chosen as an independent parameter
at each B. To add to the uncertainty, we observe that
within the precision of the data, we can obtain
equivalently good solutions by modifying the O(4)
artifacts with a correlative change in the z,,’s. Then,
in spite of many efforts, we have in fact not been
able to extract stable and accurate values of (A%) by
this method, although we have gotten a clear signal
that it is positive and sizable. Then we have been
able to fix the continuum power corrections only by

determination of power

034505-9



PH. BOUCAUD et al.

exploiting particular circumstances, to which we
devote the rest of the analysis, after a few words
on finite volume artifacts.

VL. FINITE VOLUME ARTIFACTS

A priori, finite volume artifacts are not expected to be
important in this study because we work at large momen-
tum with respect to the inverse lattice size. Let us recall
that in the clover case [18], we have found only very small
volume artifacts, after a careful study with 8%, 164, 24*
lattices. Only the first points with smallest n> were showing
some effect.

We have not performed the same tests for the overlap
action because of the slowness of numerical calculation;
we have only ran on a 16* lattice. We are conscious that
this is a possible weak point, since this volume is small, and
we rely mainly on the analysis of overlap results for the
determination of the condensate. So we are thinking of
extending this analysis to larger volume as soon as pos-
sible. It would, in particular, be interesting to test the
possibility of a chiral-symmetry restoration at small physi-
cal volumes (see further comments in Subsection VIII A).

We stress however that the consistency which is ob-
tained for the continuum power corrections between the
overlap results and the clover ones with a greater volume
24* (see Subsection VIIIB), is a further proof that the
volume effects are not crucial for our purpose of determin-
ing the condensate.

We must also observe that we can determine the con-
densate mainly from our large p data (p > 4-5 GeV) (see
VII A), with large L p, where volume artifacts are expected
to be even smaller.

A. Discretization or volume artifacts?

The fact that the above O(4) symmetric artifacts are
observed at small p—and only at small p—is deserving
of a special discussion, since it is so counter to usual
expectation. Our ears are indeed accustomed to the dictum:
“artifacts at small p, finite volume artifacts,” ‘““artifacts at
large p, finite spacing artifacts.” Why are they not volume
artifacts? Since it is one important finding of our study, we
collect here our arguments.

Let us stress that, in the overlap case, the use of a small
volume 16* at large 3, to which we are constrained, is not
the reason for our finding of large O(4) symmetric artifacts
at small p. The first argument is that they are also seen in
the clover case where we have tested in detail the smallness
of volume artifacts; to reiterate, we have seen that only one
or two of the smallest momenta seem affected by a volume
dependence, while the artifacts we are discussing now are
present over a large number of points.

Moreover, let us stress that they have the typical behav-
ior of discretization artifacts, i.e. they decrease at large 8
and fixed p: indeed, Zy (which should be flat in the con-
tinuum limit) is flatter and flatter as the beta increases at a
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fixed number of sites 16%, i.e. as the physical volume
decreases. More precisely, we observe that, as the volume
decreases, we have more and more points where it is flat,
i.e. where it has small artifacts: the respective number of
points is 0 at 8 = 6.0, 3 at 8 =6.4,9 at B = 6.6, 14 at
B = 6.8. This is exactly counter to a volume effect, for
which the flatness should be obtained for n? larger that
some fixed number. In other terms, for a volume effect, we
would expect the artifacts to vanish at smaller and smaller
values of p as (8 decreases (i.e. when the physical volume
increases). Instead, we find that they vanish around 4-
5 GeV irrespective of 8 = 6.4, 6.6, 6.8; even more, at 8 =
6.0, with the largest volume, Zy never becomes flat.

On the other hand, we have no understanding of why
ZMOM geems devoid of sizeable artifacts at large p: it must
be regarded as an accident. But it must be underlined that
this is not an accident specific to our particular problem. It
is a well-known fact, on which any MOM practitioner is
relying without being able to explain it: one measures the
Z’s in regions of large p, assuming that artifacts are small,
although they would be expected to be large precisely there
from lattice perturbation theory.

VII. CASES WITH SMALL 0(4) SYMMETRIC
ARTIFACTS WITH THE OVERLAP ACTION—
DETERMINATION OF THE CONDENSATE

As we have underlined as the conclusion of Sec. V,
paragraph (c), the O(4) symmetric artifacts we have found,
when present, impede a clear determination of the power
correction. It is fortunate that they seem absent or small in
some cases. All correspond to overlap action; then the
results are convincingly consistent. Therefore, we concen-
trate on the overlap fermions in the present and following
Secs. VII and VIIT A. As concerns the clover action, we
will not be able to have such compelling conclusions, but
we show that they are at least compatible (see Sec. VIII B).

A. Large p (p = 5 GeV)

At this point, we notice that the above difficulties may
disappear first at large p, above roughly 5 GeV (therefore
at B = 6.4, 6.6, 6.8), because Zy, is constant in this region,
especially for the overlap action; therefore it is suggestive
that the artifacts of Z,, and g, are small there, barring for
the unprobable eventuality that Z,, and g, would happen to
have exactly the same artifacts. We then fit Z,, and g, with
a formula containing no O(4) artifact, i.e. we take only the
continuum expression times the renormalization factor z,
at fixed B, and we obtain then a very encouraging con-
clusion. Choosing the window of p within which Zy, is well
constant, we obtain at each 8 = 6.4, 6.6, 6.8, and for Z¢
and g, i.e. for six independent data, almost the same
condensate value; we quote a common fit (see Fig. 3) to
the three Z,,, with p.,i, = 5, 5, 4 GeV, respectively, corre-
sponding to the respective p where Zy is beginning to be
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FIG. 3 (color online). Renormalized overlap Z, at 8 = 6.4,
6.6, 6.8, and large p, compared with the purely perturbative
result. The fit of the solid line is made with the perturbative part
and only the condensate term, in the windows where the re-
spective ZMOM become flat (solid line). One finds (A%) = 3.1 +
0.3. Note that Z,, is still far from being flat. It has a monotonous
decrease, of around 6% over the range, mainly due to the
condensate. The dotted line is the purely perturbative result,
clearly inconsistent with the data. Normalization is made at
10 GeV. g; is described by a similar fit.

flat:
(A%) = (3.1 = 0.3) GeV? (29)

large and positive, with a rather small error, and quite
consistent with what is found in the gluon sector (see
below). The y?/d.o.f. = 0.07 is very small as expected
from very correlated data. Let us recall that this value of
(A?) is obtained with the convention that the Wilson coef-
ficient of the operator is expressed in terms of aMOM,

A remarkable feature of this region of momentum is that
both Z,, and g, and therefore Zy too, are almost indepen-
dent of 8. We take it as a further indication that artifacts are
accidentally small there.

Let us reinsist that the value of the condensate given in
Eq. (29) corresponds to the convention, always followed in
this paper, that the Wilson coefficient of the operator,

calculated only at leading order, is expressed in terms of

aMOM_ The choice of a™®, would lead to an appreciably

higher value (larger by around 70%). However, what is
important is that the power correction by itself is well
determined by our analysis, almost independently of such
a change. Indeed, let us replace the OPE expression for the
power correction by a simple power, without logarithms
corresponding to a, while maintaining the full perturba-
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tive expressions for the perturbative part. The fit then gives
for the coefficient ¢ of the power term ¢/ p?:

c = (0.767 = 0.083) GeV? (30)

OM in the perturbative part, and:

c = (0.844 + 0.083) GeV? 3D

when using oM

when using o™® instead, a small change indeed, of only
10%, reflecting the small change of the perturbative part,
which is calculated by theory to a great accuracy.

B. Z, over the whole allowed range of p

In addition, we observe another fact: Z,—but not g;—
is strikingly independent of B over the full range of p. We
have no explanation for that, but we can at least interpret
this as meaning that Z, is free of O(4) symmetric artifacts
over all this range. And indeed, we can fit Z,, on the full
range p > 2.6 GeV allowed for the perturbative calcula-
tion, and the four B’s with:

(A%) = (2.73 = 0.21) GeV?, (32)

see Fig. 4.

We thus obtain a remarkable similarity of the condensate
with the previous value. We also obtain similar results by
varying the window of the momenta, provided the lower
limit is not pushed beyond 5 GeV, and also by selecting
various triplets of B8 values. This seems to support the
consistency of our assumptions about artifacts.

— Fit
---- Perturbative evolution

1.1

1.05—

FIG. 4 (color online). Overlap Z, at B = 6.0, 6.4, 6.6, 6.8,
renormalized at 10 GeV. The fit for Z, extends to the full

allowed range of momentum, with 8 = 6.0 included, and a close
value of the condensate (A2) = 2.75 = 0.2. The dotted line is the
purely perturbative result.
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If we want to still improve the agreement with the large
p analysis, we can introduce a further 1/p* term, account-
ing for the possibility that we may not be sufficiently
asymptotic to have a good description with the 1/p? con-
densate alone. For the full window, and the four B’s, we
obtain a very good fit with:

(A%) = (3.2 £ 0.3) GeV? (33)
and with a small subleading term:
(—1.1 £0.4) GeV*/p* (34)

with a minus sign which explains that the value of (A?) is
slightly higher than in the preceding fits. It is then closer to
the large p fit.

C. z})fom

From our analysis, we can deduce values of
standardly defined, i.e. free from artifacts:

MOM
Z \%4

ZI‘\fOM' large P (6,4) = 1.798 + 0.012,
ZyOM e P (6.6) = 1.776 + 0.003, (35)
ZI‘\//[OM, largep(6_g) = 1.756 = 0.011,

”large p” superscript is to recall that we have selected the
value at large p, where we hope to have small O(4)
artifacts, in view of the observed flatness; the precise value
is obtained by a fit. For B =6.0, we quote
ZNOM e (6 ) = 1.878 + 0.014, but ZMOM is not yet
flat at the highest momentum. Let us repeat that it is
remarkable, and perhaps surprising, to observe such a
constancy with 3, while one-loop perturbation theory
would predict a strong variation with 3.

D. Comparison with lattice perturbation theory

The fact that Z,, and Zy, are very different from 1 (in fact
not far from 2) in the overlap case with s = 0 may seem
surprising. But in fact, already in lattice perturbation the-
ory, the tendency is that the one-loop corrections to Z,, and
Zy are large because of a very large tadpole contribution to
the self-energy [37,38] (while g, remains close to 1 as we
find nonpertubatively). The net effect is already large at
B = 6.0, for the usual s = 0.4: Z,, = 1.247, and still larger
for our s = 0: Zy, = 1.444; we use Table 1 of Ref. [37] for
the analytical expressions (the definition of Z,, is different,
but by a negligible amount); the numbers are quoted as-
suming a boosted perturbation theory (BPT) boosted cou-
pling with g2, = 1.68 (see Ref. [38] under Eq. (44)). Of
course, what is surprising is first that the nonperturbative
determination (35) is still much larger, and, second, that it
is almost independent of 8 over a large range.

Note that the value found by Ref. [39] for Z, at 8 = 6.0,
Z, = 1.55, which should equate Zy, is also much larger
than BPT; however, this is not Z}°M as measured directly;
it is the Z, deduced from hadronic WT identities. One may
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think of large artifacts which render different the results
from various definitions of Z,, Z,; our study below,
Sec. VIIT A2, shows indeed the presence of such effects,
very large at 8 = 6.0; but they are decreasing rapidly at
larger B3, and our finding is that, at 8 = 6.8, ZMOM is still
much larger than the boosted lattice perturbation theory.

VIII. CONSISTENCY CHECKS

A.Zy and Z 4 with the overlap action—complementary
studies on chiral symmetry and artifacts

To ascertain the soundness of our analysis, which may
be surprising in several respects, we also perform several
consistency checks of general nature in the overlap case;
indeed, some strong statements deriving from chiral sym-
metry can be formulated.

1. Z 4 /Zy in the nonperturbative MOM scheme

The overlap action has an exact chiral symmetry, dis-
covered by Luescher, which, combined with the choice of
the improved current, or equivalently, of improved Green
functions, should lead to ZYOM/ZMOM = | without any
artifact. However, let us note that this is true only if one
assumes the symmetry of the vacuum state, and therefore
the absence of spontaneous symmetry breaking. In the
presence of spontaneous symmetry breaking, one expects
(1) a physical effect from the Goldstone boson, (2) discre-
tization artifacts, both vanishing with inverse powers of
momentum. Therefore this result only holds at large
momenta.

We find indeed ZYOM/ZMOM =1 {0 a high accuracy,
Fig. 5, above 2.4 GeV, for the four B’s. On the other hand,
we see that for lower momentum: (i) the ratio differs from
1, and (ii) it depends on . Observation (i) has also been
made for domain wall fermions at 8 = 6.0 [40].

At B = 6.0, there is a rather abrupt change of regime
slightly below p =2 GeV. At higher 8 = 6.4, 6.6, the
values below p = 2 GeV differ both from 8 = 6.0 and,
slightly, from 1. Unhappily, we have no point in this region
at B = 6.8. Therefore, at the two or three lowest B, we
have a combination of discretization artifacts and perhaps a
not well-determined physical effect; on the other hand, at
B = 6.8, all the known points being at large p, it is
impossible to conclude whether the flat result 1 is due to
restoration of chiral symmetry at small volume or to ex-
tinction of spontaneous symmetry breaking effects at large
p; working with larger volumes would allow the question
to be settled.

2. Z 4 from a hadronic WT identity against Z}'M

In principle, once artifacts and power corrections have
been eliminated, the various ways of defining the renor-
malization constants can be related by perturbation theory.
In the case of Zy or similar cases, for the same action,
implying identical finite parts, they should even be equal.
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FIG. 5 (color online). ZYOM/ZMOM for overlap fermions and
small quark mass at the four 8 = 6.0, 6.4, 6.6, 6.8. The ratio is 1
above 2 GeV, but differs from 1 and depends on 8 below 2 GeV.

Moreover, Z, should be equal to Zy from the chiral sym-
metry of the overlap action.

We verify this statement, as a highly nontrivial consis-
tency check of our treatment, by measuring Z, from a
standard hadronic Ward-Takayashi identity Z}' = m,/p,
where:

p = 1/2€3yA, Ps)/{Ps, Ps). (36)

MOM, large p WI
In contrast to Z,, , Z, " presents a very strong

variation with B: at 6.0, the situation seems hopeless,
with ZW! ~ 3, but the decrease is rapid:
ZXV'(6.0) = 3.03,
ZXVI(6.6) = 1.90,

ZV1(6.4) = 2.046,

(37
7V(6.8) = 1.78

MOM, 1
and one reaches finally a level close to Zy ~ “¥7.

Moreover, ZY!(a) is linear in a® to a very good precision:

ZW(a) = 1.65 + 5.524, (38)

which shows that the difference ZW! — Z)/O™ 7 jg in-

deed a discretization artifact, as it should be, and one of the
most canonical species, since we expect precisely chiral-
symmetry breaking to be at most O(a?). Indeed, on hadron
states, the Ward identity is valid up to @(a?), and Green
. MOM, large p
functions at large p, where we measure Zy, , We
have also only O(a?) artifacts from chiral-symmetry argu-
ments, in the chiral limit.
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B. Check through the clover Z,,

In view of the rather paradoxical situation which allows
us to determine (A%) from the s = 0 overlap action, it is
important to reascertain this analysis by a study of the
standard clover action, to check whether we can obtain a
similar continuum result. Let us stress indeed that from
renormalizability, the whole continuum function must be
the same up to an overall constant for all the versions of the
action. A priori, as we have said, the clover case may seem
hopeless because there are large O(4) artifacts even in Z,;
and even at large p, Zy is not so flat.

However, one can benefit from the knowledge gained in
the overlap case. In the end, the situation appears in fact
somewhat similar for the clover action as concerns O(4)
symmetric artifacts: the main burden of noncanonical ar-
tifacts appears to concern g;, and we can obtain a good
description of Z, with a minimal a*p? canonical artifact,
and just one a/p? term. Let us insist that one should
consider this structure as a very empirical fitting form.
One should not take literally the power exponents in p
and a, since the artifacts are very large. The important
point is that one has both canonical increasing artifacts and
noncanonical decreasing artifacts. We obtain:

(A%) = (2.4 = 0.3) GeV? (39)
with artifacts

— (0.005 = 0.0015)a’p* — (1.9 = 0.4) GeV3a/p.
(40)

In the present case, the role of these artifacts is crucial to
obtain the condensate. In fact, before extraction of these
artifacts, the clover data show a rather flat behavior at large
p, or even a small increase at 6.8. The very large term a/ p?
considerably improves the fit, with a y? divided by 3, and
brings in a value of the condensate quite close to the one
obtained with overlap fermions. These results seem to be a
signal that we have obtained a rather accurate treatment of
artifacts. Of course, one may be worried of having intro-
duced a noncanonical artifact, which was not necessary in
the overlap case; yet, we must remember that there is no
logical reason why such terms should be absent (in the
overlap case, they are present anyway in g;).
With a subleading term

«1/p* (41)

we obtain a still somewhat better agreement with the over-
lap condensate,

(A%) = (2.83 = 0.35) GeV2. 42)

The subleading term is also of the same sign and compa-
rable magnitude as for overlap action,

(—1.85 = 0.85) GeV*/p*. (43)
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Note that the consistency of the clover 24* results with
the overlap analysis is comforting the idea that the volume
effects are not too important in the overlap case, although
certainly they are less compelling because of the need to
introduce the a/p? artifact.

C. Consistency with the gluon analysis

To stress the overall consistency of the analysis, one has
also to consider the agreement with the previous gluon
analysis. We quote the result of a combined fit of (A%) and
Aqcp to the gluon propagator and the symmetric three-
gluon vertex [21]:

(A%) = (3.6 * 1.2) GeV2(apom),

(44)
(2.4 £ 0.6) GeV>(gluon propagator). ..
with Agg = 0.233 + 0.028 GeV, and three-loop anoma-
lous dimensions (the use of our present Ayg = 0.237 GeV
would lower somewhat the condensate values). The fit has
been done with the same convention as for quarks, that the
Wilson coefficient (calculated only to one loop) is ex-
pressed in terms of aMOM. (We could get free from this
convention by comparing the magnitude of power correc-
tions themselves as in Eq. (30)). The coincidence of the
values of (A?) with the quark value is highly significant
since it concerns the continuum function, extracted by a
series of various, independent, manipulations committed
on the gluon and quark Green functions, and since these
continuum functions are related only thanks to the OPE.
The quark measurement has much smaller statistical
errors. This is simply due to the fact that in the gluon
case, we have left free the value of Agcp, and moreover,
the value of the condensate depends strongly on this value,
whence the large errors in the gluon case. On the contrary,
in the quark case, we have chosen a fixed AM—S =
0.237 GeV. Indeed, in this case, the dependence on
Aqcp is rather weak. Then it is useless to try to determine
Aqcp from the fit, and on the other hand the value obtained
for (A%) remains well determined if we allow some varia-
tion in Agcp. Another advantage of quarks is that we can
reach the accuracy of four loops in the theoretical expres-
sion for the purely perturbative part. In the gluon case, such
an accuracy is only possible for the asymmetric vertex, but
in that case, the leading term in OPE is not given by (A?)
[22].

IX. CONCLUSIONS AND DISCUSSIONS

A. Physical results and evidences of various artifacts

Let us summarize our results in the following few points:
(i) First of all, and this is the main point, let us stress
that we have finally obtained a rather nontrivial
confirmation of the validity of the OPE in the
nongauge-invariant sector of lattice QCD (treated
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numerically). The virtue of OPE is that one can
describe the departure of all the various Green
functions from the perturbative approximation at
large momenta with the same set of expectation
values. We have now obtained consistency not
only between gluon Green functions, but also
with the quark sector. This is highly nontrivial.
Let us recall that there is often some doubt raised
about OPE itself, and the possibility is sometimes
considered that power corrections could be
present not corresponding to an operator vacuum
expectation value (v.e.v.). The final consistency of
the determination of the condensate from three
distinct types of Green functions strongly suggests
that this is not the case, at least for leading power
1/p? corrections. We do identify an OPE power
correction, consistently related to A%. (A?) is
found consistently large and positive. The precise
magnitude of (A?) is affected by an important
uncertainty, due to the low accuracy of the theo-
retical calculation of the Wilson coefficient. But
the power correction (i.e. the product of the coef-
ficient and the condensate) is well determined by
the lattice analysis, and the ratio of the power
corrections in the various Green functions is ac-
tually as expected from lowest order OPE.

It turns out that the lattice discretization artifacts
are unusually sizable in the quark propagator Z,
but a clear-cut distinction must be made between
hypercubic artifacts, which are gigantic, but can
be efficiently eliminated, and the O(4) symmetric
ones, which are not so catastrophic, but that we
have not been able to handle systematically.

We believe that we have been really efficient in
getting rid of the hypercubic artifacts thanks to
our (improved) method of “restoration of O(4)
symmetry.”

Once these artifacts have been subtracted, the
overlap Zy(p*) = Z,(p*)/g:(p?), which should
be independent of p except for artifacts, is very
close to a constant at large p > 5 GeV. This is far
from trivial and supports the statement that we
have no remaining O(4) symmetric artifacts in
this specific region. This is directly supported by
the near constancy of the quantities as a function
of 8.

Moreover, also in the overlap case, but for Z,,( %)
only, the same statement of constancy with
extends down to the lowest momenta; this leads
one to suspect that O(4) symmetric artifacts are
small in this case over the whole range of p. We
are unable to explain these two special situations.
Let us recall that a certain flatness Zy (p?) at large
p is also observed with the clover quark action,
although it is not so good. Let us recall also that
this region is the basis for the standard determi-
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(v)

(vi)

(vii)

(viii)

nations of MOM renormalization constants, usu-
ally with the clover quark action (see for example
[41], which presumes that discretization artifacts
are not large there. Let us then recall that we have
no theoretical argument supporting the statement
that they are not large. Quite the contrary. If any,
the theoretical arguments would suggest for them
to increase with p. The support is purely empiri-
cal. This is embarrassing if we aim at precision
determinations.

Zy of the overlap action at s = 0 is large, around
1.8, in qualitative agreement with BPT perturba-
tion theory which finds large self-energy contri-
butions in Z,(p). But it is still much larger than
the expectation, and the lack of dependence on 8
is not understood from perturbation theory.
Considering the cases where the O(4) symmetric
artifact-free results are suspected to be small, we
try to fit them by OPE, i.e. by the four-loop
perturbative contribution plus the (A?) condensate
contribution computed to leading logarithm. The
overlap Z, and g at large p > 5 GeV allows for a
good fit for B8 = 6.4, 6.6, 6.8, leading to a consis-
tent (A%) not far from 3 GeV?2. The overlap Z,
also allows for a good fit for the whole range p >
2.6 GeV, including in addition 8 = 6.0. The (A?)
condensate is consistent with the former value. A
very small 1/p* term still improves the
consistency.

In the other cases, namely, in g; and Zy for p
lower than p ~ 5 GeV, the O(4) symmetric arti-
facts become large, especially at small p, and in
fact, they increase regularly from large to small p.
This trend, which is also contrary to the expecta-
tion of lattice perturbation theory, clearly indi-
cates a nonperturbative origin. In fact, one
important conclusion of our study is the existence
of these very large nonperturbative artifacts at
small p due to discretization. These are very
embarrassing for any analysis of the Green func-
tions, as we comment below.

Let us repeat our strong conviction that these low
p effects (under 2 GeV) are indeed discretization
artifacts and not volume artifacts. They behave
quite counter to volume effects, as we have ex-
tensively argued.

A short study of ZYIOM/ZMOM ghows that similar
artifacts are still present in a ratio where they
would be expected to cancel if one applies naively
the exact chiral symmetry of the lattice action.
They are clearly seen as being discretization arti-
facts because they are reduced at larger 8. They
seem to be present on top of an actual continuum
effect, small but visible, which could be due to
continuum chiral symmetry spontaneous break-
ing. One can suspect that the artifacts themselves
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are connected with the spontaneous breaking of
chiral symmetry.

It seems logical that such chiral-symmetry violat-
ing artifacts, as well as the continuum effect, be
only forbidden at large p, if they are connected
with spontaneous breaking effects. Indeed, it is
there and only there that such effects fade away.
Therefore, it is consistent with this interpretation
that we find ZYOM/ZMOM = 1 at large p to a high
precision, without 8 dependence.

(ix) Of course, the clover action has the great advan-
tage that it does not present the same very con-
straining limit in volume as the overlap one;
however, it leads to less compelling results than
the overlap one, because we have not found here
the same particular situations where O(4) artifacts
can be neglected; the small p artifacts, which
render so difficult the determination of power
corrections, are present in Z,, and not only in g;.
As explained above, by including more and more
terms to describe these artifacts, we destabilize
the numerical value of (A2). Stopping with the first
term a/ p?, we obtain consistency with the overlap
results.

(x) In comparison with other works on the quark
propagator, the question of the presence and mag-
nitude of power corrections is a crucial test of the
precision obtained in the treatment of Green func-
tions: the condensate value (A2) should be inde-
pendent of the action and of B with due
renormalization. In our opinion, safe and accurate
extraction of power corrections requires a very
large range of momenta, and therefore a large
range of B’; indeed, to use a rather large range
of momenta at a fixed 8 would be dangerous
because of the periodicity of the lattice; the large
p behavior would then be highly dependent on
empirical redefinitions of the momenta, aiming to
remove empirically lattice artifacts at very large
p =10 GeV. Of course, a crucial question is
whether one can work with a 8 as large as 6.8
with our lattice size 16*—the possible size is
indeed strongly restricted for the overlap action.
It is our conviction, for reasons which have been
explained in detail. Another concern is that, ac-
cording to our experience, to extract the real
power corrections, one needs a particularly care-
ful elimination of hypercubic artifacts.

(xi) The resulting value of (A%) from the OPE analysis
of lattice QCD data should be compared to tenta-

"The lattice group in Adelaide has performed extensive studies

of the quark propagator (see references above). Recently, the
same group has extended its analysis to overlap action [11] and a
special gauge action, with several 8’s, corresponding to a !
1 GeV~1-2 GeV™!, yet notably lower than our largest cutoffs.
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tive estimates made by various authors within
analytical approaches. One will find abundant
references in the paper of Dudal er al., Ref. [42].
It is clear that this comparison must take care of
the precise definition of the condensate, as regard-
ing instance renormalization.

B. Systematic errors on (A?%)

Of course, we are making many assumptions which
introduce uncertainty in the value of (A?). Recall that we
do not claim to determinate it only from the present study,
since we have several previous determinations from the
gluonic sector. So we can also appreciate systematic errors
from the consistency we obtain with these previous esti-
mates (see above, Sec. VIII C). In fact, as we have observed
in Sec. VIII C, the gluon propagator determination and the
one from «; are notably different, but the values are
affected by very large errors, and are compatible with the
present ones. From all the determinations, we could con-
clude that the systematic errors do no seem to exceed
1 GeV?. But there is in fact an important source of the
systematic error, which is explained below, and which
cannot be estimated by comparison with gluons because
it is present in both: it is the fact that the Wilson coefficient
is calculated only at low order. Then, it remains useful to
discuss the sources of errors inside the quark sector itself,
for which anyway the conditions are intrinsically very
favorable.

Since we do not claim to do phenomenology, but rather
an exercise in quenched QCD, we have not bothered with
the quenched approximation, which is also supposed for
gluons. Chiral limit is assumed on the theoretical side, for
instance to calculate the Wilson coefficients. Now, of
course, we do not work at zero quark mass on the lattice.
We have not tried to do a systematic chiral extrapolation on
the lattice data, which would only lead to increase the
statistical errors. We observe that Z,, seems very weakly
dependent on our set of masses, which means that this limit
is not a priori a problem at the smallest mass (at which we
have made all our OPE analysis). Anyway, we can discard
any catastrophic effect at very low quark masses through
the consistency with the quenched gluon data.

Let us now pass to more relevant effects.

Some come from the treatment of artifacts, for which we
lack theoretical basis, some are relative to our description
of the continuum, which, although based on a much
stronger  theoretical  basis, involves necessarily
approximations.

We do not return to finite volume artifacts, since we have
nothing quantitative to say about their magnitude in the
overlap case. For what concerns hypercubic artifacts, we
may have an idea on the error remaining in their treatment
by the variation observed with two variants, with a slightly
different description of the continuum limit:
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(A?) = (3.23 — 3.0) GeV=~. (45)

Whenever large O(4) symmetric artifacts are present, we
are compelled, as we have seen, to rather arbitrary assump-
tions on their structure, since we have concluded that we
cannot rely on lattice perturbation theory. The correlated
errors in our determination of the ‘“‘nonperturbative’ arti-
facts and of the condensate seem very large, as judged from
the range of values obtained in various fits, to such a point
that we have renounced to extract any number in this case.
Therefore, we consider only the case where we have strong
hints that the artifacts are small, in which case we have
mainly to consider uncertainties in the continuum descrip-
tion. They are themselves of two origins: the perturbative
calculation of Wilson coefficients; the nonperturbative
aspect, i.e. the relevance of the OPE expansion, the enu-
meration of operators, etc. As to uncertainties in perturba-
tive calculations:

(i) We have checked that computing the perturbative
contribution to third or fourth order in perturbation
does not change significantly the estimated conden-
sate (only 7% of change). Another test is to reex-
press the series in terms of ays instead of ayom- Zy
changes by less than 1% with various prescriptions.
We can thus assume that the perturbative contribu-
tion has been expanded far enough.

(i) As we have explained in Subsection I C, the prob-
lem is much more important for the Wilson coeffi-
cient of the A operator which has, on the contrary,
only been computed to leading logarithm. A sign of
this problem is seen by changing ayoy into agg. A
change of apyom into agg reduces it by 40%
a,(10 GeV), and more for the smaller momenta;
whence a reduction of the Wilson coefficient by
50% in average. Through a conspiracy with the
smaller change in the perturbative contribution,
this change amounts to an increase of the resulting
condensate by 70%. Of course, similar effects are
present for gluons, and, as we have explained, the
ratio of condensates obtained from quarks and glu-
ons will remain the same. More importantly, one
must be aware that the power correction by itself
remains well determined; what is not well deter-
mined is the translation of the power correction into
a {(A?) condensate value. Indeed, this translation
depends on the theoretical evaluation of the
Wilson coefficient, which is not accurate at present.

As to the properly nonperturbative aspect, we may think

of two sources of uncertainties in determining (A2). The
one stems from other operators which could enter with the
same power in the OPE expansion. However, we do not
find any such operator contribution in Z,, in the chiral limit.
We could have some contamination since we are not
exactly in the chiral limit, but it must be small, since we
observe a very weak quark mass dependence. The other
could be the possibility that p is not sufficiently large for
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the leading correction 1/p? to completely dominate over
the next ones. This possibility is represented by the 1/p*
term and the fact that it is small but nonzero in the fits
shows indeed that we are not completely asymptotic at
such large momenta; although it is very small, around 1%
at 3 GeV, it leads to a change of around 15% in (A?). On the
other hand, with this term included, we find a very good
stability of (A?) over the large range 2.6 GeV < p <
10 GeV, when varying the fitting window, which suggests
that we have correctly accounted for the small subasymp-
totic effects. Actually, this term could also mimic a ne-

glected logarithmic dependence; indeed, passing from

aMOM (o oMS 35 expansion parameter as explained above,

the 1/p* term passes from —1.1/p* GeV* to —(0.65 +
0.34) GeV*/p*, therefore there is an appreciable variation,
although the sign and order of magnitude are encourag-
ingly stable.

On the whole, the dependence of the Wilson coefficient
on the scheme for «, seems to be the most worrying source
of uncertainty, yet it can be solved soon.

Another concern is the value we use for Agcp, conven-
tionally converted to the MS scheme. Let us vary by +10%
our Ayg = 0.237 GeV. We find:

Ags = 0.215-0.260 GeV — (A%) = 3.45-3.02 GeV?,
(46)

a quite moderate change indeed. There is naturally an
increase for decreasing Agcp because the larger power
correction compensates for the slower falloff of the per-
turbative part.

C. General consequences for the nonperturbative
MOM renormalization approach

True, the direct object of this study has been to verify the
consistency of our OPE analysis of lattice data by extend-
ing it to the quark sector, and then comparing with the
previous analysis of the gluon sector; and thereby to assess
the soundness of our statement of large power corrections
in “elementary’” Green functions as well as of their inter-
pretation in terms of the nongauge-invariant condensate
(A4%).

Now, one must also be aware of the strong consequences
of this study, as well as of the preceding ones, on other
problems, especially in precision studies of physical quan-
tities. These consequences should be then reexamined in
unquenched calculations.

A first example is the determination of Agcp in the
gluonic sector; a purely perturbative fit leads to a first
determination of Aqcp; the necessary inclusion of a 1/ p?
power correction induces a striking modification in the
value of Agcp, as was found some years ago [19]. In
general, important consequences are expected on quanti-
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ties requiring a renormalization procedure. Very com-
monly, the renormalization is performed in the MOM
method, which uses elementary Green functions in mo-
mentum space to calculate the renormalization factors. The
naive MOM method would just start from raw lattice data,
with minimal improvements such as a democratic selection
and choice of an optimal momentum window. Then, our
study makes clear the difficulties of this naive method,
which render impossible to get accurate results at the
precision of a few percents. The present study allows
some improvements, but fails in extracting the O(4) arti-
facts. Let us enumerate the obstacles in the naive method
and those who remain in spite of our attempts to improve it:

(1) Power corrections.—First, we have a problem inde-
pendent of the discretization of the action: the pres-
ence of the power corrections has the effect of
modifying the lattice estimate of the renormaliza-
tion constants defined in the perturbative regime.
Indeed, only perturbative renormalization schemes
can be connected between one another by analytical
calculations (e.g. the MS quark mass), and also
connected to Wilson coefficients in order to produce
physical quantities (e.g. weak four-fermion interac-
tion). Now, the lattice measurement can be per-
formed only at rather small momenta, where
power corrections are present. These corrections
must be subtracted, especially if one requires a
good precision. This extraction is not performed in
the naive method.

Such power corrections affect Z,, and various vertex
functions. From the Ward identity, it happens that
for quantities like Zy, the A> power corrections
cancel between the vertex function and Z,. But
this is not true in general: in Zg and Zp for instance,
this cancellation does not occur. In such cases, the
power corrections must be subtracted, in principle.
Of course, one may wonder whether this is practi-
cally important. It depends on the accuracy we want
to obtain. If we aim at a precision of a few percent,
certainly we do require to take them into account,
since they reach several percent around 4 GeV, 5%
on Z, in the clover case. Now, one often claims to
go below 10% with dynamical quarks; then, such
effects are deserving of consideration.

What simplifies somewhat the problem raised by
power corrections is that not only are they indepen-
dent of the chosen discretization of the action, but
they are often related to the same (A) condensate, at
least as regards the dominant power. Once (A?) has
been confidently determined by one analysis, it can
be used for other Green functions.

(2) the discretization artifacts that we have found set a
more general difficulty, and one which is more
embarrassing, in view of our lack of theoretical
control. We have no reason to suppose that the
special case we have studied is especially cata-
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strophic. Yet, it shows already an embarrassing
situation.

a—The first step is to have control on hypercubic
artifacts to a good accuracy. It is deserving of mention
that this accuracy cannot be obtained by the naive method
of selecting democratic points; since the determination of
renormalization constants relies on measures at large p, the
error is particularly large. Moreover, the simplest version
of our alternative method of “restoration of O(4) symme-
try,” the old “pl*/” method, has not allowed one to get a
good accuracy. We have had to go further with the pl2"]
method. This requires already a good deal of work. But,
finally, it seems that we are able to produce a systematic
and accurate procedure.

B—On the other hand, we have a clear proof from Zy,
that there are large O(4) invariant artifacts at small p. This
type of large artifacts seems to be a problem specific to the
quark sector: we had not found similar evidence for
gluonic Green functions. We do not have any theoretical
mastering about the magnitude of these artifacts. It is also
surprising that Z;, becomes relatively flat at large p. This
suggests, but does not prove, that these artifacts are small at
large p. All this is counter to the expectation of perturba-
tion theory which would predict artifacts increasing with p.
This lack of theoretical understanding will remain a prob-
lem for all the MOM determinations of renormalization
constants.

Indeed, we have not obtained on the other hand an
empirical method which would be safe and systematic, to
eliminate this new type of artifacts. This is disastrous. It
also renders difficult the extraction of the power correc-
tions, as we have observed in the clover case. The choice of
the overlap action may help somewhat, but does not offer a
general solution. Indeed, for Zy, the overlap action seems
to present small O(4) invariant artifacts. It introduces
larger hypercubic artifacts, but this is not a decisive ob-
stacle, as we have explained how to eliminate them accu-
rately. Then one would conclude that all in all, the overlap
action has an important advantage. Yet, it is weakened by
our lack of theoretical understanding of the underlying
reasons why it is so, which precludes any estimation of
accuracy (calculations with other values of p = 1 + s may
reveal instructive in this respect). Moreover, the problem
remains entire for Z, and other vertex renormalization
constants.

Taking into account the large uncertainties coming from
O(4) invariant artifacts, the MOM method for renormal-
ization, even with the improvements we have proposed,
may reveal not very practicable for precision calculations,
although it is appealing by its simplicity, and quite efficient
for ordinary purposes. Of course, at this point, one may
think of the method of the ALPHA collaboration as a
complementary one, technically difficult, but which allows
a very clean treatment of discretization artifacts by using
on shell quantities, and also allows to work at a very high
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energy scale, therefore eliminating power corrections (see,
for example, for Zy,, [43]).8
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APPENDIX A: PERTURBATIVE EXPANSION TO
FOUR LOOPS IN THE FULL MOM SCHEME

Our aim is to express Z,,(p?), in terms of MM, defined
by the triple gluon vertex at symmetric momenta. More
precisely, we are looking for the renormalization group
improved expression, which resums the large logs
log(p?/u?) at large p. The expression then takes the
form of a series in aM°M(p) with pure number coefficients.
This series can be obtained from the knowledge of the
anomalous dimension of Z,, in terms of a}°M, and of
the B function of the MOM scheme. This is possible in
the Landau gauge to the order of four loops included,
thanks to the papers of Chetyrkin and collaborators,
Refs. [26,27].

First, one has in Sec. IV B of the first paper the expan-
aInZ,(u?)
9 Inp?
loops (in fact the authors consider the inverse Z,(u?) =
(Z,(u?)~"!, so we have to invert their formula). Since
there is no «, term in the Landau gauge, to reexpress the
series in terms of the a, of the MOM scheme at four loops

requires the expansion of aMS in terms of ™M only to

order three included. This expansion is provided by Sec. V
of the second paper, by inverting the first equation of this
section. On the other hand, we need the MOM B function.
It is given in the second paper, Sec. VI, at three loops,
which is also sufficient to calculate the renormalization
improved series for Z,,(p?) at four loops included; indeed,
the four-loop coefficient of the B function enters only as a
factor of the one-loop anomalous dimension of the fermion
Y0, Which is zero in the Landau gauge. We then obtain the
following expansions:

sion of as a series in a; of the MS scheme to four

8 After having issued the arXiv version, we have been advised
of the paper [44] which has studied previously the same problem
of extracting the A% condensate from the quark propagator.
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Z, is expressed in general as:

BoYi — 2B170

477,80
(Boyi — 2B, 7’0)2
168§ ?

BoBayo — 4BoB1y1 t 23(%72)
3283

Zpert a’)’o/ﬁo(] + «

+ O.5a2<

8,317’0

o3
" 76885

+y1) + 2B5B170(— 1687 + 3Byv0 + 24B17,

—677) = 2B5(2B3v0 + Boy1 + 48172

= 3y1v2) + Bo(16BTy1 — 3Bayevi + 273

+4B1(2Brvo — 3(¥1 + voy2) + 43873))-
(A1)

(—1687y; + 24B0Biv5(—2B;

For ny = 0 in the Landau gauge, we get:
Yo = 0.0 Y1 = 67 Y2 = —94.7943

y; = 14503.7.

A2)

a, which represents here aponm(p) (defined through the
three-gluon vertex at symmetric momenta), is given,
under the same conditions, by:

4ar ﬁl Int 1

AP = T B Bt T (Bl

><<2 £2+16 22((lnt)2 lnt—1)>

R ( 327753 L(Inz)? + 807r—1(1nt)2
Bo)* B Bi
_ 127ByB1B2 — 6473, Int
Bs
277'50,33 - 1677'53 A3
= ) (A3)

where t = In(p*/A};0p) (in the MOM case, one stops at
the 1/ terms, and where

Bo=11, B, =51, B, =23072(10%). (Ad)

APPENDIX B: A2 WILSON COEFFICIENT IN THE
QUARK PROPAGATOR

In order to renormalize the bare quark propagator in
Eq. (15) we will define the following two renormalization
constants, both in the momentum-subtraction (MOM) gen-

PHYSICAL REVIEW D 74, 034505 (2006)

eral scheme:

Zy(w?) g _ —ip+mp?) (57 (p)
Zpl;rt(,l,bz) ab p2 + m(pz) Sp_eil(p) p2=,u2.
(BI)

The constant in the top of the left-hand side of Eq. (B1)
includes the nonperturbative contributions to the quark
propagator to let it take the tree-level value all over the
energy range (not only in the perturbative regime). We
renormalize Eq. (15) by multiplying by that of the bottom
(this purely perturbative MOM renormalization constant,
computed to four loops in Ref. [26], is presented in
Appendix A); as to the Wilson coefficient of AZ, we
calculate it at leading RG order.

e , Zy(p?)
(Z5" ()71 (p) = zﬁaa,bzp;";wz)+

= (Z5" (1))~ Spen(p)

A2, a(uw)) ((A%)r(p))
+ip Mpz 4(1\%—1)5

J’- e
2 p?) | d(, alp))
= ilﬁaa,b< I’)ﬂer[ 2 " 2
Zl/, (n”) p
(W)
8 4(NE - 1)) L ®2)
where (A?)g(u?) = ZH(u?) : A%, :.” and where we only

write the leading terms in p. Concerning d(Z—z, a(w)), the

same procedure used for gluon Green functions in
Refs. [20—22] is in order here. Then, from Eq. (B2), multi-
plying by Zp;”(uz), and taking logarithm derivatives on u
in both sides, we obtain the following RG equation:

apw) , ogalw) , d P’
- + 59 + L =
{ Y0 4w TV 4y dln,u,z}d<,u2 a(,u)) 0
(B3)
that is identically satisfied with
p? a(u)\—r+yD)/B
d( 2,oz(m)—d(l a(p))( (“)) TR By
M (p)

where d((1, a(p))) is in fact beginning with a(p) and y(o)
is defined through

©) a(ﬂ)+ O(?):

anA - 7A2 4

B
dlny? B5)

°the: --- fixes the normal order subtracting the additive

divergencies in Abare (see discussion in Ref. [45]).

034505-19



PH. BOUCAUD et al.

and where all the involved one-loop coefficients are well
known,

© _ 35N,

'}’Az - 12 »

B, = 11. (B6)

Yo = O’
On the other hand, d(1, a(p)) can be obtained by comput-
ing the only diagram involved in the “OPE business” for
this case,

PHYSICAL REVIEW D 74, 034505 (2006)

(NZ-1)

— d(l,a(p) = ———¢(p). (B))

A\
N

Then, by applying the results from Eqgs. (B4)—(B6) to
Eq. (B2), we will obtain the final result Eq. (16) to be
used for the fits.
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