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We reinvestigate the problem of Gribov ambiguities within the Landau (or Lorentz) gauge for the ghost
and gluon propagators in pure SU(2) lattice gauge theory. We make use of the full symmetry group of the
action taking into account large, i.e. nonperiodic, Z(2) gauge transformations leaving lattice plaquettes
invariant. Enlarging in this way the gauge orbits for any given gauge field configuration the Landau gauge
can be fixed at higher local extrema of the gauge functional in comparison with standard (overrelaxation)
techniques. This has a clearly visible effect not only for the ghost propagator at small momenta but also for
the gluon propagator, in contrast to the common belief.
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L. INTRODUCTION

It is an important task to compute (Landau or Coulomb)
gauge gluon, ghost, and fermion propagators, and the basic
vertex functions from nonperturbative approaches to
SU(N) gauge theories, like Dyson-Schwinger equations
or the lattice formulation. On one hand, one is interested
in their behavior in the infrared limit in order to extract
nonperturbative information on various observables, e.g.
the QCD running couplings @ (g?), to understand quark
and gluon confinement within the Gribov-Zwanziger sce-
nario [1-3], or to check the Kugo-Ojima confinement
criterion for the absence of colored states [4]. On the other
hand, it is technically important to see to what extent these
different nonperturbative approaches provide results con-
sistent with each other in the nonperturbative region, i.e. at
low momenta. At present we are still far from drawing final
conclusions in this respect. In particular, the Dyson-
Schwinger approach [5—7], always relying on a truncated
set of equations, provides results which look quite different
in the infinite volume limit compared with those obtained
on a torus [8§—10], while the latter show at least qualitative
agreement with recent results of numerical lattice simula-
tions [11].

It is well known that gauge fixing in the nonperturbative
range faces the Gribov ambiguity problem, which means
that there can be many gauge copies for a given gauge field
satisfying the Landau gauge condition d,A, = 0 within
the Gribov region, the latter defined by the positivity of the
Landau gauge Faddeev-Popov operator. In recent years one
has checked in greater detail how strong Gribov copies can
influence the infrared behavior especially of the gluon and
ghost propagators. Several groups of authors came to the
conclusion that, while there is a clearly visible influence on
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the ghost propagator, the gluon propagator seems only
weakly affected [11-15].

Recently Zwanziger has argued that in the infinite vol-
ume limit the influence of Gribov copies ... might be
negligible, i.e. all averages taken over the Gribov region
should become equal to averages over the fundamental
modular region” [3]. However, in practical lattice simula-
tions we are always restricted to finite volumes. Thus,
Gribov copies have to be taken into account properly
before extrapolating to the infrared and infinite volumes.

In this paper we present a reinvestigation of the Gribov
copy problem for the SU(2) case. The usual way to fix the
(Landau) gauge on the lattice is to simulate the path
integral in its gauge-invariant form. Subsequently each of
the produced lattice gauge fields U = {U, ,} is subjected
to an iterative procedure maximizing the gauge functional

1 1

F(g) = w2 TrUS 4, USu = 80U, .87 (x + 1)
Em

ey

with respect to local gauge transformations g = {g(x) €
SU(2)}. V. = L? denotes the number of lattice sites in d =
4 dimensions. The local maxima of F(g) satisfy the differ-
ential lattice Landau gauge transversality condition

(0,AL)(x) = AL(x + 4/2) = AL(x — £/2) =0, (2
where the lattice gauge potentials are
R 1
Ay + p/2) = (U, = UL,). (3)

The standard procedure assumes periodic gauge transfor-
mations and employs the overrelaxation algorithm. In
what follows we shall abbreviate it by SOR. The influence
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of Gribov copies can be easily studied by taking various
initial random gauge copies of the gauge field configura-
tions before subjecting them to the SOR algorithm.

At this place it is worth noting that the widely —at least
until now—accepted approach to compute e.g. a gauge-
variant propagator G is to always choose the gauge copy
with the highest value of local maxima F,,, [or the best
copy (bc)] found for the gauge functional (1). One can
then hope to have found a copy belonging to the so-called
fundamental modular region or at least not far from it. In
order to find the best copy for each thermalized gauge field
configuration, one needs to compare F,,, values for a
pretty large amount of gauge copies, which is a rather
time consuming procedure. A reasonable question is if
the use of only one gauge copy [the first copy (£c)]
provides us with the same—within error bars—yvalues of
the propagator as the use of the best copy would. This logic
brings us to compare the propagator calculated on best
copies (G®™)) with that on the first copies (G'). The
relative deviation 8G = |(G — G®))/G®)| then pro-
vides a useful quantitative measure of the Gribov ambigu-
ity of the quantity under consideration. We shall discuss
this measure throughout the present paper.

Of course, one can enhance the effect of Gribov copies
by comparing instead the best copies with the worst copies,
i.e. with those having the smallest F,,, values found from
the repeated use of a given maximization method. This
attitude has been taken in Ref. [15] in order to highlight a
Gribov copy effect for the gluon propagator.

In Refs. [13] for SU(2) and [11] for SU(3) some of us
already have thoroughly discussed the impact of Gribov
copies within the SOR framework by comparing first and
best copies. From this point of view the gluon propagator
did not depend on the copies within the statistical noise,
whereas the ghost propagator clearly did depend on them
in the infrared. But the data for the ghost propagator
obtained for different lattice sizes showed an indication
for a weakening of the dependence on the choice of Gribov
copies for increasing lattice size at fixed momentum, in
agreement with Zwanziger’s claim [3].

Here we enlarge the class of possible gauge transforma-
tions by also taking into account nonperiodic center gauge
transformations. This will allow us to further maximize the
gauge functional and to see a quite strong Gribov copy
effect also for the gluon propagator at finite (lattice)
volumes.

In Sec. I we shall explain the improved gauge fixing
procedure. In Sec. IIl we define the propagators to be
calculated. In Sec. IV we present our results for the gluon
and ghost propagators, whereas in Sec. V the conclusions
are drawn.

II. IMPROVED GAUGE FIXING

We shall deal all the time with SU(2) pure gauge lattice
fields in four Euclidean dimensions produced by means of
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Monte Carlo simulations with the standard Wilson pla-
quette action. We restrict ourselves to the confinement
phase at T = 0.

To fix the gauge, we employ the standard Los Alamos
type overrelaxation with @ = 1.7.

Our generalization of the standard gauge fixing proce-
dure SOR comes from the simple observation that gauge
covariance for periodic SU(2) gauge fields on a
d-dimensional torus of extension L¢ allows gauge trans-
formations which are not necessarily periodic but can
differ by a group center element at the boundary:

glx + L9) = z,8(), 7, =*1€Z72). &
In light of this, it is legitimate to allow, during the max-
imization of the gauge functional in the gauge fixing
procedure, for gauge transformations which differ by a
sign when winding around a boundary. Let v be the direc-
tion of such a boundary. Any such gauge transformation
can be decomposed into a standard periodic gauge trans-
formation (which we may call a ““small”” one) and a flip of
all links U, (x) — —U,(x) of a 3-plane at a given fixed x,,.
Given a small random gauge copy of the configuration, we
have thus performed a preconditioning step for the gauge
functional by sweeping in every direction all 3-planes in
succession and comparing the value of the flipped with the
unflipped gauge functional. The flip is accepted if the
gauge functional increases. It is easy to see that such a
procedure is independent of the order of choosing the 3-
planes and that only one sweep through the lattice is
required to maximize the functional. The gauge copy
obtained at the end of this procedure is then used as a
starting point for a standard maximization procedure. We
call the whole procedure FOR.

Analogously to the SOR method, the FOR procedure
can be repeated with different initial random gauges in
order to find a best copy, in comparison e.g. with the first
random copy. We shall check the convergence of the
bc-propagator results for the best copies as a function of
the number n,,, of random initial copies.

III. GLUON AND GHOST PROPAGATORS

We turn now to the computation of the gauge-variant
gluon and ghost propagators within the Landau gauge.

The lattice gluon propagator D%, (p) is taken as the
Fourier transform of the gluon two-point function, i.e. the
expectation value

DEp) = (A DAL-BYy = 5 (5,,, = P237)D(p)
&)

Aji (k) is the Fourier transform of the lattice gauge potential
A% (x + @/2). p denotes the four-momentum
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L2 k
putk,) = sin( ") ©

A

momentum k, €

with the integer-valued lattice "

(—=L/2, +L/2]. a is the lattice spacing.

The lattice ghost propagator is defined by inverting the
Faddeev-Popov (F-P) operator, the latter being the Hessian
of the gauge functional, Eq. (1). The F-P operator can be
written in terms of the (gauge-fixed) link variables U, , as

My => A6,y — BE S py — ChSpy (D

"
with
A)(/cl,}:u = 8ab Tr[Ux,,u + Ux—p,,,u,],

1

2
B =1ToboU, ] ceb, =3iTlo*c?U,—p ],
where the 0% (a = 1,2, 3) are the Pauli matrices. In the
continuum M¢? corresponds to the operator M =
—d,D4, with D* the covariant derivative in the adjoint
representation.

The ghost propagator in momentum space is calculated

from the ensemble average

a 1 —2@rik-(x—y —17a
G%m=9%®2k<WMW$U (8)

= 8G(p). (€))

Following Refs. [12,16] we have used the conjugate gra-
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dient (CG) algorithm to invert M on a plane wave 1ZC =
{8,. exp(2mik - x)}.

After solving M g{; = J/C the resulting vector qu is pro-
jected back on ¢ so that the average G(p) over the color
index c¢ can be taken explicitly. Since the F-P operator M is
zero if acting on constant modes, only k # (0,0,0,0) is
permitted. Because of high computational requirements to
invert the F-P operator for each 12, separately, the estimators
on a single, gauge-fixed configuration are evaluated only
for a preselected set of momenta k.

IV. RESULTS

We consider various bare couplings in the interval 8 =
4/g3 € [2.1,2.5] and lattice sizes up to 20*. We compare
the gluon and ghost propagators obtained with the alter-
native gauge fixing methods SOR (“flips off”’) and FOR
(“flips on”’) both for the first copy (£c) and best copy (bc).
In order to find the best copies, we always generate 20
initial random gauge copies.

In Fig. 1 we illustrate for the FOR method how fast the
gluon and ghost propagators are converging when deter-
mined from the best copy out of the first n,, copies. We
see plateaus occurring for n¢,,, = 0(10). We have con-
vinced ourselves that O(20) copies are sufficient at least for
B = 2.3 and lattice sizes up to 20*. For the SOR method
the convergence is faster—although to worse values of the
gauge functional —such that, in principle, a smaller num-
ber of copies would be sufficient within the given parame-
ter range.
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Gluon propagator (left panel) and ghost propagator (right panel) at lowest momentum p,, = (2/a) sin(7/L) versus the

number of random copies employing the FOR method (flips on) at 8 = 2.5 and 2.4, respectively (lattice size 16%).
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Mostly, we have concentrated on the lowest nontrivial
on-axis lattice momentum p.;, = (2/a)sin(7/L) and
some multiple on-axis momenta in order to study the
infrared limit for a given lattice size and bare coupling.
We are aware of the fact that this choice is by far too
restrictive to get reliable results for the (renormalized)
propagators in the continuum and thermodynamic limits.

""""" LR L I L B L UL R B
18 124Iattice ] 1
1]
16 F ]
- [ ] o
sS4 J :
a
6 5
= 12 F o E
[@)]
o]
&
S10F 3
c
S 2 ® best copy; flips ON
o 8¢F ° 3
o best copy; flips OFF
6 . o first copy; flips OFF 3
[ ]
4 ......... | IS AT A I AT} | IR A A AT Ar Y | AT AT A A | AT AT A A | PRI A}
2 2.1 2.2 2.3 24 2.5 2.6

PHYSICAL REVIEW D 74, 034503 (2006)

In Figs. 2 and 3 we show our results for the lattice gluon
D(pumin) and ghost propagators G(py,) for 12* and 16*
lattices, always for the smallest nonvanishing momentum.
In order to demonstrate the effect of the Z(2) flips in
comparison with the SOR results obtained with bc and
fc [13], we show three sets of data points: black dots
correspond to FOR (flips on and bc copies) and open
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FIG. 2. Gluon propagator D(p,,;,) at lowest momentum for various 8 and for lattice sizes 12* (left panel) and 16* (right panel). Full
dots refer to FOR fc and open squares (circles) correspond to SOR fc (bc).
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circles (squares) correspond to SOR [flips off for bc (fc)
copies]. The corresponding data are listed in Table I.

We clearly see that the FOR method leads to an addi-
tional visible Gribov copy effect not only for the ghost
propagator but also for the gluon propagator. The effect is
even more pronounced at higher 8 values, i.e. at smaller
“physical” lattice sizes. We have convinced ourselves that
this is compatible with the behavior of the average maxi-
mal gauge functional (F,,,). Its relative difference deter-
mined with bc copies for the FOR method versus the SOR
method is also rising with S. Later on we shall see that this
observation is also in one-to-one correspondence with the
gauge copy dependence for fixed 8 and varying lattice

TABLE 1. Data for the gluon propagator D(p) (left) as well as
for the ghost propagator G(p) (right) at lowest momentum p =
Pmin Obtained with FOR (bc) and SOR (bc and f£c¢) methods on
12% and 16* lattices.

124

B # Dok # Dsor DSor
210 1200  5.39(6) 900 5.79(8) 5.83(8)
220 1200  7.94(9) 1200 8.74(10) 8.66(10)
230 1200  12.16(14) 1200  12.69(15)  12.85(15)
240 3600  15.10(10) 2080  17.06(17)  17.12(17)
244 5100  15.13(9)

247 5700  14.64(9)
250 2650  14.16(13) 1760  17.34(26)  17.42(26)
16* _

B # Dok # Dok DSor
210 1042 5.59(7) 918 5.93(8) 5.95(8)
2.20 900 9.01(12) 740 9.35(14) 9.58(14)
230 1100 14.88(18) 510  16.16(31)  15.97(29)
240 1032 22.65(29) 1020  24.36(32)  25.03(32)
245 1020 25.69(32) 1030  28.19(36)  28.21(38)
250 1040  26.86(35) 1060  30.64(44)  30.37(45)

124 _

B #  Gior  # Gt Gor
210 1200 11.584) 900  11.87(4) 12.48(7)
220 1200 10.10(8) 1200 10.39(3) 10.90(5)
230 1200  837(2) 1200 8.99(6) 9.27(4)
240 3600  7.04(1) 2080 7.80(3) 7.97(4)
244 5100  6.65(1)

247 5700  6.36(1)
250 2650  6.11(1) 1760 7.26(5) 7.40(5)
164

B #  Gip  # G Gor
210 1042 2289(6) 918  23.12(13)  24.15(8)
220 900 19.83(6) 740  20.29(6) 21.34(9)
230 1100  16.83(5) 510 17.27(8) 18.05(10)
240 1032 14.00(4) 1020  14.88(6) 15.60(8)
245 1020 12.92(5) 1030 13.86(6) 14.41(11)
250 1040 12.02(4) 1060  13.26(6) 13.45(7)
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size. The anatomy of the (new) FOR gauge copies deserves
further studies in the future.

In order to illustrate the strong Gribov copy effect in a
slightly different manner, we compare smoothed distribu-
tions for the mean value estimators for the gluon and ghost
propagators for the bc with the FOR and SOR methods,
respectively (see Fig. 4). The mean value distributions have
been obtained in accordance with the bootstrap method
[17] from replica of sequences of randomly selected data.
Such bootstrapped resampling was applied to the initial
Monte-Carlo data set as a whole, the amount of replicas
being typically 200. To smooth the distribution we have
used the standard Nadaraya-Watson method with normal
kernel [18], and an improved Silverman’s rule of thumb for
the choice of the corresponding bandwidth.

It is worth mentioning that the statistical errors for most
of our data have also been estimated through bootstrapped
resampling.

We have also studied how the Gribov copy effect devel-
ops for larger momenta p(lg). We have used multiples of the
minimal lattice momentum £ = (0,0,0, k) (k = 1,2, 3, 4)
along one axis. We compare for the gluon propagator the
bc SOR results with the bc FOR results in terms of the
relative deviation

8D(p) = (Dstr = Diig)/ Pigr (10)

and analogously for the ghost propagator G(p) at various 8
values and with fixed lattice size 16* (see Fig. 5). For the
gluon propagator our results are restricted to only one S8
value because of the much stronger statistical noise.
Nevertheless, the results presented for the gluon propaga-
tor point in the same direction as for the ghost propagator.
The effect of Gribov copies still remains noticeable at p >
Pmin» although decreasing for rising momenta. The data for
the ghost propagator at various momenta obtained from
independent Monte Carlo runs are also collected in
Table II.

We have also made a corresponding check for the gluon
propagator at zero momentum. On a lattice of size 20* and
for the same B8 = 2.5, we observed a deviation between the
bc FOR and SOR results of the order O(25%). This would,
of course, have consequences for estimates like in
Refs. [19,20], since the infinite volume extrapolation of
D(0) performed there, although probably remaining finite,
will definitely suffer from uncontrolled systematic
uncertainties.

It is interesting to study the volume dependence of the
Gribov copy effect, in view of Zwanziger’s recent claim
mentioned at the beginning [3]. First of all, we have con-
vinced ourselves that the number of gauge copies is
strongly rising with the lattice volume as it should be.
This is clearly demonstrated in Fig. 6, providing the dis-
tributions of the number of gauge copies per configuration
found with the FOR method (flips on) for lattice sizes 8*
and 16* at 8 = 2.40. In both cases we have generated 100
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FIG. 4. SOR and FOR distributions for D®9(p,...) (left panel) and G®(p,.;,) (right panel) at 8 = 2.5 and 16* lattices.

configurations with 100 gauge copies each. It turns out that
identical (or degenerated) copies can be well recognized at
an accuracy for the gauge functional, Eq. (1), of O(10719).
Adjacent copies normally differ in the values for the gauge
functional at a level of O(107%). Now let us compare the
distributions of the corresponding values of the functional

15 ' : :
164
10f 0 p=25
X
2
@)
w
5.
0 1 1

1 2 3
K

F for each copy found. In order to normalize the values
with respect to the highest (i.e. best) value per configura-
tion, we show the relative deviation (FX) — F max)/ F (bo).
The frequency distributions of these values are shown in
Fig. 7 for the same ensembles as used for Fig. 6. There is a
very clear tendency that the variance of the gauge func-
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FIG. 5. Left panel: relative deviation 6 D(p) = (D(Sb& - D(Fbé%{) / DS’SL in percent for the gluon propagator at various (on-axis) lattice
momenta p(k) (lattice size 16*, 8 = 2.5). Right panel: the analogous relative deviation for the ghost propagator for the same lattice

size but for B = 2.2, 2.3, 2.4, and 2.5.
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TABLE II. Ghost propagators G(p) on the 16* lattice for
various on-axis lattice momenta p(k).

FOR
B # Gk=1 Gk=2) Gk=3) Gk=24
220 400 fc  21.2(1)  3.96(1) 1.5102)  0.8116(5)
bc  19.88(8) 3.868(7)  1.493(1)  0.8076(4)
230 400 fc  182(2)  3.39(3) 1.3132)  0.7276(6)
b 1688(8) 3.267(6)  1.299(1)  0.7241(4)
240 356 fc  154(1)  2.87(1) L171(1)  0.6693(3)
be  138(1)  2770(8)  1.156(2)  0.6647(4)
250 400 fc  13.7(1)  2578(5)  1.0897(8) 0.6357(2)
be  122(1)  2.508(5)  1.079(1)  0.6325(3)
SOR
B # Gk=1 Gk=2 Gk=3) Gk=24
220 200 fc  21.2(2) 39728  1511(3) 0.8117(7)
bc  2023(12) 3.885(10)  1.4971(25) 0.8084(7)
230 200 fc  182(1)  3.35(1) 1.312(2)  0.7272(5)
be  173(1)  3297(8)  1.304(1)  0.7253(5)
240 370 fc  156(1)  2.87(1) L171(1)  0.6690(3)
b 14.8(1)  2.83(1) 1.165(1)  0.6673(3)
250 200 fc  14.12)  2586(8)  1.090(1)  0.6359(4)
be  134(1)  2.564(6)  1.088(1)  0.6352(3)

tional becomes much smaller if we increase the lattice
volume. A similar tendency becomes visible in Fig. 8,
where we plot for the same set of configurations and gauge
copies the distributions for the single values of the ghost
propagator for the lowest nonvanishing on-axis momen-
tum. Also, in this case we have normalized the single

15 T T T T T T T T T
8' lattice; p=2.4
S10f Flips ON ]
= N,,=100; N, =100
"\‘3 -10
% e=10
a 5r 1
O 1 Hmﬂ 1 1 1 1 1 1
15 0 10 20 30 40 50 60 70 80 90 100
16" lattice; p=2.4
5 10 + Flips ON 1
3 Ny, =100; N, =100
8 5L e10" ]
0 1 1 1 1 1 ﬂﬂ Hﬂ

0 10 20 30 40 5 60 70 80 90 100
# of different copies per configuration

FIG. 6. Distributions of the number of different gauge copies
found with the FOR method at 8 = 2.40 for lattice sizes 8* and
16%.
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FIG. 7. Distributions of the deviation of the gauge functional
values for different gauge copies relative to the best copy per
configuration. FOR method at 8 = 2.40 for lattice sizes 8* and
16%.

values as (G® — G)/G™), i.e. taking the relative devia-
tion of the propagator at a given copy G from the value
computed on the best copy G, the latter chosen again
with respect to the gauge functional value. We see that the
long tail seen for the smaller lattice disappears for the
larger lattice. Although the fact that close values of the

500
8' lattice; p=2.4
400 4
Flips ON
5
= 3003 bin=0.01
2 N -
5 2001 N, =100; N, =100
[a]
100 3
0] x
- 125 15 175 2
500
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400 4 .
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£ 300 bin=0.01
a
© 200 1 Neory=100; Ncony=100
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025 05 075 1 125 15 175 2
1-G/G™

FIG. 8. Distributions of ghost propagator values at lowest non-
trivial momentum for different gauge copies as in Fig. 7.
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Dg’&) / Dg’cc)i{ in percent for the gluon propagator D for various
linear lattice sizes L and smallest nonvanishing momentum
Pmin = (2/&) Sll’l(’?T/L) (:8 = 24)

gauge functional will not tell anything about how much the
corresponding gauge configurations are differing from
each other (irrespective of a global relative gauge trans-
formation), we would like to interpret our finding of
shrinking distributions as a weakening of the Gribov prob-
lem with increasing physical lattice size.
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Moreover, we have plotted the relative deviation

8D (pmin) = (DI, — D&Y /DE, (11)

for the gluon propagator (see Fig. 9) and analogously for
the ghost propagator (see left-hand side of Fig. 10) as a
function of the inverse linear lattice size 1/L, both deter-
mined at the minimal momentum p,,;,. Here we have used
data for fixed 8 = 2.4 and lattice sizes from L = 5 up to
L = 20. In close correspondence to our observations pre-
sented in Figs. 2 and 3, we see that the Gribov copy effect
becomes weaker (stronger) for increasing (decreasing)
physical lattice size and correspondingly decreasing (in-
creasing) minimal momentum, at least up to a certain value
of the lattice size ( = 15). One would of course need larger
values of L to make a reliable conclusion about the limit
L — oo. Anyway, at our largest lattice value L = 20 the
Gribov copy effect is still quite strong.

For the ghost propagator, where the signal to noise ratio
is more favorable, we have also found an analogous be-
havior for the multiple on-axis momenta k = 2, 3, 4 (see
right-hand side of Fig. 10).

In [13] two of us have reported on rare Monte Carlo
events with exceptionally large values of the ghost propa-
gator occurring for the SOR gauge fixing method for larger
B values. In Fig. 11 we show some time histories for the
gluon and ghost propagators for 8 = 2.5 and a 16* lattice,
comparing bc SOR with bc FOR. We see that for the
“best-copy—flips-on” case (FOR) the fluctuations for both
propagators are smaller. But for the ghost propagator the

T e
6| ¢ k=3 %
* k=
ked 5
5f p=2.4
3
5 e
S
2 7710
H% ¢ ?
1t o *
wh oo

0
0.04 006 0.08 0.1 012 0.14 016 0.18 02 0.22

1L

FIG. 10. Relative deviation 6G(p) = (G(sfg)R - G%ﬁ) / Gg& in percent for the ghost propagator G at 8 = 2.4 for various linear
lattice sizes L and the smallest nonvanishing momentum p;, = (2/a) sin(7r/L) (left panel) as well as for on-axis momenta p(k)

(k = 2,3,4) (right panel).

034503-8



LANDAU GAUGE GHOST AND GLUON PROPAGATORS IN ...

PHYSICAL REVIEW D 74, 034503 (2006)

120 T T T T T 50 T T T T T T T
4 .
100 16° flips OFF 16 flips OFF
B=25 4F  p=25
= 80r T
< oo £
a 1o}
40
20t
20 |
O 1 1 1 1 1 10 1 1 {l 1 1
0 100 200 300 400 500 600 0 50 100 150 200 250 300 350 400
12G T T T T T 50 T T T T T T T
! 4
oof g fips ON 16 fips ON
B=25 4r P25
T 81 ' =
eE 6or 3530
a 1o}
40t
! 20} ]
“ FTRTE Py TN R
O 1 1 1 1 1 10 1
0 100 200 300 400 500 600 0 50 100 150 200 25 300 350 400
measurements measurements

FIG. 11. Time histories for D®(p,...) (left panel) and G®(p,,i,) (right panel) for both SOR and FOR methods at 8 = 2.5 and 16*

lattices.

effect of exceptionally large values, in general related to
small eigenvalues of the F-P operator [21], is still there.
In conclusion, we show the form factors of the gluon
propagator p>D(p) and of the ghost propagator p>G(p) in
physical units as a function of the physical momentum for

34 gm%%
3" fe
di ¥
2.5-@ ®¥
| R - -é &

06 08 1 12 14 16 18 2 22 24 26
p (GeV)

fixed 8 = 2.4 and lattice sizes varying from 10* to 20*. We
have rescaled the gluon propagator values D(p) with fac-
tors @’ and g} and the ghost propagator G(p) with a?,
respectively, in order to translate to the corresponding
continuum (bare) propagators (compare with [22]). To

2.6 ¥
* SOR

oul ¥ O FOR

221

®

LX)
& o
1.2' 1 1 1 1 1

0.5 1 15 2 2.5 3
p (GeV)

&

FIG. 12. Gluon form factor p?D(p) (left panel) and ghost form factor p>G(p) (right panel) for both the bc SOR and bc FOR
methods versus momentum obtained for various lattice sizes and fixed 8 = 2.4.
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TABLE III.  Statistics for the measurements at different L and
B =24
FOR
L 5 6 8 9 10 12 15 16 18 20
Neone 1000 1000 800 600 600 500 400 356 200 200
SOR
L 5 6 8 9 10 12 15 16 18 20
Neone 1000 1000 800 500 500 400 400 370 100 100

estimate the lattice spacing in physical units we have used
the string tension: a>0- = .071 [23] with the standard value
Jo = 440 MeV. The form factor results for both methods
bc SOR and bc FOR are shown together in Fig. 12. Again,
the figure shows clear Gribov copy effects for both the
propagators, not only for the ghost propagator. We did not
apply any overall renormalization here. The statistics col-
lected for these runs is listed in Table III.

V. CONCLUSIONS

In this paper we have demonstrated that there is a visible
Gribov problem for the ghost propagator as well as for the
gluon propagator computed in SU(2) lattice gauge theory
within the Landau gauge. In order to show this, we have
enlarged the gauge orbits of given Monte Carlo generated
gauge fields by nonperiodic Z(2) transformations, flipping

PHYSICAL REVIEW D 74, 034503 (2006)

all links in a given direction on a slice orthogonal to that.
This allows a preconditioning which maximizes the gauge
functional before applying the overrelaxation algorithm.

We have found indications for a weakening of the
Gribov copy effect both by going to larger momenta at
fixed volume and also by increasing the lattice size L while
correspondingly lowering the minimal nonzero momen-
tum, at least up to a certain value of the lattice size ( =
15). However, one would need larger values of L to draw a
reliable conclusion about the limit L — oo.

We have not shown the momentum scheme running
coupling which can be determined from the form factors
of the propagators discussed here, assuming that the renor-
malization factor for the ghost-gluon vertex is constant.
This will be discussed in a future paper, where we want to
present data for larger lattices and a larger spectrum of (off-
axis) momenta.
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