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We calculate the branching ratio of �b ! �� in the standard model using the PQCD method. The
predicted branching ratio B��b ! ��� is about �4:3� 8:6� � 10�8, with reasonable parameter ranges in
the heavy baryon distribution amplitude. This branching ratio is much smaller than those obtained in other
hadronic model calculations. Future experimental data can provide important information on applicability
of the PQCD method to heavy baryon radiative decay.
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I. INTRODUCTION

Rare radiative processes involving b! s� at quark
level are important for understanding the flavor changing
structure in the standard model (SM). Exclusive radiative B
decays also provide important information about the had-
ronic matrix elements where a heavy b-quark is involved.
These processes being rare can also provide clues to mod-
els beyond the SM. There have been considerable studies
on inclusive b! s� [1,2], and exclusive mesonic B!
K�� [3] both experimentally and theoretically within and
beyond the SM [4–6]. Theoretical predictions for inclusive
decays agree with data very well in the SM. Calculations
for exclusive processes are in general consistent with data
although there are unavoidable uncertainties due to our
lack of good understanding of QCD at low energies.
Nevertheless methods have been developed to calculate
hadronic matrix elements in recent years [7,8]. With
more data becoming available, new b-decay processes
can be studied. These processes can be new tests for differ-
ent methods in calculating hadronic matrix elements and
new physics beyond the SM. In this work we study �b !
��. In this decay more experimental information about the
heavy b quark inside the hadron which is not available in
inclusive and mesonic b-hadron decays, such as spin po-
larization during hadronization, and the handedness of the
couplings at the quark level, can be extracted [9–13].
Therefore the baryonic b-hadron radiative decay can pro-
vide a new test for theoretical methods for b-quark
hadronization.

There are some studies in the literature on �b ! �� [9–
13] decay ranging from phenomenological models to QCD
sum rule approaches. Our study will be based on the PQCD
method [14–16]. This method has been shown to give
consistent results for two body mesonic B decays [8]. We
expect a PQCD calculation for �b ! �� will also give a
reasonable estimate since the energy-exchange carried by
gluons in the matrix element calculations is large. Result
obtained in this way can serve as a good reference for
discussing the relevant hadronic matrix elements.

For SM, the effective Hamiltonian responsible for b!
s� comes from the electromagnetic penguin diagram and is

given by [17]:

 Heff � i
GF

2
���
2
p VtbV

�
ts
e

4�2 C
eff
7 ���mb �s����1� �5�bF

��;

(1)

where Ceff
7 �� � mb� � �0:31. In our numerical calcula-

tions, the running of Ceff
7 will also be taken into account.

It has been shown that there may be resonant (long
distance) J= � 0� contributions [18]. If these con-
tributions are included, one should add a term �3C1��� �
C2�����3=�2

em�
P
j� ; 0!j�0�kj���j ! l�l��Mj=�q2 �

M2
j � iMj�

tot
j � to the Wilson coefficient Ceff

7 . Since for
b! s� process, q2 � 0, there are double suppressions for
the long distance resonant contributions with one of them
coming from the Breit-Wigner factor ��i=Mi and another
coming from the extrapolation of !j�M2

i � � 1 to !j�0�
with !j�0�< 0:13 (and could be smaller) [18], we will
neglect the resonant contribution for radiative decays in
our later discussions.

At the hadron level, the decay amplitude for �b ! ��
is obtained by inserting the effective Hamiltonian between
the initial and final hadron states,

 M��b ! ��� � h��jHeffj�bi: (2)

There are two form factors for �b ! �� from the above
which we write as
 

M� 	 h��p
0�jCeff

7 ��; 0��s���q
��1� �5�bj�b�p�i

� ��p0��FL���q��1� �5�

� FR���q��1� �5���b�p�: (3)

We obtain
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��
3

� �jFLj
2 � jFRj

2�: (4)

Emission of a photon from the tree operators O1;2 can
also contribute to �b ! ��. Although the Wilson coeffi-
cients of these operators are larger than those of the pen-
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guin operators, there is a large suppression coming from
the CKM factor jVubV�us=VtbV�tsj. The overall contributions
from bremsstrahlung of a photon off the operator O1;2 is
therefore suppressed. We will neglect their contribution in
rest of discussions.

II. PQCD CALCULATION OF THE HADRONIC
MATRIX ELEMENTS

We now describe our calculations for the hadronic ma-
trix elements defined above using the PQCD method de-
veloped in Ref. [14–16]. We define, in the rest frame of �b,
p, p0 to be the �b, � momenta, ki�i � 1; 2; 3� to be the
valence quark momenta inside �b, and k0i to be the valence
quark momenta inside �. We parameterize the light cone
momenta with all light quark and baryon masses neglected
as

 

p � �p�; p�; 0T� �
M�b���

2
p �1; 1; 0T�; p0 � �p0�; 0; 0T�

k1 � �p�; x1p�;k1T�; k2 � �0; x2p�;k2T�;

k3 � �0; x3p�;k3T� k01 � �x
0
1p
0�; 0;k01T�;

k02 � �x
0
2p
0�; 0;k02T�; k03 � �x

0
3p
0�; 0;k03T�

(5)

where xi and x0i are the fractions of the longitudinal mo-
menta of the valence quarks with x1 � x2 � x3 � 1 and

x01 � x
0
2 � x

0
3 � 1. kiT and k0iT are the transverse momenta

of the valence quarks inside �b and �, respectively.
As a self-consistent check, one should make sure that the

expected relation p2 � k2
1 � 0��QCDmb� holds, since the

light quarks in the heavy baryon should have momenta of
order �QCD. Naively, the above gives a value of order �1�
x2�m

2
�b

which does not have the explicit form as expected.
To understand this, one needs to combine the form of the
heavy baryon wave function which determines how quark
momenta are distributed inside the baryon. We have
checked this using the wave function given later, and
obtained the ratio of average values hx2;3i=hx1i �m=m�b

,
where m is of order �QCD. With the constraint x1 � x2 �

x3 � 1, the desired order for p2 � k2
1 is then obtained.

One can write p0� � �p� with � � 2p
p0

M2
�b

� p2�p02�q2

M2
�b

.

The ranges for q2 and � are given by 0 � q2 � �M�b
�

m��
2 and 2m�=M�b

� � � �M2
�b
�m2

��=M
2
�b

if off-shell
photon is allowed. In our case of �b ! ��, q2 � 0. Here
we have kept � mass in the expressions for the purpose in
tracing the ranges of the kinematic variables. In the ap-
proximation we are using, it should be set to zero as
mentioned above.

In the PQCD picture, hadrons are formed from quarks
with appropriate wave functions describing the momenta
distribution of quarks inside the hadron. The �b wave
function is usually defined through the quantity [19,20].

 �Y�b
�����ki; �� �
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���
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8
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��5C
����b�p�
���ki; ��; (6)

where f�b
is a normalization constant, �b�p� is the �b spinor, and ��ki; �� is the wave function. Here we have used the

heavy quark symmetry which should be applicable in the present case, following Refs. [19,20], to reduce the form factors
to the above simplified form. In general there are more components in the wave function if all quarks are light. For the light
baryon � the leading-twist wave function of � is defined by [21]:
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f�p6 0C�����5��p0�
��V�k0i; �� � �p6
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��A�k0i; ��g
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fT�

8
���
2
p
Nc
����p0�C�������5��p0�
��T�k0i; ��; (7)

where f� and fT� are normalization constants, and ��p0� is the � spinor.
Including the Sudakov factor with infrared cutoffs!�!0�, and running the wave function from � down to!�!0�, then we

obtain [14]:
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��xi; bi; p; �� � exp
�
�
X3

l�2

s�!; xlp�� � 3
Z �

!

d ��
��
�q��s� ����

�
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0
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�
�
X3

l�1
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�� � 3

Z �

!0
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�q��s� ����

�
�j�x0i�;

(8)

where j � V, A, T, ! � min�1=~b1; 1=~b2; 1=~b3�, and !0 �
min�1=~b01; 1=~b02; 1=~b03�. ~b�

0�
1 � jb

�0�
2 � b�

0�
3 j, ~b�

0�
2 �

jb�
0�

1 � b�
0�

3 j, and ~b�
0�

3 � jb
�0�
1 � b�

0�
2 j. Here b and b0 are the

conjugate variables to kT and k0T defined in Appendix B.
The explicit expressions for the Sudakov factors are

given in Ref. [14] with
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33� 2nf
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(9)

where �E is the Euler constant. nf is the flavor number, and
�q is the anomalous dimension. For �b baryon decays, the
typical energy scale is above the charm mass. We will take
nf equal to 4 in our calculations.

The hadronic matrix elements can be written as

 Ml;� �
Z
�Dx


Z
�Db
� �Y���0�0�0 �x0i; b

0
i; p
0; ��;

H�0�0�0���
l;� �xi; x

0
i; bi; b

0
i;M�b

; ���Y�b
�����xi; bi; p; ��;

(10)

where the measures of the momentum fractions [14] are
give by

 

�Dx
 � �dx
�dx0
; �dx
 � dx1dx2dx3	
�
1�

X3

l�1

xl

�
;

�dx0
 � dx01dx
0
2dx

0
3	
�
1�

X3

l�1

x0l

�
: (11)

The measures of the transverse extents �Db
 are defined in
Appendix A.

The hard scattering amplitude H�0�0�0���
l;� �x; x0;

b; b0;M�b
; �� is obtained by first evaluating the amplitude

Hi;�0�0�0���
l;� �xi; x0i;kT;k0T;M�b

� for the ’i’th diagram in
Fig. 1 for a corresponding Wilson coefficient Ceff

l which

is displayed in Appendix B. One then carries out a Fourier
transformation on kT and k0T to ~b and ~b0 space to obtain
~Hi;�0�0�0���
l;� �x; x0; b; b0;M�b

�. The procedure of carrying
out this transformation is described at the end of
Appendix B.

Collecting all contributions in Fig. 1 and multiplying the
corresponding Wilson coefficients, one then obtains a
hard scattering amplitude H�0�0�0���

l;� �x; x0; b; b0;M�b
� �P

iC
eff
l �t� ~Hi;�0�0�0���

l;� �x; x0; b; b0;M�b
�. Here we have

labeled the hard scale as t which is taken to be the larger
of the two variables t1;2 associated with the virtual gluon
momentum in Fig. 1, i.e. t � max�ti1; t

i
2�. The expressions

for t1;2 are listed in Appendix C.
Finally a RG running is applied to the hard scattering

amplitude to match the scale � in the wave functions and
we obtain [14]

 H�0�0�0���
l;� �x; x0; b; b0;M�b

; ��

� exp
�
�6

Z t

�

d ��
��
�q��s� ����

�

�H�0�0�0���
l;� �x; x0; b; b0;M�b

�: (12)

The form factors are obtained by grouping relevant
terms according to the definition in Eq. (3). Using
Eq. (10) we obtain a generic expression for the form factors
corresponding to each diagram as

 

Fil �
X

j�V;A;T

�2

27
fj�f�b

Z
�Dx


Z
�Db
iCeff

l �t
i���b

�x�

��j
��x

0� exp��Si
Hij
F�i;

S �
X3

k�2

s�!; xkp�� �
X3

k�1

s�!0; x0kp
0��

� 3
Z t

!

d ��
��
�q��s� ���� � 3

Z t

!0

d ��
��
�q��s� ����;

(13)

whereFil represents the form factors contributed by the ‘‘i’’
the diagram in which operators with the Wilson coeffi-
cients Ceff

l are inserted, in our case Ceff
l � Ceff

7 . The super-
script j labels V, A, and T related to the spin structure of the
valence quarks in the � baryon with fA� � fV� � f�. The
explicit expressions of �i are presented in Appendix D.
The functions Hij

F are given in Appendix E. The total form
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factors are obtained by summing over contributions from
all diagrams.

III. NUMERICAL RESULTS

We are now ready to evaluate the form factors numeri-
cally. For concreteness, we adopt the model proposed in
Ref. [19] for the �b baryon distribution amplitude �,

 ��x1; x2; x3� � Nx1x2x3 exp
�
�

M2
�b

2�2x1

�
m2
q

2�2x2

�
m2
q

2�2x3

�
: (14)

The normalization constant N is obtained by the condition:

 

Z
�dx
��x1; x2; x3� � 1: (15)

The decay constant f�b
is determined by fitting B��b !

�cl ��� whose central value is 5% measured by DELPHI
[22] using the same PQCD method. When fitting the data
we truncate the double log Sudakov factor in such a way

that the factor exp��s� is smaller than 1 following the
prescription in Ref. [23]. Our numbers for f�b

are different
from those obtained in Ref. [15] where a B��b ! �cl ���
was taken to be 2%. We also have chosen cutoffs as ! �
1:14 min�1=~b1; 1=~b2; 1=~b3� and !0 � 1:14 min�1=~b01;
1=~b02; 1=~b03�. The factor 1.14 is adopted because this cutoff
choice can result in form factors which vary smoothly with
square of momentum transfer in fitting �b ! �cl �� process
and it reflects the resummation of next-to-leading double
log in higher order radiative corrections [24]. Also the �
and mq in the heavy baryon wave function distribution
need to be fixed. In Ref. [14–16], � � 1 GeV and mq �

0:3 GeV were used to estimate �b ! �cl ��, �b ! pl �� and
also �b ! �J= decay rates. � should not be too much
smaller than 1 GeV if the form factors are dominated by
perturbative contributions. Therefore we will let both �
and mq vary within ranges as 0:6� 1 GeV and 0:2�
0:3 GeV. The results for f�b

are shown in Table I for
different parameter choices, respectively.

The � baryon distribution amplitudes have been studied
using QCD sum rules. In this work, we adopt the model
proposed in Ref. [21],

(a)

t1

t2

(b)

t1 t2

(c)

t1

t2

(d)

t1t2

(e)

t1

t2

( f )

t1

t2

(g)

t1

t2

(h)

t1

t2

(i)

t1 t2

( j )

t1

t2

(k )

t2 t1

(l)

t1

t2

(m )

t1

t2

(n )

t1

t2

FIG. 1. The lowest order diagrams for the �b ! �� decay. The solid lines, double lines, wavy lines, and the black blub vertex
denote the light quarks, b quark, gluon and the electromagnetic penguin vertex, respectively. Diagrams with triple-gluon vertex do not
contribute since their color factors are all zero in the present case.
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V�x1; x2; x3� � 42
as�x1; x2; x3��0:18�x2
3 � x

2
2�

� 0:10�x2 � x3�
;


A�x1; x2; x3� � �42
as�x1; x2; x3��0:26�x2
3 � x

2
2�

� 0:34x2
1 � 0:56x2x3 � 0:24x1�x2 � x3�
;


T�x1; x2; x3� � 42
as�x1; x2; x3��1:2�x2
2 � x

2
3�

� 1:4�x2 � x3�
;


as�x1; x2; x3� � 120x1x2x3: (16)

The asymmetric distribution in the momentum fractions of
the three quarks implies SU�3� symmetry breaking.

The constants f� and fT� are fixed to be [21]

 

f� � 0:63� 10�2 GeV2;

fT� � 0:063� 10�2 GeV2:
(17)

Finally to obtain the branching ratio for �b ! ��, for
definitiveness we fix rest of the parameters as following.
The parameter �QCD which enters in the strong coupling
constant and various Wilson coefficients, the b quark mass
and the CKM mixing parameters are set to be: �QCD at
0.2 GeV, mb � 4:8 GeV, and the CKM mixing parameters
are set to their central values [25]: s12 � 0:2243, s23 �
0:00413, s13 � 0:0037 and 	13 � 1:05.

Our explicit calculations show that FL � 0 and a non-
zero value for FR as expected since light quark and light
baryon masses have been neglected. The contributions
from each diagrams for FR are shown in Appendix E.
The resulting branching ratio is shown in Table II. We

see that the branching ratio for �b ! �� is in the range
of �4:3� 6:8� � 10�8.

IV. DISCUSSIONS AND CONCLUSIONS

In this work we have used the perturbative QCD ap-
proach to evaluate the branching ratio for radiative decay
�b ! ��. This process occurs via penguin diagrams. Our
results are shown in Table II. The branching ratio obtained
is much smaller than results obtained, shown in Table III,
using other methods.

There are uncertainties in PQCD predictions due to
unknown parameters in wave functions. We have tried to
understand such uncertainties by varying several relevant
parameters. Within reasonable ranges of the parameters it
is not possible to obtain a branching ratio larger than 10�7.
We have considered another possible uncertainty in the
method used here. This is the choice of the infrared cutoffs
!�!0� in the Sudakov suppression factor which damps the
perturbative contributions. In our calculations the cutoffs
are set to the conventional values with! � 1:14 min�1=~b1;
1=~b2; 1=~b3� and !0 � 1:14 min�1=~b01; 1=~b02; 1=~b03� dis-
cussed in the text. The factor 1.14 is adopted because
this choice for cutoffs can result in form factors which
vary smoothly with square of momentum transfer in fitting
�b ! �cl �� process and it reflects the resummation of
next-to-leading double log in higher order radiative cor-
rections [24]. We have checked with slightly different
cutoffs and find impossible to obtain branching ratio to
be as large as what listed in Table III.

The prescription of truncating the factor exp��s� to be
smaller than 1 described in Ref. [23] may also be a source
for uncertainties. We therefore have evaluated the branch-

TABLE III. Decay branching ratios (B) of �b ! �� based on the form factors from the QCD sum rule approach, the covariant
oscillator quark model, HQET and MIT bag model, respectively

Model Pole model [10] QCD sum rule [11] Covariant oscillator quark model [12] HQET [13] Bag model [13]

B �0:10� 0:45� � 10�5 �3:7� 0:5� � 10�5 0:23� 10�5 �1:2� 1:9� � 10�5 0:6� 10�5

TABLE I. Decay constant f�b
for different choices of � and mq, respectively.

f�b
(GeV) � � 0:6 GeV � � 0:7 GeV � � 0:8 GeV � � 0:9 GeV � � 1 GeV

mq � 0:2 GeV 0:691� 10�3 0:841� 10�3 1:02� 10�3 1:21� 10�3 1:43� 10�3

mq � 0:3 GeV 1:27� 10�3 1:45� 10�3 1:65� 10�3 1:88� 10�3 2:12� 10�3

TABLE II. Branching ratio (BR) of �b ! �� for different choices of � and mq with Sudakov truncation.

BR��108� � � 0:6 GeV � � 0:7 GeV � � 0:8 GeV � � 0:9 GeV � � 1 GeV

mq � 0:2 GeV 6.76 6.26 6.19 4.90 4.67
mq � 0:3 GeV 6.42 5.75 5.61 4.44 4.32
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ing ratio without this truncation. The results are shown in
Table IV. We see that the results are similar to those
obtained in Table II.

We therefore conclude that within the PQCD frame-
work, the branching ratio for �b ! �� is much smaller
than other model calculations. This is somewhat surprising
since PQCD calculation for the branching ratio of B!
K���� obtains a value of order consistent to other model
calculations and also agrees with experimental value of
about 4� 10�5 [6]. There is a huge suppression for �b !
��. At this moment there is no data available for �b !
�� yet. We have to wait for future experimental data to tell
us more. If a branching ratio above 10�7 is measured at
some future facilities, such as LHCb, the PQCD method
used here will certainly need to be modified.

On the theoretical side, one expects the branching ratio
for �b ! �� to be smaller than that of B! K���� due to
several suppression factors such as an additional �2

s and a
large momentum squared q2 suppression factor as one
more hard gluon is exchanged between quarks. There is
also an additional Sudakov suppression factor due to an
additional spectator quark involved in the process as can be
seen from Eq. (13).

One might question the applicability of PQCD method
for the process under consideration. One notes that in the
PQCD approach, both gluons are hard ones which excludes
the possibility of including contributions where two spec-
tator quarks (not involved in the weak interaction vertex)
form a collective object first due to soft gloun exchanges,
i.e. the diquark, and then this object interacts with the other
quark by exchanging a hard gluon. If this contribution turns
out to be the dominant one, the branching ratio may be
substantially larger. At present there is no solid theoretical
method to treat this effect yet, we do not have a definitive
answer about this. We, however, note that estimate for
�b ! �J= using the same method gives a reasonable
range compared with data [16]. This can be taken as a
support for the applicability of the method to �b decays.
Our result for B��b ! ��� represents a reasonable esti-
mate. The branching ratio for �b ! �� is in the range of
�4:3� 8:6� � 10�8 which is smaller than predictions using
other methods listed in Table III. We have to wait for future
experiments to provide more information.
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APPENDIX A: THE b MEASURES

The ordinary b measure is defined as

 �db
 �
d2b
�2��2

: (A1)

The explicit forms of �Db
i for each diagram i in Fig. 1 are
given by

 

�Db
�a� � �db1
�db3
�db01
�db03
;

�Db
�b� � �db1
�db2
�db01
�db02
;

�Db
�c� � �db1
�db3
�db01
�db03
;

�Db
�d� � �db1
�db2
�db01
�db02
;

�Db
�e� � �db2
�db02
�db03
;

�Db
�f� � �db3
�db02
�db03
;

�Db
�g� � �db2
�db3
�db03
;

�Db
�h� � �db2
�db3
�db02


�Db
�i� � �db1
�db2
�db01
�db02
;

�Db
�j� � �db1
�db3
�db01
�db03
;

�Db
�k� � �db1
�db2
�db01
�db02
;

�Db
�l� � �db1
�db3
�db01
�db03
;

�Db
�m� � �db2
�db3
�db02
;

�Db
�n� � �db2
�db3
�db03
:

(A2)

APPENDIX B: HARD SCATTERING AMPLITUDES
Hi;�0�0�0���
l;� �xi; x

0
i;kT;k

0
T;M�b

�

Expressions of amplitude Hi;�0�0�0���
l;� �xi; x0i;kT;

k0T;M�b
� for each diagram in Fig. 1. In the following Ol

�

comes from the �-matrix in the effective Hamiltonian,
Ol�7
� � ���q

�R
For the hard amplitude of Fig. 1(a):

TABLE IV. Branching ratio (BR) of �b ! �� for different choices of � and mq without Sudakov truncation.

BR��108� � � 0:6 GeV � � 0:7 GeV � � 0:8 GeV � � 0:9 GeV � � 1 GeV

mq � 0:2 GeV 8.60 7.22 5.91 4.92 4.60
mq � 0:3 GeV 5.96 5.73 5.70 4.67 4.30
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Ha;�0�0�0���
� �xi; x

0
i;kT;k0T;M�b

� � �"abc"a
0b0c0 �Tj�c0c�T

jTi�b0b�T
i�a0a
g

4
s

�
�����0���

��p6 0 � k6 01 � k6 3��
�
�0�����p6

0 � p6 � k6 1�O�
�0�

�p0 � k01 � k3�
2�p0 � p� k1�

2�p� p0 � k01 � k1�
2�k3 � k

0
3�

2

� CNg
4
s

�����0���
��p6 0 � k6 01 � k6 3��

�
�0�����p6
0 � p6 � k6 1�O�
�0�

�Aa � �k01T � k3T�
2
�Ba � k2

1T
�Ca � �k1T � k01T�
2
�Da � �k3T � k03T�

2


(B1)

with

 Aa � x3�1� x01��M
2
�b
; Ba � �1� x1��M2

�b
; Ca � �1� x1��1� x01��M

2
�b
; Da � x3x03�M

2
�b

(B2)

and the color factor

 CN � "abc"a
0b0c0 �Tj�c0c�TjTi�b0b�Ti�a0a �

�N2 � 1��N � 1�

12
: (B3)

For the hard amplitude of Fig. 1(b):
 

Hb;�0�0�0���
� �xi; x0i;kT;k0T;M�b

� � �"abc"a
0b0c0 �TiTj�c0c�Ti�b0b�Tj�a0a
g4

s

�
�����0�����p6

0 � k6 01 � k6 2���
�0���
��p6 0 � p6 � k6 1�O�
�0�

�p0 � k01 � k2�
2�p0 � p� k1�

2�p� p0 � k1 � k
0
1�

2�k02 � k2�
2

� CNg
4
s

�����0�����p6
0 � k6 01 � k6 2���
�0���

��p6 0 � p6 � k6 1�O�
�0�

�Ab � �k01T � k2T�
2
�Bb � k2

1T
�Cb � �k1T � k01T�
2
�Db � �k2T � k02T�

2


(B4)

with

 Ab � x2�1� x
0
1��M

2
�b
; Bb � �1� x1��M

2
�b
; Cb � �1� x1��1� x

0
1��M

2
�b
; Db � x2x

0
2�M

2
�b
: (B5)

Inspection of the above calculations, one notices that
one can easily obtainHb;�0�0�0���

� �xi; x
0
i;kT;k0T;M�b

� from
Ha;�0�0�0���
� �xi; x

0
i;kT;k0T;M�b

� and vice versa by simply
exchanging the momentum indices 2 and 3 for k and k0,
and exchanging the positions of the Dirac indices �0� and
�0�. Because of these properties, the contributions to the
form factors from the above two diagrams are the same.
This fact can be easily understood by noticing the follow-
ing properties of the quantities related to the distribution
amplitudes: (i) The distribution amplitudes ��x1; x2; x3�,
and 
A�x1; x2; x3� are symmetric in exchanging x2 and x3,
while 
V;T�x1; x2; x3� are antisymmetric in exchanging x2

and x3, as can be seen from Eqs. (14) and (16). And
(ii) When exchanging the Dirac indices � and �, the
expressions for �Y�b

�����ki�� in Eq. (6), and terms pro-
portional to 
A for �Y������k0i; �� in Eq. (7) will have a

sign change, while terms proportional to 
V;T remain the
same. Since going from the contribution of diagram (a) to
diagram (b) involves both actions: exchanging the momen-
tum indices 2 and 3, and the Dirac indices � and �, this
results in no sign changes for all the terms involved. After
integrating out x�x0�2;3 and b�b0�2;3 to obtain the final form
factors using Eq. (13), one then obtains the same results for
both diagrams (a) and (b).

Similar situation happens for the following pairs of
diagrams: (c) and (d), (e) and (f), (g) and (h), (i) and (j),
(k) and (l), and (m) and (n). In the following we will only
display the results for diagrams (a), (c), (e), (g), (i), (k) and
(m). The expressions for diagrams (b), (d), (f), (h), (j), (l),
and (n) can be obtained by exchanging x�x0�2 and x�x0�3,
and also �0� and �0�.

For the hard amplitude of Fig. 1(c):

 

Hc;�0�0�0���
� �xi; x

0
i;kT;k0T;M�b

� � �"abc"a
0b0c0 �Tj�c0c�T

iTj�b0b�T
i�a0a
g

4
s

�
�����0�����p6 � k6 1 � k6 03��

�
�0�����p6 0 � p6 � k6 1�O�
�0�

�p� k1 � k03�
2�p0 � p� k1�

2�p� p0 � k01 � k1�
2�k3 � k03�

2

� CNg4
s

�����0���
��p6 � k6 1 � k6

0
3��

�
�0�����p6
0 � p6 � k6 1�O�
�0�

�Ac � �k1T � k03T�
2
�Bc � k2

1T
�Cc � �k3T � k03T�
2
�Dc � �k1T � k01T�

2

(B6)
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with

 Ac � x03�1� x1��M2
�b
; Bc � �1� x1��M2

�b
; Cc � x3x03�M

2
�b
; Dc � �1� x1��1� x01��M

2
�b
: (B7)

For the hard amplitude of Fig. 1(e):

 He;�0�0�0���
� �xi; x0i;kT;k0T;M�b

� � �"abc"a
0b0c0 �Ti�c0c�TiTj�b0b

��Tj�a0a
g4
s
�����0���

��p6 0 � k6 02 � k6 3��
��p6 0 � p6 � k6 1�O�
�0������0�

�p0 � k02 � k3�
2�p0 � p� k1�

2�k02 � k2�
2�k3 � k

0
3�

2

� CNg4
s

�����0���
��p6 0 � k6 02 � k6 3��

��p6 0 � p6 � k6 1�O�
�0������0�
�Ae � �k02T � k3T�

2
�Be � k2
1T
�Ce � �k2T � k02T�

2
�De � �k3T � k03T�
2


(B8)

with

 Ae � x3�1� x01��M
2
�b
; Be � �1� x1��M2

�b
; Ce � x2x02�M

2
�b
; De � x3x03�M

2
�b
: (B9)

For the hard amplitude of Fig. 1(g):

 

Hg;�0�0�0���
� �xi;x

0
i;kT;k0T;M�b

� � �"abc"a
0b0c0 �Ti�c0c�T

j�b0b�T
iTj�a0a
g

4
s

�
�����0�����p6 0 � k6 02� k6 3�O��p6 � k6 3� k6 02�mb���
�0������0�
��p� k3� k02�

2�m2
b
�p

0 � k02� k3�
2�k02� k2�

2�k03� k3�
2

�CNg4
s

�����0���
��p6 0 � k6 02� k6 3�O��p6 � k6 3� k6

0
2�mb��

�
�0������0�
�Ag��k02T�k3T�

2
�Bg��k02T�k3T�
2
�Cg��k2T�k02T�

2
�Dg��k3T�k03T�
2


(B10)

with

 Ag � �x
0
2�1� x3��� x3�M

2
�b
; Bg � x3�1� x

0
2��M

2
�b
; Cg � x2x

0
2�M

2
�b
; Dg � x3x

0
3�M

2
�b
: (B11)

For the hard amplitude of Fig. 1(i):

 

Hi;�0�0�0���
� �xi; x

0
i;kT;k0T;M�b

� � �"abc"a
0b0c0 �TiTj�c0c�T

i�b0b�T
j�a0a
g

4
s

�
����p6 0 � k6 01� k6 2���
�0��O��p6 �p6 0 � k6 01�mb���
�0������0�

��p�p0 � k01�
2�m2

b
�p
0 � k01� k2�

2�p�p0 � k1� k01�
2�k02� k2�

2

�CNg4
s

����p6
0 � k6 01� k6 2���
�0��O��p6 �p6

0 � k6 01�mb��
�
�0���

���0�

�Ai��k2T�k01T�
2
�Bi��k01T �k2T�

2
�Ci��k1T�k01T�
2
�Di��k2T �k02T�

2


(B12)

with

 Ai � �1� x01��M
2
�b
; Bi � x2�1� x01��M

2
�b
; Ci � �1� x1��1� x01��M

2
�b
; Di � x2x02�M

2
�b
: (B13)

For the hard amplitude of Fig. 1(k):
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Hk;�0�0�0���
� �xi; x

0
i;kT;k0T;M�b

� � �"abc"a
0b0c0 �TiTj�c0c�T

j�b0b�T
i�a0a
g

4
s

�
����p6 � k6 1 � k6

0
2���
�0��O��p6 � p6

0 � k6 01 �mb��
�
�0���

���0�

��p� p0 � k01�
2 �m2

b
�p� k1 � k
0
2�

2�p� p0 � k1 � k
0
1�

2�k02 � k2�
2

� CNg
4
s

����p6 � k6 1 � k6
0
2���
�0��O��p6 � p6

0 � k6 01 �mb��
�
�0���

���0�

�Ak � k021T
�Bk � �k1T � k02T�
2
�Ck � �k1T � k01T�

2
�Dk � �k2T � k02T�
2


(B14)

with

 Ak � �1� x
0
1��M

2
�b
; Bk � x02�1� x1��M

2
�b
; Ck � �1� x1��1� x

0
1��M

2
�b
; Dk � x2x

0
2�M

2
�b
: (B15)

For the hard amplitude of Fig. 1(m):

 

Hm;�0�0�0���
� �xi; x

0
i;kT;k0T;M�b

� � �"abc"a
0b0c0 �Tj�c0c�T

i�b0b�T
iTj�a0a
g

4
s

�
�����0��O��p6 � p6 0 � k6 01 �mb����p6 � k6 2 � k6 03 �mb���
�0������0�
��p� p0 � k01�

2 �m2
b
��p� k2 � k

0
3�

2 �m2
b
�k

0
2 � k2�

2�k03 � k3�
2

� CNg
4
s

�����0��O��p6 � p6
0 � k6 01 �mb����p6 � k6 2 � k6

0
3 �mb��

�
�0���
���0�

�Am � k021T
�Bm � �k2T � k03T�
2
�Cm � �k2T � k02T�

2
�Dm � �k3T � k03T�
2


(B16)

with

 Am � �1� x01��M
2
�b
; Bm � �x03�1� x2��� x2�M2

�b
; Cm � x2x02�M

2
�b
; Dm � x3x03�M

2
�b
: (B17)

The expressions for the hard scattering amplitude in b and b0 space are obtained by making a Fourier transformation on
kT and k0T space. In the following we given one example for Fig. 1(a) as an illustration. We note that the kT and k0T
dependencies are all in the denominators in the above expressions, one then just needs to consider that part of the Fourier
transformation. For Fig. 1(a), it is given by

 ��a��xi; x
0
i;kT;k0T;M�b

� �
1

�Aa � �k01T � k3T�
2
�Ba � k2

1T
�Ca � �k1T � k01T�
2
�Da � �k3T � k03T�

2

: (B18)

The Fourier transformed expression is then given by

 ��a��xi; x0i; bi; b
0
i;M�b

� �
Z
e�i�k1T 
b1�k01T 
b

0
1�k3T 
b3�k03T 
b

0
3���a��xi; x0i;kT;k0T;M�b

�d2k1Td2k01Td
2k3Td2k03T: (B19)

Defining kAT 	 k01T � k3T , kBT 	 k1T , kCT 	 k1T � k01T , and kDT 	 k3T � k03T , we rewrite the transformation as

 ��a��xi; x
0
i; bi; b

0
i;M�b

� �
Z e�i�kAT 
�b3�b03��kBT
�b1�b01�b3�b03��kCT 
��b01�b3�b03��kDT 
��b03�
1

�k2
AT � Aa��k

2
BT � Ba��k

2
CT � Ca��k

2
DT �Da�

d2kATd
2kBTd

2kCTd
2kDT

� �2��4K0�
������
Aa

p
jb3 � b

0
3j�K0�

������
Ba

p
jb1 � b

0
1 � b3 � b

0
3j�K0�

������
Ca

p
jb01 � b3 � b

0
3j�K0�

�������
Da

p
jb03j�:

(B20)

In the above we have used

 

Z
d2k

eik
b

k2 � A
� 2�K0�

����
A
p
jbj�; A > 0: (B21)

One obtains the expression for Ha;�0�0�0���
� �xi; x0i; b; b

0;M�b
� as
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 Ha;�0�0�0���
� �xi; x

0
i; b; b

0;M�b
� � CNg

4
s�����0���

��p6 0 � k6 01 � k6 3��
�
�0�����p6

0 � p6 � k6 1O�
�0�
~��a��xi; x

0
i; bi; b

0
i;M�b

�:

(B22)

In carrying out the Fourier transformations for other diagrams, two other forms of functions will be encountered. We list
them in the following
 Z

d2k
eik
b

�k2 � A��k2 � B�
� �

Z 1

0
dz
jbjK1�

������
Z1

p
jbj�������

Z1

p ; A; B > 0;

Z
d2k1d

2k2
ei�k1
b1�k2
b2�

�k2
1 � A��k

2
2 � B���k1 � k2�

2 � C

� �2

Z 1

0

dz1dz2

z1�1� z1�

������
X2

p

���������
jZ2j

p K1�
�����������
X2Z2

p
�;

(B23)

where A> 0 and B, C are arbitrary. K0 and K1 are the
modified Bessel functions of the second kind. And

 Z1 � Az� B�1� z�;

Z2 � A�1� z2� �
z2

z1�1� z1�
�B�1� z1� � Cz1
;

X2 � �b1 � z1b2�
2 �

z1�1� z1�

z2
b2

2:

(B24)

APPENDIX C: THE MAXIMUM OF t1;2

The hard scales, the maximal of ti1 and ti2 for
diagrams (a), (c), (e), (g), (i), (k), and (m) in Fig. 1.
Exchanging b�b0�2 and b�b0�3, one obtains the expressions
for diagrams (b), (d), (f), (h), ( j), (l), and (n). The expres-
sions of Ci are collected in Appendix B.

i ti1 ti2

(a) maxf
���������
jCaj

p
; 1
jb01�b3�b03j

; !;!0g maxf
����������
jDaj

p
; 1
jb03j
; !;!0g

(c) maxf
���������
jCcj

p
; 1
jb01j
; !;!0g maxf

���������
jDcj

p
; 1
jb3j
; !;!0g

(e) maxf
���������
jCej

p
; 1
jb02j
; !;!0g maxf

���������
jDej

p
; 1
jb03j
; !;!0g

(g) maxf
���������
jCgj

q
; 1
jb2j
; !;!0g maxf

����������
jDgj

q
; 1
jb03j
; !;!0g

(i) maxf
��������
jCij

p
; 1
jb1j
; !;!0g maxf

���������
jDij

p
; 1
jb02j
; !;!0g

(k) maxf
���������
jCkj

p
; 1
jb1�b2�b02j

; !;!0g maxf
���������
jDkj

p
; 1
jb2j
; !;!0g

(m) maxf
����������
jCmj

p
; 1
jb02j
; !;!0g maxf

����������
jDmj

p
; 1
jb3j
; !;!0g

APPENDIX D: EXPRESSIONS OF �i

The expression of �i for diagrams (a), (c), (e), (g), (i),
(k), and (m) in Fig. 1. Exchanging b�b0�2 and b�b0�3, one
obtains the expressions for diagrams (b), (d), (f), (h), ( j), (l)
and (n).

 

��a� � �2��4K0�
������
Aa

p
jb3 � b03j�K0�

������
Ba

p
jb1 � b01 � b3 � b03j�K0�

������
Ca

p
jb01 � b3 � b03j�K0�

�������
Da

p
jb03j�

��c� � �2��4K0�
������
Ac

p
jb3 � b03j�K0�

������
Bc

p
jb1 � b01 � b3 � b03j�K0�

������
Cc

p
jb01j�K0�

������
Dc

p
jb3j�

��e� � 8�5
Z 1

0
dz1dz2

1

z1�1� z1�

������
Xe2

p
���������
jZe2j

q K1�
�����������
Xe2Z

e
2

p
�K0�

������
De

p
jb03j�

��g� � 16�5
Z 1

0
dz
jb3 � b03jK1�

������
Zg1

q
jb3 � b03j�������

Zg1
q K0�

������
Cg

q
jb2j�K0�

�������
Dg

q
jb03j�

��i� � �2��4K0�
�����
Ai

p
jb1 � b01 � b2 � b02j�K0�

�����
Bi

p
jb2 � b02j�K0�

�����
Ci

p
jb1j�K0�

������
Di

p
jb02j�

��k� � �2��4K0�
������
Ak

p
jb1 � b01 � b2 � b02j�K0�

������
Bk

p
jb2 � b02j�K0�

������
Ck

p
jb1 � b2 � b02j�K0�

������
Dk

p
jb2j�

��m� � 8�5
Z 1

0
dz1dz2

1

z1�1� z1�

�������
Xm2

p
����������
jZm2 j

q K1�
�������������
Xm2 Z

m
2

p
�K0�

�������
Dm

p
jb3j�

(D1)

with
 

Xe2 � �b
0
2 � z1b2�

2 �
z1�1� z1�

z2
b2

2; Ze2 � Ae�1� z2� �
z2

z1�1� z1�
�Be�1� z1� � Cez1
 Zg1 � Agz� Bg�1� z�

Xm2 � �b
0
2 � z1b2�

2 �
z1�1� z1�

z2
b2

2; Zm2 � Am�1� z2� �
z2

z1�1� z1�
�Bm�1� z1� � Cmz1
: (D2)
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APPENDIX E: EXPRESSIONS FOR Hij
F

In this appendix we list Hij
F corresponding to the form factors defined in Eq. (13). We use ~FjR for each diagram. The

expressions for diagrams (a), (e), (g), (i), (k), and (m) in Fig. 1, whenever nonzero, are listed in the following. The
expressions for diagrams (b), (f), (h), ( j), (l) and (n) can be obtained by exchanging x�x0�2 and x�x0�3 and changing the signs
for expressions FV;TR . Diagrams (c) and (d) have no contributions to �b ! ��. ~FL is equal to zero in our approximation.

For the hard amplitudes of Fig. 1(a):

 

~F A
R � 8x3�

2M4
�b
: (E1)

The relation between the tilde form factors listed above and the form factors in Eq. (3) is as the following, taking ~FAR as
an example, FAR �

�2

27 f
j
�f�b

R
�Dx


R
�Db
iCeff

l �t
i���b

�x��j
��x

0� exp��Si
 ~FAR�i. For this example j � A, and fA� � f�.
For Fig. 1(a), ‘‘i’’ takes the value ‘‘a.’’ Similar for other form factors and diagrams.

The other nonzero contributions are

 

Fig:1 �e�: ~FVR � ~FAR � �4M4
�b
�2x3;

Fig:1 �g�: ~FVR � 4M3
�b
�mb��M�b

��2x3��1� �� � �1� x02��1� ������

~FAR � 4M3
�b
��1� ���mb �M�b

��1� x02���;

Fig:1 �i�: ~FAR � 8M3
�b
x2�mb��1� �� �M�b

�1� ��1� x01����;

Fig:1 �k�: ~FAR � 8M3
�b
�x02�mb �M�b

��1� ���;

Fig:1 �m�: ~FVR � �4M2
�b
��m2

b��2� �� �M�b
mb�x2 � x2�� ��1� x01 � x

0
3���

�M2
�b
��2� �2� x01 � x

0
3��� x

0
3�

2 � x2�1� ��1� x01�����;

~FAR � �4M2
�b
�m2

b��M�b
mb��2� x2�1� �� � ��1� x01 � x

0
3���

�M2
�b
�2� �2� x01 � x

0
3��� x

0
3�

2 � x2��1� �1� x01�����:

(E2)
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