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A consistent SU(6) extension of the Weinberg-Tomozawa meson-baryon chiral Lagrangian is con-
structed which incorporates vector meson and baryon decuplet degrees of freedom. The corresponding
Bethe-Salpeter approximation predicts the existence of an isoscalar spin-parity 3�

2 K�N bound state
(strangeness �1) with a mass around 1.7–1.8 GeV. It is the highest hypercharge state of an antidecuplet
SU(3) representation and it is unstable through K� decay. The estimated width of this state (neglecting
d-wave KN decay) turns out to be small (� � 15 MeV). Clear signals of this resonance would be found in
reactions like �p! �K0pK��� by looking at the three body pK��� invariant mass.
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I. INTRODUCTION

Forty years ago, it was suggested [1–3] that it might be a
useful approximation to assume that the light quark-light
quark interaction is approximately spin independent as
well as SU(3) independent. This corresponds to treating
the six states of a light quark (u, d or s with spin up, " , or
down, # ) as equivalent, and leads us to the invariance group
SU(6). In order that we can speak meaningfully of SU(6)
transformations affecting spin but not orbital angular mo-
mentum (L) as invariances, it must be assumed that the
orbital angular momentum and the quark spin are to a good
approximation, separately conserved. This, in turn requires
the spin-orbit, tensor and spin-spin interactions between
quarks to be small. As is known, mixing the compact,
purely internal flavor symmetry, with the noncompact
Poincare symmetry of spin angular momentum led to some
inconsistencies, which gave rise to the no-go Coleman-
Mandula theorem [4] forbidding such exact hybrid sym-
metries, unless supersymmetry is invoked. However, there
exist several SU(6) predictions (relative closeness of
baryon octet and decuplet masses, the axial current coef-
ficient ratio F=D � 2=3, the magnetic moment ratio
�p=�n � �3=2) which are remarkably well satisfied in
nature [5]. This suggests that SU(6) could be a good
approximate symmetry. Indeed, in the largeNc limit (being
Nc the number of colors) [6,7], there exists an exact spin-
flavor symmetry for ground state baryons [8]. Moreover,
though in general the spin-flavor symmetry is not exact for
excited baryons even in the large Nc limit, in the real world
(Nc � 3), the zeroth order spin-flavor symmetry breaking
turns out to be similar in magnitude to O�N�1

c � breaking
effects [9]. In the meson sector, an underlying static chiral
U�6� �U�6� symmetry has been advocated by Caldi and
Pagels [10,11], in which vector mesons would be ‘‘dor-
mant’’ Goldstone bosons acquiring mass through relativ-
istic corrections. This scheme solves a number of theo-

retical problems in the classification of mesons and also
makes predictions which are in remarkable agreement with
the experiment. In any case, although spin-flavor symmetry
in the meson sector is not a direct consequence of large Nc
QCD, vector mesons �K�; �;!; �K�; �� do exist and they
are known to play a relevant role in hadronic physics [12].
Inescapably, they will couple to baryons and will presum-
ably influence the properties of the baryonic resonances.
Lacking better theoretically founded models to include
vector mesons, we regard the spin-flavor symmetric sce-
nario as a reasonable first step. The large Nc consequences
of this scheme have been pursued in [13].

Since the pure SU(3) (flavor) transformations commute
with the pure SU(2) (spin) transformations, it follows that a
SU(6) multiplet can be decomposed into SU(3) multiplets
each of definite total spin. With the inclusion of spin there
are 36 quark-antiquark (q �q) states, and the SU(6) group
representation reduction (denoting the SU(6) multiplets by
their dimensionality and a SU(3) multiplet � of spin J by
�2J�1) reads

 6 	 6� � 35 
 1 � �81 
 83 
 13� 
 11: (1)

We might expect the lowest bound state to be a s-state and
since the relative parity of a fermion-antifermion pair is
odd, the octet of pseudoscalar �K;�;�; �K� and the nonet of
vector �K�; �;!; �K�; �� mesons are commonly placed in
the 35 representation. Note that the 35 allows nine vector
mesons but only eight 0� mesons. A ninth 0� meson (�0)
must go in the 1 of SU(6). This may account for the
phenomenological evidence that the mixing of the octet
and singlet states is much smaller for the 0� mesons than
for the 1� mesons [14]. Mesons of spin greater than one
can be understood as states of the q �q system with L> 0.
On the other hand, with the inclusion of the spin there are
216 three quark states, and it follows
 

6 	 6 	 6 � 56 
 20 
 70 
 70

� �82 
 104� 
 �14 
 82�


 2� �102 
 84 
 82 
 12�: (2)
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It is natural to assign the lowest-lying baryons to the 56 of
SU(6), since it can accommodate an octet of spin-1=2
baryons and a decuplet of spin-3=2 baryons, which are
precisely the SU(3)-spin combinations of the low-lying
baryon states (�N;�;�;�� and ��;��;��;��). Fur-
thermore, the 56 of SU(6) is totally symmetric, which
allows the baryon to be made of three quarks in s-wave
(the color wavefunction being antisymmetric).

Here we will consider describing the s-wave interaction
between the lowest-lying meson multiplet (35) and the
lowest-lying baryons (56-plet) at low energies. At larger
energies higher partial waves are involved and a suitable
treatment of spin-orbit effects in the SU(6) scheme would
be required. Thus, assuming that the s-wave effective
meson-baryon Hamiltonian is SU(6) invariant, and since
the SU(6) decomposition of the product of the 35 (meson)
and 56 (baryon) representations yields

 35 	 56 � 56 
 70 
 700 
 1134; (3)

we have only four (Wigner-Eckart irreducible matrix ele-
ments) free functions of the meson-baryon Mandelstam
variable s. Similar ideas were already explored in the late
sixties, within the effective range approximation [15].
Here, we introduce two major improvements: (i) We
make use of the underlying Chiral Symmetry (CS), which
allows us to determine the value of the SU(6) irreducible
matrix elements from the Weinberg-Tomozawa (WT) in-
teraction [16,17], the leading term of the chiral Lagrangian
involving Goldstone bosons and the octet of spin-1=2
baryons. This is not a trivial fact and it is intimately linked
to the underlying group structure of the WT term. (ii) We
go beyond the effective range approximation and follow a
scheme based on the solution of the Bethe-Salpeter-
Equation (BSE), which incorporates two-body coupled
channel unitarity and has been successfully employed in
the study of s-wave (81 )meson-(81)meson and (81)meson-
(82, 104)baryon scattering and resonances, within different
renormalization schemes [18–28].

II. SU(6) MESON-BARYON EFFECTIVE
INTERACTION MATRIX

We will work with well defined total isospin (I), angular
momentum (J) and hypercharge (Y) (strangeness plus
baryon numbers) meson-baryon states constructed out of
the SU(6) 35 (mesons) and 56 (baryon) multiplets. In what
follows we always use the labels� and� to denote generic
SU(3) and SU(6) representations, respectively. For short,
we use the notation M � ���M�2JM�1; IM; YM
 for mesons
and similarly for baryons (B). Thus, �M � 8, 1 and �B �
8, 10 are the meson and baryon SU(3) multiplets, respec-
tively, and JM;B, IM;B, YM;B are the spin, isospin and hy-
percharge quantum numbers of the involved hadrons. The
meson-baryon states in terms of the SU(6) coupled (ortho-
normal) basis read

 

jMB; JIYi �
X
�;�;�

�
�M

IMYM

�B

IBYB

���������IY
�

�

�
35

�MJM

56
�BJB

�������� �
�J�

�
j�;��

2J�1IYi; (4)

where Y � YM � YB, jIM � IBj � I � IM � IB, and for
s-wave scattering jJM � JBj � J � JM � JB, while � �
56, 70, 700, 1134, and � accounts for the multiplicity of
each of the �2J�1 SU(3) multiplets of spin J (for L � 0, J
is given by the total spin of the meson-baryon system)
entering in the representation �. Multiplicities higher
than one only happen for the 1134 representation, where
the 274, 104, 272 and the 102 multiplets appear twice and
the 84 and 82 ones appear 3 times. The index � runs over
the (27, 10, 10�, 8s, 8a, 1), (35, 27, 10, 8), (8) and (10)
SU(3) representations for the octet-octet, octet-decuplet,
singlet-octet and singlet-decuplet decompositions, respec-
tively. Finally in Eq. (4), the two coefficients which multi-
ply each element of the SU(6) coupled basis are the SU(3)
isoscalar factors [29], and the SU(6)-multiplet coupling
factors [30,31]. The assumption that the effective s-wave
meson-baryon potential (V) is a SU(6) invariant operator
implies that (i) the coupled states j�;��

2J�1IYi are eigen-
vectors of V and (ii) the corresponding eigenvalues V��s�
may depend on the SU(6) representation � but not on the
other quantum numbers �, �, J, I, or Y. Thus, in the
noncoupled basis we find

 hM0B0; JIYjVjMB; JIYi �
X
�

V��s�P
�;JIY
MB;M0B0 ; (5)

with projectors given by
 

P�;JIY
MB;M0B0 �

X
�;�

�
35

�MJM

56
�BJB

�������� �
�J�

��
�M

IMYM

�B

IBYB

���������IY
�

�

�
�0M0
I0M0Y

0
M0

�0B0
I0B0Y

0
B0

���������IY
�

�

�
35

�0M0J
0
M0

56
�0B0J

0
B0

�������� �
�J�

�
: (6)

III. CHIRAL SYMMETRY CONSTRAINTS

We make use of the underlying CS and propose a chiral
expansion to determine the V��s� functions. Thus, we look
at the effective s-wave potential describing the interaction
of the Goldstone pseudoscalar meson and the lowest JP �
1
2
� baryon octets. From the SU(3) WT chiral Lagrangian

(we use the convention V � �L), one finds for each �I; Y�
sector [(0, 2), (1, 2), (1=2, 1), (3=2, 1), (0, 0), (1, 0), (2, 0),
�1=2;�1�, �3=2;�1�, (0, �2), (1, �2)] and on the mass
shell (recall that J � 1=2)

 VIYab�
���
s
p
� � DIY

ab

2
���
s
p
�Ma �Mb

4f2 (7)
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with
 

DIY �
X
�;�;�0

���!��0

�
8

IMYM

8
IBYB

����������

IY

�

�

�
8

I0M0Y
0
M0

8
I0B0Y

0
B0

����������0

IY

�
; (8)

where Mb (Ma) is the baryon mass of the initial (final)
channel, f ’ 93 MeV the pion weak decay constant, �
runs over the 27, 10, 10�, 8 and 1 SU(3) representations
and �, �0 are used to account for the two octets (8s and 8a)
which appear in the 8 	 8 decomposition (27� 10�
10� � 8s � 8a � 1). Besides, �27 � 2, �8s � �8a � �3,
�1 � �6, �10 � �10� � �8s$8a � 0, which reproduces
the D-matrix eigenvalues found in Ref. [26]. Thus, we
see that CS at leading order is much more predictive than
SU(3) symmetry, and it predicts the values of the seven �
couplings, which otherwise will be totally arbitrary func-
tions of s. Note that the SU(3) WT Lagrangian also pro-
vides the s dependence ((

���
s
p
�M), with M the common

mass of the baryon octet in the SU(3) limit) of the effective
potential, and thus one is left with only two free parame-
ters, namely, f and M.

It is clear that not all SU(3) invariant interactions in the
(81)meson-(82)baryon sector can be extended to a SU(6)
invariant interaction. Remarkably, the seven couplings
(�’s) in the WT interaction turn out to be consistent with
SU(6) and moreover, the extension is unique. In other
words, there is a choice of the four couplings for the 35 	
56 interaction that, when restricted to the 81 	 82 sector,
reproduces the seven SU(3) WT couplings and such choice
is unique. Indeed, the potential of Eq. (7) can be recovered,
in the SU(3) limit, from Eq. (5) by taking

 V��s� � ���

���
s
p
�M

2f2 ; (9)

with ��56 � �12, ��70 � �18, ��700 � 6 and ��1134 � �2
and M now being the common octet and decuplet baryon
mass.1 The underlying reason for this is CS. Indeed, the
WT Lagrangian is not just SU(3) symmetric but also chiral
(SUL�3� 	 SUR�3�) invariant. Symbolically (and up to an
overall coefficient)

 LWT � Tr��My;M
ByB�: (10)

This structure, dictated by CS, is more suitably analyzed in
the t-channel. The mesons M fall in the representation 8

which is also the adjoint representation. The commutator
�My;M
 indicates a t-channel coupling to the 8a (antisym-
metric) representation, thus

 LWT � ��My 	M�8a 	 �B
y 	 B�8�1: (11)

The unique SU(6) extension is then

 L WT;SU�6� � ��M
y 	M�35a 	 �B

y 	 B�35�1; (12)

since the 35 is the adjoint representation of SU(6). The
t-channel decompositions 35 	 35 � 1 
 35s 
 35a 

189 
 280 
 280� 
 405 and 56 	 56� � 1 
 35 
 405 

2695 indicate that the coupling in Eq. (12) exists and is
indeed unique, all coupling constants being reduced to a
single independent one, namely, that of the WT Lagrangian
(pion weak decay constant, besides the hadron masses).

The large Nc behavior of the SU(6) WT extension pro-
posed here has been contemplated in [13]. Two interesting
conclusions of that study are, (i) a consistent treatment of
the WT interaction, yields a generic large Nc amplitude of
the same order as the baryon pole one, O�N0

c�, in ampli-
tudes involving vector mesons, instead of the known 1=Nc
suppression for pseudoscalars. And (ii) the SU(6) WT
interaction is large in the 70-plet SU(6) sector even for
large Nc, which is consistent with quark model consider-
ations [32] (see also footnote 1).

IV. MESON-BARYON SCATTERING MATRIX AND
THE ��� BARYON.

We solve the coupled channel BSE with an interaction
kernel determined by Eqs. (5) and (9). Some mass breaking
effects can be taken into account just by replacing �

���
s
p
�

M� by �2
���
s
p
�Ma �Mb�=2 in Eq. (9). In a given JIY

sector, the solution for the coupled channel s-wave scat-
tering amplitude, TJIY�

���
s
p
� (normalized as the t matrix

defined in Eq. (33) of [24]), in the on-shell scheme [19–
25] reads,

 TJIY�
���
s
p
� �

1

1� VJIY�
���
s
p
�JJIY�

���
s
p
�
VJIY�

���
s
p
� (13)

with

 VJIY�
���
s
p
� � hM0B0; JIYjVjMB; JIYi; (14)

and JJIY�
���
s
p
� a diagonal matrix of loop functions [24,25],

which logarithmically diverge and hence need one sub-
traction or an ultraviolet (UV) cutoff to make them finite.
Possible d-wave mixings (chiral corrections provide
d-wave meson-baryon amplitudes) and the rich new phe-
nomenology (there are new open channels, due to the
inclusion of the vector meson degrees of freedom and the
products from their decays, not taken into account in the
usual meson-baryon analysis based on the WT interaction)
which can be extracted from Eq. (13) will be studied else-
where. We will focus here on the Y � 2 (strangeness �
�1) sector of great interest since the claim by the LEPS

1The SU(6) extension thus obtained (Eqs. (5) and (9)) also
leads to the potentials used in Ref. [27,28] to study the (104-
)baryon-(81)meson sector. Note also that the 70 of SU(6) leads to
the most attractive s-wave meson-baryon interaction. This would
be consistent with the scenario studied in [9], namely, that the
first negative parity baryon excited states are members of the 70
multiplet, and also with constituent quark model considerations,
where the 70-plet appears when one of the quarks occupies an
orbitally excited level [32].
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collaboration of the observation of the ���1540� reso-
nance [33]. Though its existence is controversial (see e.g.
[34]), it seems clear that the possible candidate would be an
isoscalar, extremely narrow (with width definitely smaller
than 10 MeV), while its spin-parity has not been estab-
lished yet.

In the Y � 2, I � 0 sector, the jKNi and jK�Ni
states appear. We have jKNiJ�1=2 � �j700; 10�2i ����

3
p
j1134; 10�2i�=2 and jK�NiJ�1=2 � ��

���
3
p
j700; 10�2i �

j1134; 10�2i�=2, and jK�NiJ�3=2 � �j1134; 10�4i. In the
J � 1=2 channel, we find a resonance (pole in the second
Riemann sheet [24,25]), though its exact position depends
on the details of the Renormalization Scheme (RS) used. It
comes out too wide (�> 100 MeV) to be identified as the
���1540�. The situation is much more suggestive for J �
3=2. There, the effective interaction is determined by the
1134 SU(6) representation alone and it is attractive
( ��1134 � �2). A pole is found in the first Riemann sheet
corresponding to a K�N bound state which we call ���.
This state is unstable since the K� decays into K�. In order
to estimate the ��� width, we model the ��NK� coupling
as

 L��NK� � �
g���
2
p ����K�0� p� K��� n� � H:c:; (15)

while the K� decay is described by

 L K�K� � �
ig0���
2
p
f2
f@���@	K��@�K�0	 � @	K�0� �

� @���@	 �K0�@�K��	 � @	K��� �

�
1���
2
p @��0@	 �K0�@�K�0	 � @	K�0� �

�
1���
2
p @��0@	K��@�K

��
	 � @	K

��
� �g � H:c:

(16)

In the previous formulas, �� is a Rarita-Schwinger field, p
and n the nucleon fields, K�0� , �K�0� � �K

�0
� �
y and K��� �

�K��� �y the Proca fields which annhilate and create neutral
and charged K� and �K� mesons, and similarly for the kaon
and antikaon fields, while�0 and�� � ����y are the pion
fields. The coupling g is determined by the residue at the
pole of T3=2

02 [i.e., T3=2
02 � g2 � 2M��=�s�M

2
�� �] and we

fix g0 � 0:14 to reproduce �K�0 � �K�� � 50 MeV (we
use charged averaged masses). This gives
 

��� �
g2g02

32�3f4

1

6M��

Z M���MN

m��mK

d ~m ~m2 ~qq3
�

�
�2 ~m2 � ~E2��M�� �MN � ~E�

� ~m2 �m2
K� �

2 � � ~m ~��2
; (17)

where ~m, ~E, ~q, and ~� are the invariant mass, energy,
momentum, and width, respectively, of the virtual K� in
the at rest �� system,

 

~E �
M2

�� � ~m2 �M2
N

2M��
; ~q2 � ~E2 � ~m2;

~� �
g02

32�f4 q
3
� ~m2;

(18)

and q� is the pion momentum in the at rest K� system

 q2
� �

�� ~m2; m2
�;m

2
K�

�2 ~m�2
: (19)

Resonance mass, residue and width depend on the RS
employed. We have used an UV cutoff (�) to evaluate
the loop function J�

���
s
p
�, which is equivalent to choose an

scale �� such that J�
���
s
p
� ��� � 0. Results are shown in

Fig. 1. For �� ranging from 0.05 GeV (� � 1:08 GeV) to
1.7 GeV (� � 0:46 GeV) the resonance mass (width)
varies from 1.688 GeV (0.3 MeV), close to the (MN �
m� �mK) threshold, to 1.831 GeV (9 MeV, but the width
does not grow monotonously, see figure), close to the
(MN �mK�) threshold.

In our treatment we have not included d-wave KN, K�N
contributions, nor further s-wave terms such as the
u-channel pole graph or single pion exchange between
K� and N (the vertex K�K�� being of abnormal parity)
since none of these mechanisms contributes to the K�N
s-wave scattering length (i.e., they vanish at threshold).2

Another mechanism for K�N scattering not included here
would be the sequential exchange of two pions with an

µ̄ [GeV]

M Θ∗ [GeV]

[MeV]ΓΘ∗
10

g2

10

Λ [GeV]
1.050.90.750.60.45

2
1.8
1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0

FIG. 1 (color online). Resonance ��� properties as a function
of the UV cutoff � or the subtraction scale ��.

2Except for a small contribution from the antibaryon term of
the pole graph, all elementary vertices involved are p-wave.
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intermediate K meson, corresponding to a box graph
K�N ! KN ! K�N, which involves two p-wave normal
parity K�K� vertices. Unlike the single pion exchange,
such a contribution is not vanishing at threshold since the
two virtual pions need not carry a small momentum. An
analogous mechanism has been considered long ago for
KN scattering [35,36], this time with the box graph KN !
K�N ! KN. Technically a box graph is difficult to work
with, since one must somehow renormalize its intrinsic UV
divergence, and then renormalize its contribution in the
BSE ladder. This is quite hard for a non contactlike vertex
and, at present, certainly beyond a consistent chiral unitary
treatment. Fortunately, available calculations of �KN scat-
tering within the BSE chiral unitary approach (none of
them including box graphs [21–28]) yield a fairly good
quantitative description of s-wave baryonic resonance
data. This would suggest that the box mechanism would
not play a crucial role. In summary, we do not expect the

corrections to the mass and width estimated above for the
�� resonance to be large enough to affect its existence.
Possible production and identification mechanisms for this
resonance could be found in reactions like �p!
�K0pK��� by meassuring the three body pK��� invari-

ant mass.
The scheme presented here also contains other exotic

states which will be examined elsewhere. For instance in
the Y � �3, I � J � 1=2 sector we find j �K��i �
j1134; 352i and thus we have an attractive �K�� interaction
and possibly a bound state.
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