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We analyze the energy-scale dependence of fragmentation functions from e�-e� collisions using
conventional momentum measures xp and �p and rapidity y. We find that replotting fragmentation
functions on a normalized rapidity variable results in a compact form precisely represented by the beta
distribution, its two parameters varying slowly and simply with parton energy scale Q. The resulting
parameterization enables extrapolation of fragmentation functions to low Q in order to describe fragment
distributions at low transverse momentum pt in heavy ion collisions at RHIC.
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I. INTRODUCTION

QCD theory predicts that an abundance of soft gluons
(minijets) should be produced in relativistic collisions at
RHIC [1]. Copious gluon production may drive formation
of the colored medium in heavy ion collisions and global
hydrodynamic phenomena [2,3]. However, the degree of
equilibration of minijets in heavy ion collisions remains
uncertain theoretically and experimentally. We should
therefore search for and study remnants of low-Q2 (energy
scale Q� 1–5 GeV) partons in single-particle and two-
particle distributions of final-state hadrons.

Measurements of two-particle correlations at RHIC with
novel techniques have revealed substantial unequilibrated
low-Q2 parton fragment structure in p-p and Au-Au colli-
sions [4–14]. Fragment correlations have been measured in
p-p collisions on transverse rapidity yt (defined below) and
complementary angular subspace ��;�� with no jet hy-
pothesis (no high-pt trigger particle), providing access to
fragments from minimum-bias partons (no analysis con-
straint on parton momentum) dominated by minijets. Jet
correlations have been observed in p-p collisions for had-
ron pt down to 0:35 GeV=c (parton Q� 1–2 GeV) [4,14].
Similar measurements in heavy ion collisions have re-
vealed unexpected complexity.

Initial measurements of two-particle angular correla-
tions in p-p collisions at Fermilab (fixed target) and the
CERN ISR on momentum subspace ��;�� (pseudorapidity
and azimuth) [15] were described in terms of longitudinal
(string) fragmentation [16]. Jets—correlated fragments
from hard-scattered partons—were first observed at larger
pt and

���
s
p

, establishing the nature of hard parton scattering
and the validity of perturbative QCD (pQCD) [17]. A
pioneering study of two-particle fragmentation functions
in LEP e�-e� collisions is described in [18] (cf. a related
theoretical treatment in [19]).

Minijet correlations in p-p and heavy ion collisions
observed at RHIC represent QCD in a non-perturbative
context: parton scattering, energy loss and fragmentation at
low Q2. We wish to connect those measurements to QCD
theory via parton fragmentation measurements at largerQ2

in elementary collisions. A context for two-particle frag-

ment distributions at RHIC can be established by studying
single-particle fragmentation functions (FFs) from p-�p and
e�-e� collisions, the latter providing especially precise
access to the fragmentation process down to very low
parton Q and hadron momentum.

Low-Q2 fragmentation is related to local parton-hadron
duality (LPHD) which provides a correspondence between
pQCD parton predictions and hadronic observables [20].
According to LPHD conversion of partons to hadrons
occurs locally in configuration space, with almost no dis-
tortion of the parton momentum distribution. The struc-
tural difference between a parton and a hadron should
vanish for Q� 1–2 GeV where parton production is
most abundant in RHIC collisions. LPHD is important
for low-Q2 partons where ‘‘fragmentation’’ may terminate
with one or two partons (and hence hadrons). Minijet-
related minimum-bias two-particle correlations studied in
p-p and A-A collisions [4,5,8,9,11,14] may therefore pro-
vide details of parton fragmentation at the energy scale
where LPHD is most important.

Modification of parton scattering and fragmentation in
the QCD medium of heavy ion collisions may reveal
properties of the medium itself. A theoretical study of in-
medium modification of the single-particle FF in A-A
collisions is reported in [21]. The expectation is deforma-
tion of the in vacuo FF toward lower momentum, possibly
corresponding to observed changes in the single-particle pt
spectrum ratio RAA with collision centrality [22,23]. A
related study of two-particle correlations in heavy ion
collisions, especially the asymptotic approach of fragment
distributions to thermal equilibrium with increasing parton
dissipation in the medium, is reported in [6]. Given the
close connection between single-particle FFs and minijet-
related two-particle fragment correlations, correlation
measurements in heavy ion collisions may provide a
more differential picture of properties of the QCD medium
and its influence on low-Q2 parton fragmentation.

In this paper we establish a basis for extrapolation of
measured e�-e� FFs to small energy scales as preparation
for similar extrapolations in nuclear collisions. This is not a
theoretical analysis based on pQCD methods. For a recent

PHYSICAL REVIEW D 74, 034012 (2006)

1550-7998=2006=74(3)=034012(19) 034012-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.74.034012


example of such an analysis which consistently describes
FFs over a large xp (momentum fraction) range cf. [24] and
the related discussion in Sec. XIII D. The present paper
describes a phenomenological analysis of FF data intended
to provide the best possible extrapolation down to small
parton energies where pQCD assumptions such as colli-
nearity and factorization become invalid.

The paper is organized as follows: We first present a new
method of analyzing fragmentation functions, with empha-
sis on rapidity y as a preferred kinematic variable for
low-Q2 fragmentation studies. We then consider the gen-
eral properties of FFs in the context of the double-log
approximation (DLA), angular ordering and color coher-
ence. We compare measured FFs from e�-e� collisions at
three energies on several momentum variables and de-
scribe a new form of approximate energy-scale invariance
on normalized rapidity u. We demonstrate that FFs on u are
precisely modeled by the beta distribution. We consider
FFs for identified hadrons and identified partons. Based on
fits to measured FFs and jet multiplicity data we develop a
simple, precise parameterization of e�-e� FFs valid over a
broad energy range. Finally, we use our parameterization to
study scaling violations and extrapolation to low Q2.

II. ANALYSIS METHOD

The FF D�xE;Q2� as used in this analysis is a single-
particle density 2dn=dxE of hadron fragments on energy
fraction xE � Ehadron=Eparton produced by a pair of partons
(dijet) with total energy Q (Q2 � �q2 is the negative
invariant mass squared for the initial momentum transfer).
Momentum fraction xp � phadron=pparton approximates xE
if particle momenta are measured. At large x the distribu-
tion shape reflects energy conservation during the parton
splitting cascade. At small x the shape is determined by
quantum coherence of gluon emission (gluon or color
coherence and the hadron size scale) [25,26]. The FF
data used in this study are hadron distributions reported
on momentum fraction xp, or �p � ln�1=xp�. Distributions
on xp emphasize pQCD aspects of parton fragmentation at
large p (e.g., scaling violations). For nonpQCD effects,
especially the role of gluon coherence, logarithmic vari-
able �p provides better visual access to the relevant
small-xp (large-�p) region.
Dh
p�x;Q

2 or s� is the FF for parton type p and hadron
type h at the energy scale denoted by Q2 or s. The parton-
flavor-inclusive distribution Dh�x; s� is discussed in
Sec. VII, and the fragment-flavor-inclusive distribution
Dp�x; s� is discussed in Sec. VIII. The total FF isD�x; s� �P
hD

h�x; s�. The corresponding FF on � is D��; s� �
xD�x; s�, with Jacobian factor x. FFs satisfy relationsR

1
0 dxD�x; s� � 2n (dijet fragment multiplicity) andR
1
0 dxxD�x; s� � 2 (dijet energy conservation) [27]. To

simplify notation we adopt the convention that symbol D
represents any fragmentation function, with the specific

form [Jacobian relation to D�x; s�] implied by the first
argument. Plot axes are labeled with the corresponding
dijet particle density D�x; s� ! 2dn=dx, D��; s� !
2dn=d�, etc. to avoid confusion.

This study focuses on low-Q2 parton fragmentation.
Since �p and pQCD expansion parameter Y�Q� �
ln�Q=�� (� represents a reference energy scale) are un-
defined as p,Q! 0 we introduce rapidity y (well-behaved
in that limit) as an alternative logarithmic momentum/
energy variable. The rapidity along axis ẑ is yz� ~p;m0� �
ln��E� pz�=mt	, with transverse (to ẑ) mass m2

t � m2
0 �

p2
t . In frames comoving on ẑ ~p! pt, E! mt, and y!
yt � lnf�mt � pt�=m0g. In a frame where p is the only
nonzero momentum component y�p;m0� � ln��E�
p�=m0	, with y! ln�2p=m0� for p
 m0 and ! p=m0

for p� m0. m0 may be a quark or hadron mass or energy
scale �.

Given the limiting cases for y we note that ln�
���
s
p
=m0� �

y�
���
s
p
=2;m0� � ymax, the kinematic limit for fragment rap-

idities. Similarly, Y�Q� � ln�Q=�� � y�Q=2; �� is a ra-
pidity measure of the energy scale relative to a reference
scale. We observe for data a lower limit ymin which may
depend on fragment species and collision system (e�-e�

vs p-�p). For unidentified fragments we assign the pion
mass m0 ! m� to all hadrons (but cf. Sec. VII). From
data distributions on xp or �p for parton energy scale
Q or CM energy

���
s
p

we extract fragment momenta p
and calculate equivalent rapidities y (fragments) and ymax

(partons). Data distributions on xp or �p are transformed
to distributions on y using appropriate Jacobians. In
[28] ln�1=xp� ! lnf�E� p�parton=�E� p�hadrong � ymax �

y exactly.
Most e�-e� FFs plotted on normalized rapidity u �

�y� ymin�=�ymax � ymin� � 1� �p=Y have a particularly
simple form described by the beta distribution. The unit-
normal beta distribution defined on u 2 �0; 1	 is
��u;p; q� � up�1�1� u�q�1=B�p; q�, with parameters p,
q 
 0 and beta function B�p; q� � ��p���q�

��p�q� . Parameters p
and q determine the shape of the distribution below and
above the mode (most probable point), respectively. The
mode is u� � p�1

p�q�2 , the mean is �u � p
p�q and the variance

is �2
u �

pq
�p�q�2�p�q�1�

� 1
4�p�q�1� (to 2%).

III. e�-e� FRAGMENTATION FUNCTIONS

The double-log approximation (DLA [25]) provides a
context for extrapolating the fragmentation process to low
Q2. The fragment emission probability is approximated by
a uniform density on logarithmic space �log���; log�p�	,
where � is the radiated-parton emission angle and p is its
momentum. The distribution is sketched in Fig. 1 (left
panel), where P is the leading-parton momentum and ��
1 is the jet angular acceptance. The large solid triangle
represents the kinematic boundary for the first radiated
parton. The smaller triangles illustrate the self-similar
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nature of the splitting process (angular ordering [29]), each
radiated parton becoming itself a DLA radiator.
Alternatively, the DLA may be expressed in terms of
d log�kt�dy, where kt is the transverse momentum compo-
nent relative to the radiating parton momentum, and y is
the radiated-parton rapidity [30]. The flat DLA emission
probability is terminated at some kt ( gray band in Fig. 1
left panel) due to gluon coherence [25]. For sufficiently
small kt the conjugate transverse size of the virtual gluon
overlaps the radiating parent parton and parton showering
is terminated.

The general form of the FF and its evolution with pparton

corresponding to the DLA with angular ordering and gluon
coherence (modified leading-log approximation or MLLA
[31]) is sketched in Fig. 1 (right panel). We expect a
monotonic increase with decreasing y below ymax due to
showering. The available phase space (above the band in
the left panel) is however reduced with decreasing y by
gluon coherence, causing the FF to turn over, with a
maximum at y� (the mode). The distribution then falls to
zero at some ymin which may be nearly independent of
ymax. The FF is apparently self-similar at two levels: the
internal cascade and its external boundary. Reducing the
maximum opening angle � (dashed-dotted line) or in-
creasing the parton momentum P (dashed line) changes
the boundary of the cascade (left panel) and correspond-
ingly the FF (right panel).

IV. FRAGMENT DISTRIBUTION ON xp AND �p

Single-particle FFs from e�-e� collisions have been
studied extensively (e.g., [26,32–37]). The FF data plotted
in Figs. 2–5 were obtained from collisions at three energy
scales (CM energy Q �

���
s
p
� 14, 44 and 91.2 GeV) mea-

sured at PETRA [32] and LEP [26] for unidentified had-
rons from unidentified partons (flavor-inclusive jets).
Those distributions are fiducial for this study because of
the exceptional data quality and fragment momentum
coverage. We consider the data in several presentation

schemes and then develop a parameterized representation
for extrapolation to low Q2.

In Fig. 2 we plot fragment distributions on momentum
fraction xp (left panel) and logarithmic equivalent �p (right
panel). Distributions on xp emphasize the large-xp
(small-�p) region where pQCD is expected to best describe
data, where the naı̈ve parton model predicts ‘‘scaling’’ or
invariance of the parton distribution on energy scaleQ. The
dashed reference line in the left panel illustrates the ex-
ponential model sometimes used to characterize FFs on xp.
The vertical dotted line corresponds to �p � 1:5 in the
right panel: only a small fraction of fragments fall above
that point. The data exhibit systematic scaling violations
(Q dependence) described by the DGLAP evolution equa-
tions (cf. Sec. XII) [38,39]. To study scaling violations FFs
on xp are parameterized by a model function such as
Dh
p�x;Q2� � Nx��1� x���1� 	=x�, where the four pa-

rameters depend on parton type p, hadron type h and
energy scale Q [40,41]. Distribution details in the
small-xp region (e.g., below xp � 0:1) are minimized in
this format (cf. Sec. XIII D).
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FIG. 3. Fragmentation functions on rapidity y for e�-e� colli-
sions (left panel) and p-�p collisions (right panel).
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FIG. 2. Left panel: e�-e� fragmentation functions on frac-
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We can also plot data on �p (right panel) which empha-
sizes the small-xp (large-�p) region and better reveals
nonperturbative details of fragmentation. The distribution
is approximately Gaussian, with mode ��p and r.m.s. width
��p predicted by pQCD (cf. Sec. XI). As noted, the falloff
at large �p and maximum at ��p result from gluon coher-
ence [25,26]. Measurement of the full fragment distribu-
tion above and below the mode is important for a complete
characterization of the fragmentation process.

The solid curves in Figs. 2–5 are obtained from beta
distributions on normalized rapidity u determined by the
systematic trends of beta parameters �p; q� plotted in
Fig. 14 (left panel) (cf. Sec. X C) and transformed to
each plotting space with appropriate Jacobians. Some ap-
proximation to scaling or energy-scale independence is
expected at large xp (small �p). Another form of scaling
at small xp (large �p) may be explored by plotting distri-
butions on rapidity y.

V. FRAGMENT DISTRIBUTION ON y

Fragmentation functions plotted on �p coincide at the
kinematic limit �p � 0 corresponding to the parton mo-
mentum. However, in Fig. 3 (left panel) we observe that the
FFs for three energies plotted on y have a common low-
momentum limit ymin � 0:35 (vertical line, and
cf. Sec. IX A). That alignment is possible because y has
the well-defined limiting value 0 as momentum p! 0.
Each data FF is terminated at the upper end by its kine-
matic limit ymax � y�

���
s
p
=2;m0� (vertical lines) corre-

sponding to �p � 0 in Fig. 2. The distribution maxima
increase monotonically with collision energy. The FFs in
the left panel illustrate the self-similarity sketched in Fig. 1
(right panel) and confirm an expectation for DLA scaling:
fragmentation at small y should be nearly independent of
the leading-parton momentum.

In Fig. 3 (right panel) we plot FFs from p-�p collisions at
FNAL [33,34] (the points are samples from the original
data distributions used here to illustrate qualitative fea-
tures). While the general features are similar to FFs for
e�-e� collisions the lower limit ymin is considerably larger
for p-�p collisions (note the dotted reference line common to
the two panels). The larger ymin for p-�p collisions (� 1:5)
may be due to the finite jet-cone opening angle [34] and/or
the presence of the underlying event [42] which must be
distinguished from jet fragments. The Gaussian curve
labeled MB represents a minimum-bias fragment distribu-
tion (no selection is imposed on the parton momentum
spectrum) derived from the event-multiplicity dependence
of p-p pt spectra [43] which compares well with the
systematics of FFs obtained from p-�p jet reconstruction.

In Fig. 4 we compare FFs on �p � ln�Q=2p� (left panel)
and ymax � y� ln�Q=2p� (right panel). The distributions
are equivalent below the upper half-maximum points (p

m0), above which distributions on ymax � y drop rapidly
toward well-defined limits at ymax � ymin. Distributions on
�p extend in principle to 1, but the transformed beta
distributions limit at pmin �m�=2 or �p � ln�Q=m��, in-
dicated by vertical lines in Fig. 4 (left panel). This com-
parison suggests that rapidity y�Q=2;m0� or difference
ymax � y could replace �p in FF studies. Rapidity
y�Q=2; �� could also replace pQCD expansion parameter
Y�Q� � ln�Q=��, remaining well-defined forQ! 0 while
preserving established pQCD relations for larger Q.
Figures 3 and 4 also suggest that rescaling the rapidity
by ymax � ymin might provide more differential access to
FFs.

VI. FRAGMENT DISTRIBUTION ON u

Expectations of approximate energy scaling at large xp
and a different form of scaling (gluon coherence) at small
xp seem to require conflicting plotting strategies on �p and
y. However, both forms can be accommodated with nor-
malized rapidity u � �y� ymin�=�ymax � ymin� 2 �0; 1	.
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FIG. 4. Comparison of fragmentation functions for three en-
ergies on �p and ymax � y. Differences are noticible only for
small y or p (large �p).
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FFs from e�-e� collisions can be factored as D�u; ymax� �
2n�ymax�g�u; ymax�, with dijet multiplicity 2n�ymax�
(cf. Fig. 13) and unit-normal form factor g�u; ymax�. In
Fig. 5 we plot the three representative FFs transformed to
1=n�ymax�dn=du � g�u; ymax�. Multiplicity 2n�ymax� can
be obtained from fits to data, but also from the shape of
g�u; ymax� (cf. Sec. X B).

We have determined that data form factor g�u; ymax� is
well-described by beta distribution ��u;p; q� defined in
Sec. II. While there are substantial ‘‘scaling violations’’ on
xp or �p (cf. Sec. XII), the normalized FF shapes on u in
Fig. 5 are nearly independent of Q2 or ymax over a sub-
stantial energy range. However, the remaining small var-
iations with energy are significant, and well described by
energy-dependent beta parameters �p; q� plotted in Fig. 14
and discussed in Sec. X C.

VII. IDENTIFIED HADRON FRAGMENTS

We define rapidities for unidentified hadrons by assign-
ing the pion mass m0 ! m� to several particle species. To
assess the consequences we use identified-particle FF data
for two CM energies. In Fig. 6 we show data g�u; ymax� and
best-fit model ��u;p; q� for identified charged pions ��

(left panel) and kaons K� (right panel) at 10 GeV [44] and
91 GeV [45]. Parton rapidity ymax is determined in each
case with the identified hadron fragment mass. The distri-
butions for identified protons �p; �p� show similar behavior
but with larger statistical errors. The pion FFs have widths
similar to unidentified hadrons, but the peak modes are
significantly lower (0.38 vs 0.41 at 91 GeV). The kaon peak
modes are comparable to those for unidentified hadrons but
the peak width at higher energy is significantly larger. The
kaon FF shape seems to converge on the pion distribution
at lower energy. The apparent blending of quark flavors
could be related to the convergence of the gluon and quark
FFs at lower energy in Fig. 14.

To determine the effect of assigning the pion mass to
unidentified fragments we used the following procedure.
Data distributions on xp for three identified-fragment spe-

cies (the 91 GeV data in Fig. 6) were transformed to
normalized rapidity u with the proper mass assignments.
Functions ��u;p; q� were fitted to each species, trans-
formed back to xp and plotted (dashed-dotted curves)
with the data in Fig. 7 (left panel). The model functions
on xp were summed to represent the combination of un-
identified hadrons and transformed to rapidity y assuming
the pion mass, giving the solid curve in Fig. 7 (right panel).
The dotted curve was obtained by assigning the pion mass
to all data, transforming to u, fitting the resulting distribu-
tion and then transforming back to y. We conclude from the
results that misidentifying kaons and protons as pions in
unidentified hadrons shifts the FF peak mode at 91 GeV
from the pion value �0:38 to the inclusive hadron value
�0:41 in Fig. 5 (left panel). The dashed and dashed-dotted
curves are fits to the individual fragment species with
proper masses used to determine the rapidities.

From this exercise certain trends are notable: Proton
fragments have the largest momenta but the smallest rap-
idities. When transformed to normalized rapidity u the FFs
for different fragment species are similar in shape (beta
distribution) but exhibit small but significant mode varia-
tions with parton energy and hadron species (cf. Figure 9
and the discussion following for a summary of flavor
dependence). Unit-normal data distributions g�u; ymax�
for all light hadron species are well-described by model
��u;p; q�, establishing applicability of the beta distribu-
tion to FFs for identified light meson and baryon fragments
as well as to inclusive hadrons.

VIII. IDENTIFIED PARTONS

We now consider the role of parton identity in FF
systematics. Normalized data distributions on u are shown
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in Fig. 8 for inclusive hadrons from udsc-quark jets (upper-
left), gluon jets (upper right) and b-quark jets (lower-left)
for several parton energies in each case [46,47]. The mea-
sured FFs for light quarks and gluons are well described by
model ��u;p; q�, shape parameters �p; q� depending on
parton species and energy scale. Dijet multiplicities are
obtained as the best-fit coefficients of the unit-normal beta
distribution. As expected, there is a substantial difference
between quark and gluon FFs at larger jet energies, and
a strong energy dependence of gluon-jet shapes for
smaller jet energies evident in the upper-right panel (the
two solid curves correspond to �5 and 40 GeV gluons)
(cf. Sec. X C). The b-quark data in the lower-left panel are
not well described by the beta distribution. The best-fit beta
distributions for

���
s
p
� 91:2 GeV udsc quark and Q �

80:2 GeV (equivalent dijet energy) gluon jets (data with
the best statistics) are repeated as the dashed (�q) and
dashed-dotted (�g) curves, respectively, in all three panels
to provide references.

In Fig. 8 (lower-right panel) we compare FFs from
different parton types in a more differential format. As
noted, �q (dashed curves) for light fragments in udsc jets
and �g (dashed-dotted curves) for gluon jets are approxi-
mate limiting cases for all ��u;p; q�. We therefore define
vmax � ln��q � �g�, vmin � � ln�1=�q � 1=�g� and nor-
malized variable v��� � �ln�� vmin�=�vmax � vmin�,

with v��q� � v��g� � 1. We plot v��q� (dashed), v��g�

(dashed-dotted) and v��b� (solid) in the lower-right panel
with the corresponding data for

���
s
p
� 91:2 GeV quarks

and Q � 80:2 GeV gluons (also cf. data and solid curves
in Fig. 11).

The light-fragment distribution from b quarks (solid
dots) coincides with v��q� (and open circles) for u < 0:7,
but diverges sharply from the quark-jet trend above that
point and descends towards v��g� (and open triangles) for
u > 0:7. The b-quark fragment data were reduced by 10%
to coincide with the quark-jet curve below u� 0:7. The
initial normalization is represented by the beta-distribution
fit v��b� (solid curve) with mode near 0.5. With this more
differential format we confirm that b-quark light-hadron
fragments are not well described by a beta distribution.
The exceptional softness of the b-quark FF (for unidenti-
fied fragments) was anticipated theoretically [48] (and
cf. Fig. 9).

In Fig. 9 we summarize FF data and models for several
fragment and parton types. The pion, kaon, and proton FFs
are beta-distribution fits to 91 GeV identified-fragment
data (pion and kaon data are shown in Fig. 6). The gluon
FF is the beta distribution defined at 80 GeV by �p; q�
systematics in Fig. 14 (cf. comparison with FF data in
Fig. 11—right panel). The solid dots are b! B data
from [49] compared to a best-fit beta distribution
(dashed-dotted curve) and theory (solid curve). Low-
statistics c! D data from [50] are summarized by a
best-fit beta distribution (dashed-dotted curve) and theory
(solid curve).

The two solid curves on the right of Fig. 9 are from a
theoretical treatment of heavy-quark fragmentation in
which the FF for Q! H�Q �q� � q is approximated by
DH
Q�xp� / 1=f1� 1=xp � 
Q=�1� xp�g

2=xp, with 
Q /
1=m2

Q [51]. The agreement of DB
b �u� (right-most solid

curve) with b-quark data (solid points) [49] using 
Q �
1:16=m2

b � 0:055 and mb � 4:6 GeV=c2 is good. The
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dashed-dotted curve is the best-fit beta distribution with
�p; q� � �23; 3� which does not describe the b! B data.
That failure may be related to the exceptional behavior of
b! light hadrons discussed in connection with Fig. 8
(lower panels). The solid curve for c! D is DD

c �u� from
the heavy-quark theory treatment, with 
Q � 0:57=m2

c �

0:29 and mc � 1:4 GeV=c2. The associated dashed-dotted
curve is a beta distribution with �p; q� � �7:0; 2:8� which
best describes the data from [50]. Both curves are consis-
tent with the data, but the data errors are large below the FF
peak mode.

FF modes increase monotonically with increasing me-
son and parton mass. However, the proton FF mode for
udsc jets is lower than the inclusive hadron mode for gluon
jets and the FF is significantly broader. The kaon FF shows
the effect of the heavier s-quark mass, consistent with the
trend for charm and bottom quarks (however, see the next
paragraph). The FF mass dependence on normalized ra-
pidity u is subtle compared to the kinematic dependence on
meson and parton masses encountered on pt, �p, or y.

To summarize flavor dependence, the beta distribution
describes the FF data for identified light quarks and gluons
fragmenting to identified light mesons or baryons, provid-
ing a compact representation of the flavor dependence of
fragmentation. The quality of the description is not good
for heavy quarks fragmenting to light or heavy mesons.
However, the region near u � 1 can be compared with
nonperturbative trends for light-quark fragmentation ex-
trapolated to small Q2 in Fig. 14 (right panel), where the
fragmentation ‘‘cascade’’ is a single splitting or no splitting
(parton! hadron).

IX. FITTING ��u;p; q� TO DATA

We now fit the beta distribution to a sample of measured
FFs falling in three groups: 1) the five fiducial FFs for
unidentified fragments from flavor-inclusive partons dis-
tinguished by nearly complete coverage of the
kinematically-allowed fragment momenta [26,32] and a
selection of data for 2) identified fragments and 3) identi-
fied partons to explore the role of hadron and parton
species in fragmentation. Data in the form D�u; ymax� are
fitted with model function 2n�ymax���u;p; q� (cf. Sec. II),
minimizing �2 while freely varying parameters 2n, p, and
q, with u � �y� ymin�=�ymax � ymin� and ymin constrained
to specified values based on systematics studies.

A. Inclusive fragments from inclusive partons

We first fit FF data for inclusive hadrons and partons.
Table I contains the best-fit parameters for the five fiducial
FFs (OPAL [26] and TASSO [32] data) with ymin � 0:35
(p � 0:05 GeV=c). The model functions with starred en-
ergies are compared to data in Figs. 2–5. As noted, the FF
shape is nearly independent of

���
s
p

, but there is a significant
trend for q to increase and p to decrease with increasing
energy scale, shifting the FF mode to smaller u. The fitted

multiplicities agree with the q-�q multiplicity curves and
data in Fig. 13.

Figure 10 shows the systematic dependence of beta
parameters �p; q� on the choice of ymin. The first three
panels illustrate the variation of fits and data on u with
ymin for energies 14, 44, and 91 GeV. �2 variations are
small over the interval shown. Variation with ymin is greater
for smaller u and smaller ymax. Those trends are reflected in
the summary of �p; q� variations in the lower-right panel:
the p variation is greater, and more so for lower energy.
The lines have slopes 0.8 (solid) and 1.6 (dashed). We set
ymin � 0:35 for all inclusive fits and discuss the related
systematic uncertainties in Sec. X C. The shift of OPAL
(rescaled) q data in the lower-right panel (closed squares to
open circles) results from increasing all particle momenta

TABLE I. Unidentified fragments from unidentified partons:
Beta-distribution parameters from �2 fits to fragmentation func-
tions for five energies. The FFs for starred energies are plotted in
Figs. 2–5.
���
s
p

(GeV) 2n p q �2=�

14� 8:8� 0:10 2:95� 0:08 3:52� 0:07 16=18
22 10:7� 0:15 2:91� 0:06 3:52� 0:08 25=20
35 13:4� 0:05 2:84� 0:02 3:50� 0:02 148=22
44� 14:6� 0:10 2:89� 0:03 3:52� 0:04 49=22
91:2� 20:4� 0:05 2:84� 0:01 3:67� 0:01 86=51
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by 6.5% to test the effect of uncertainty in the momentum
calibration. The p data are much less affected.

B. Identified fragments from inclusive partons

We next explore the role of hadron identity in fragmen-
tation, with m0 ! mhadron assigned for both fragment and
parton rapidities. Fits to identified hadron fragments from
flavor-inclusive partons at

���
s
p
� 10 GeV [44] and 91 GeV

[45] plotted in Fig. 6 and 7 (left panel) are presented in
Table II. Trends for fragmentation to light hadrons are
summarized in Fig. 9. For pions, parameter p is smaller
and q larger than for inclusive hadrons in Table I, shifting
the peak mode to smaller u as noted previously and under-
stood as an effect of misidentifying kaons and protons as
pions in the inclusive hadron fragment mixture. The pion
fit �2 is large; however the fit residuals are generally point-
to-point random and substantially larger than the stated
errors, especially toward the ends of the distribution.

The 10 GeV kaon peak is similar to the pion peak.
However, the 91 GeV kaon peak is much wider (p� q is
reduced) and the mode is shifted substantially to the right
(q� p is reduced) relative to the pion peak, consistent with
the quark mass-dependence trend in Fig. 9. The proton
peak mode is shifted further to the left, beyond the pion
and gluon peaks as shown in Fig. 9, mainly by reduction of
p. We note in passing that ymin � ln�m0�50 MeV=c2

m0
	.

C. Inclusive fragments from identified partons

Finally, we consider data for unidentified hadron frag-
ments from identified partons for two parton classes shown
in Fig. 8: udsc quarks (in combination) and gluons. The fit
results are shown in Fig. 11 and Table III. The ‘‘inclusive’’
table entry (first row) repeats the 91 GeV results from
unidentified hadrons in Table I for reference. Parameters
for the free �2 fit to the udsc FF data in the second row of
the table reflect a width similar to the inclusive data (q� p
is similar), but the mode is shifted to slightly larger u (q�
p is smaller). Details of the fitting procedure are shown in

Fig. 11 (left panel). The points are substantially larger than
the reported errors. The free fit (solid curve) is strongly
influenced by the single point at u� 0:13. The �2 is large,
and the fit function misses the data near the peak. As for the
pion fragment FF data the udsc data errors appear to be
underestimated.

The dashed curve is constrained by the �p; q� energy
systematics in Fig. 14 (left panel) consistent with fits to the
fiducial inclusive FFs (second udsc row of the table). The
peak of the data FF is better described, but the increased
deviation from the small-u point greatly increases the �2.
We expect the udsc FF to differ slightly from the flavor-
inclusive FF (small shift to the right) due to the absence of
gluon fragments, and the free fit is consistent with that
expectation. We expect the udsc/inclusive multiplicity ra-
tio to be 0.94 [52] but observe 18:36=20:4 � 0:90, suggest-
ing that the udsc FF height is underestimated by the free fit.

In Fig. 11 (right panel) we show a free fit to FF data from
gluon jets (solid curve) producing the fit parameters in the
first gluon row of Table III, which are plotted as open
squares in Fig. 14 (left panel) and provide constraints on
the gluon �p; q� energy systematics discussed in Sec. X C.
The free fit has an unusually small �2; the data errors above
the mode seem large compared to the residuals there. The

TABLE II. Identified fragments from unidentified partons:
Beta-distribution parameters from �2 fits to fragmentation func-
tions for pions, kaons and protons at

���
s
p
� 8–18 and 91.2 GeV.

FID 2n p q ymin �2=����
s
p
� 8–18 GeV

�� 5:63� 0:02 2:92� 0:03 3:96� 0:05 0.35 89=49
K� 0:88� 0:025 3:15� 0:12 3:84� 0:19 0.10 33=39
p, �p 0:18� 0:02 2:60� 0:40 4:30� 1:00 0.05 21=24���

s
p
� 91:2 GeV

Incl. 20:4� 0:05 2:84� 0:01 3:67� 0:01 0.35 86=51
�� 17:36� 0:03 2:66� 0:01 3:77� 0:01 0.35 483=36
K� 2:39� 0:03 2:58� 0:03 2:99� 0:01 0.10 10=26
p, �p 1:10� 0:02 2:36� 0:04 3:58� 0:07 0.05 17=23

TABLE III. Unidentified fragments from identified partons:
Beta-distribution parameters from �2 fits to fragmentation func-
tions for udsc quarks with

���
s
p
� 91:2 GeV and gluons with Q �

80:2 GeV.

PID 2n p q ymin �2=�

Incl. 20:4� 0:05 2:84� 0:01 3:67� 0:01 0.35 86=51
Udsc 18:36� 0:04 2:99� 0:015 3:55� 0:015 0.35 209=19
Udsc Param. �p; q� 2:85� 0:05 3:58� 0:05 0.35 550=19
Gluon 27:2� 0:4 3:50� 0:10 5:10� 0:15 0.35 5:7=22
Gluon Param. �p; q� 3:43� 0:10 5:30� 0:10 0.35 14:4=22
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FIG. 11. Details of beta distribution fits to fragmentation func-
tions for identified partons fragmenting to unidentified hadrons.
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dashed curve is a ‘‘fit’’ with parameters constrained to the
80 GeV �pg; qg� systematic values from Fig. 14 (left panel)
and reported with its �2 value in the second gluon row of
Table III.

X. ENERGY SCALE DEPENDENCE

We can combine fits to fiducial FF data and dijet multi-
plicity data to determine the energy dependence of �p; q�
for quark and gluon jets over a broad energy range. Fits to
data g�u; ymax� with model ��u;p; q� determine specific
values �p; q� which constrain parameterized curves
�p�ymax�; q�ymax��. Fits to 2n�ymax� data via the hxEi inte-
gral of ��u;p; q� also constrain the parameterizations,
especially important in energy intervals where there are
no FF data available. The resulting �p; q� energy trends
efficiently represent e�-e� FFs over a broad energy range
and provide a basis for extrapolating FFs to low Q2.

A. Energy conservation sum rule

The total FF D�xE; s� �
P
hD

h�xE; s� (sum over all had-
ron species) integrates to total dijet multiplicityR

1
2m0=

��
s
p dxED�xE; s� � 2ntot�s� and satisfies the energy

sum rule (ESR)
R

1
2m0=

��
s
p dxExED�xE; s� � 2 [27]. The ratio

of the integrals defines mean energy fraction hxEi �
1=ntot�s�. Switching to �u; y; ymax�, since D�u; ymax� �
2ntot�ymax�g�u; ymax� and g�u; ymax� � ��u;p; q� we have
hxEi �

R
1
0 duxE�u; ymax���u;p; q�, with xE�u; ymax� �

cosh�y�u�	= cosh�ymax� and y�u� � uymax � �1� u�ymin.
Those relations connecting ��u;p; q� to ntot�ymax� are
used below to obtain the energy dependence of �p; q�
from multiplicity data.

Given several hadron species h with FFs Dh�xE� and
dijet multiplicities 2nh we expect ESR �

P
h2nhhxEih �

2, provided all species are integrated. However, if only
charged hadrons are detected we expect ESR� 2=3� 2�
1:33. We can test the charged-fraction ESR using the fits to
charged pion, kaon, and proton data at 91 GeV from
Table II. The ESR for inclusive FFs can be tested with
the fits from Table I. In general, if f is the ESR fraction for
detected particles (f� 2=3 for the charged-hadron frac-
tion) we expect the relation hxEi � f=n�ymax� between
monojet (charged-particle) multiplicity and energy frac-
tion, which we use below to relate multiplicities to beta
parameters �p; q�.

Beta distribution fits to FFs gh�y or u; ymax� for identi-
fied pions, kaons, and protons at 91.2 GeV from Table II
and the FF for inclusive hadrons are plotted on rapidity y
and normalized rapidity u in Fig. 12. The parameters
for those curves are used to obtain hxEih for each
hadron species using the correct hadron mass and hxEiincl

for the inclusive distribution assigning the pion mass to
all hadrons. We use the 2n fit values in the tables to

obtain
P
h2nhhxEih � 1:25� 0:03 (f � 0:62) and

2ninclhxEiincl � 1:18� 0:05 (f � 0:59) for identified and
inclusive charged fragments. If hxEiincl is calculated with
the weighted-mean mass 0.2 GeV (weighted by the hadron
multiplicities in Table II) we obtain ESR � 1:4� 0:05.
The same procedure applied to the fits to lower-energy
data from Table II gives ESR� 1:1. The exact energy scale
for the lower-energy sum rule is not clear because of the
scale range, but the result is roughly consistent with ex-
pectations. For the inclusive analysis below assuming the
pion mass we use ESR factor 1.18.

B. Dijet multiplicities from ��u;p; q� shapes

Dijet multiplicity 2n can be obtained directly by inte-
grating measured and extrapolated FF data, as in Tables I,
II, and III. However, as we have just shown there is a
correspondence between 2n�ymax� and the shape of data
FF g�u; ymax� or fitted model function ��u;p; q� deter-
mined by parameters �p�ymax�; q�ymax�	. We have obtained
for inclusive charged fragments with pion mass assignment
the relation 2n�ymax� � 1:18=

R
1
0 duxE�u; ymax���u;p; q�

at 91.2 GeV which we now use to relate energy trends of
FF shape parameters �p; q� to fragment multiplicities.
Measured multiplicity trends on parton energy thereby
provide constraints on the energy dependence of FF pa-
rameters �p; q�, even in energy intervals where there are no
measurements of FFs.

Figure 13 shows dijet multiplicities 2n for g-g and q-�q
parton pairs. Precise multiplicity data for quark jets from
two-jet events have been available for some time. New
methods have produced similarly precise gluon-jet multi-
plicities from three-jet e�-e� events. Data for gluon jets
were obtained from CDF (closed triangles) [35], CLEO
(open triangles) [53], OPAL ‘‘jet-boost’’ algorithm (open
circles) [36] and OPAL inclusive (star) [37]. Data for quark
jets were obtained from a compilation (Table 6 in [54]) and
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multiplied by factor 0.94 (the fraction of udsc jets in a
flavor-inclusive sample [52]) to compare with the gluon-jet
multiplicities. The large points labeled � and K are multi-
plicities from fits to identified-fragment data [44,45,55] in
Table II plotted with the indicated multipliers. The hatched
regions represent the domain of low-Q2 partons which
motivates this extrapolation study.

The solid curves in Fig. 13 are multiplicities derived
from the �p; q� energy trends using the relations defined
above. The �p; q� parameterizations are adjusted to fit the
multiplicity data but constrained by �p; q� values from fits
to fiducial FFs. The resulting �p; q� energy dependence is
described in the next subsection. Because 2n / 1=hxEi and
hxEi is monotonic with mean �u � p=�p� q�, multiplic-
ities are mainly determined by ratio q=p or difference q�
p (i.e., the mode or mean of the beta distribution), and only
weakly dependent on sum q� p (the width). A unique
description of �p; q� over a broad energy range requires fits
to multiplicity trends supplemented by the fits to fiducial
FFs described in the previous section.

Quark-jet multiplicities are described in the MLLA by
3NLO expression nq�Y� � K=2:25 � Y�a1C2

expf2C
����
Y
p
�

a
�Y�g, with Y � ln�
���
s
p
=��, C �

�������������
4nc=b

p
and b �

�11nc � 2nf�=3 [56]. We used a1 � 0:3 from [57] and
K � 0:13 and � � 0:15 GeV from Table I and the func-
tional form of 
g�Y� from Fig. 3 in [56] for 
�Y� (all for
nf � 5). We set the coefficient of 
�Y� to a � 1:8 to obtain
the best agreement with quark-jet data, shown by the
dashed-dotted curve in Fig. 13 (left panel) just visible
relative to our parameterization (solid curve).

Variation of dijet multiplicities in the form A�ymax �
ymin�

2 would be expected for the self-similar scaling illus-

trated in Fig. 1 with fixed FF mode u�. Quadratic trends for
quark and gluon jets are illustrated by the dotted curves in
Fig. 13 (right panel), with A � 0:5 for quarks and 1:45 � 0:5
for gluons. Deviations from the quadratic trend for quark-
jet multiplicities in Fig. 13 correspond to the linear varia-
tion of �pq; qq� with ymax above ymax � 4:5 in Fig. 14 (left
panel) which shift u� to smaller values, as illustrated in the
right panel of that figure. Gluon-jet multiplicities deviate
more dramatically from the quadratic trend at lower ener-
gies, moving from the quark-jet curve to a gluon-jet trend
about 50% larger within the energy interval ymax � 3:5–5
(Q � 5–20 GeV) as the quark-gluon color charge differ-
ence emerges. Above 20 GeV the gluon-jet multiplicities
reflect the smaller linear variation of �pg; qg� with ymax in
that energy interval.

C. Energy dependence of ��u;p; q� parameters

Figure 14 (left panel) shows the �p; q� energy depen-
dence which produces the quark- and gluon-jet multiplic-
ities (solid curves) in Fig. 13 and the solid curves compared
to fiducial FFs in Figs. 2–5. Those curves summarize the
energy dependence of udsc-quark and gluon fragmentation
to unidentified hadrons in e�-e� collisions. We assume
that the shapes of inclusive (dominated by light quarks) and
udsc FFs are approximately the same, as in Fig. 6 of [46].
Inclusive and udsc jet FFs at 91.2 GeV are compared in
Table III and Fig. 11 (left panel) and found to be similar.
The vertical dotted lines mark the limits of multiplicity
measurements, while the vertical dashed-dotted lines mark
the limits of measured FFs used in this analysis. The upper
ten solid points represent the fiducial FFs. The open
squares represent the single gluon FF in Fig. 11 (right
panel) which constrains �pg; qg�.
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FIG. 13. Dijet charged-particle multiplicity vs energy scale Q
(dijet energy) plotted in a conventional format (left panel) and vs
parton rapidity assuming the pion mass (right panel). The solid
curves are quark and gluon dijet multiplicities 2nq and 2ng

obtained from the �p; q� parameterizations in Fig. 14 (left panel).
The dashed-dotted curve in the left panel is from a 3NLO pQCD
expression. The udsc quark-jet multiplicities for unidentified
hadrons (solid dots) are taken from a survey in [54]. The dotted
curves in the right panel illustrate quadratic trends A�ymax �
ymin�

2 (see text).
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FIG. 14. Left panel: Beta-distribution parameters �pq; qq� and
�pg; qg� respectively for light-quark (solid) and gluon (dashed)
jets and corresponding gluon-to-quark-jet multiplicity ratio r vs
parton rapidity ymax. Right panel: Unit-normal FFs (beta distri-
butions) obtained from parameters in the left panel plotted on
normalized rapidity u for quark (solid) and gluon (dashed) jets
and for nine equal-spaced values of parton rapidity ymax illus-
trating peak shape evolution with energy scale.
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The �p; q� curves in Fig. 14 (left panel) are described by
 

pq � 2:90� 0:05� �0:05� 0:01��ymax � 5:3�;

qq � 3:50� 0:05� �0:05� 0:01��ymax � 5:3�

� �0:8� 0:2��ymax � 4:5��tanh�ymax � 3:5� � 1	=2;

pg � pq � ��0:07� 0:02��ymax � 5:3� � 0:55� 0:05	

� ftanh��2:5� 0:5��ymax � 4:1� 0:1�	 � 1g=2;

qg � qq � ��0:07� 0:02��ymax � 5:3� � 1:70� 0:07	

� ftanh��2:5� 0:5��ymax � 4:1� 0:1�	 � 1g=2: (1)

The pq expression in Eq. (1) is determined only by linear
interpolation and extrapolation of fits to the hadron- and
parton-inclusive fiducial FFs. Given that definition of pq

the curve for qq is then defined only by the fit to the udsc
quark-jet multiplicity data in Fig. 13. The agreement in
Fig. 14 between qq determined by fitting light-quark multi-
plicities 2nq (upper solid curve) and by fitting individual
inclusive-parton FFs (upper solid points) indicates the
consistency of the two methods. The expression for pg is
guided by the fit to a single gluon FF denoted by the lower
open square point in Fig. 14 (left panel), but is also
influenced by its impact on Fig. 19. The expression for
qg is then determined relative to pg mainly by gluon multi-
plicities 2ng, but is also influenced by its impact on Fig. 19.
See the discussion of that figure for more details.

The error bands in the central region represent correlated
systematic errors related to the uncertainty in ymin. As ymin

varies the dominant effect is common displacement of p
and q (cf. Figure 10). Multiplicity depends mainly on the
mode or mean of the fragment distribution, and therefore
primarily on the ratio or difference of p and q. Multiplicity
is therefore insensitive to the choice of ymin. The FF width
on the other hand depends directly on the sum p� q and is
therefore more influenced by the choice of ymin. To the
right of the left dashed-dotted line the �p; q� vary slowly
and linearly with increasing energy scale. The energy
dependence for light quarks implies a slight reduction of
the mode with the peak width unchanged, consistent with
the fiducial FFs in this study (e.g., Fig. 5). The gluon FF
shows similar mode variation, but the width is also reduced
with increasing energy.

Below the left dashed-dotted line (Q� 10 GeV) the
�p; q� change rapidly. The multiplicity data, especially
the CLEO data, require a sharp drop in q in that energy
interval for both quarks and gluons which is effected by the
tanh term in qq of Eq. (1). The convergence of the quark
and gluon �p; q� at the energy scale defined by the lower
dotted line, again required by the CLEO data, is effected by
the tanh terms in pg and qg. Below ymax � 3:6 (Q �
5 GeV) there is no guidance from data, but we speculate
as follows. At 5 GeV the average jet multiplicity is �2:5
and there is no distinction between quark and gluon jets,
p� q and the FF is therefore symmetric about the mid-

point on u. We argue that at lower energies the mean jet
multiplicity approaches one and the FF approaches a delta
function at u � 1, requiring q! 1 and p! 1. We sketch
those trends with large error bands in the left panel as a
simple extrapolation of the trends derived from data.

In Fig. 14 (right panel) we show a sequence of model
functions for nine equal ymax steps from 1.6 to 7.8, with
parameters derived from the �p; q� curves in the left panel
for gluon and quark FFs. The modes for quark jets (solid
curves) and gluon jets (dashed curves) move from left to
right with decreasing energy scale, and the dotted curves
for ymax < 3:6 (Q< 5 GeV) represent both parton types in
common. Below 5 GeV the FFs slew to the right and may
approach a delta-function limit at u � 1. Those low-Q2

trends can be compared with the theoretical description of
heavy-quark fragmentation on the right of Fig. 9.

The energy dependence of gluon-to-quark-jet multiplic-
ity ratio r � ng=nq derived from the beta parameters is
plotted as the lowest solid curve in Fig. 14 (left panel). The
open points are taken from [58] and the solid points are
from [59]. r is expected to approach the ratio of color
factors CA=CF � 2:25 at large Q. The ratio indeed in-
creases monotonically with ymax from unity at ymax � 3:5
(p� 2 GeV=c and n� 2), but the approach to CA=CF is
slow. The overall trend is in rough agreement with theory
[57,60].

The ratio slope r0 � dr=dymax � dr=d ln�Q� is also of
theoretical interest but difficult to calculate since it is very
sensitive to perturbative corrections [57]. Slope r0 derived
from �p; q� rises to peak value 0.45 at ymax � 4, then falls
to 0.11 at ymax � 5 (Q � 20 GeV) and rises linearly to
0.13 at ymax � 8 (Q � 400 GeV). The value r0 � 0:1 is in
rough agreement with theory [57]. In contrast to the slow
evolution of r the rapid separation of qq and qg with
increasing energy between the lower dotted and dashed-
dotted vertical lines of Fig. 14 (left panel) contrasted with a
nearly fixed difference between them above that region
may provide a clearer manifestation of the emergence of
color charge.

D. Fragmentation functions on �y; ymax�

We can use the parameterized beta distribution to con-
struct a 2D fragment distribution on �y; ymax� as follows.
Form factor ��u;p; q� describes the shapes of FFs over a
broad Q2 interval. The beta distribution in turn determines
multiplicity n�ymax� through hxEi over the same range
(Fig. 13). We combine the two factors to formD�y; ymax� �
2n�ymax���u�y; ymin; ymax�;p�ymax�; q�ymax�	.

In Fig. 15 (left panel) we plot D�y; ymax�. The vertical
dotted and dashed-dotted lines mark the same energies as
in Fig. 14 (left panel). The dashed curve is a ‘‘locus of
modes’’ (positions of maxima) of conditional distributions
on y for fixed ymax. The approach of that curve to the solid
diagonal line (y � ymax) at lower left corresponds to the
approach of the dotted curves in Fig. 14 (right panel) to
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u � 1. The horizontal dotted line denotes ymin, and ymax �
8 corresponds to

���
s
p
� 400 GeV. This joint fragment den-

sity provides the basis for extrapolating FFs down to Q�
1 GeV (ymax � 2). Figure 15 (right panel) is a transforma-
tion of the left panel onto �ymax; y� ymax�, with y� ymax �

lnxp � ��p, which illustrates in the upper-right corner
scaling violations: variation of the fragment density with
increasing ln�Q=�� ! ymax at constant xp or �p (constant
y� ymax) (cf. Sec. XII).

XI. PEAK STATISTICS AND PQCD

We have constructed a simple parameterized model of
FFs for e�-e� collisions which compares well with data. In
this section we compare the energy dependence of peak
statistics on u and �p inferred from our parameterization
with predictions from pQCD. Fragmentation-function peak
statistics predicted by pQCD [19,27,61,62] can be com-
pared to peak statistics u� (mode), �u (mean) and �2

u (vari-
ance) for distribution ��u;p; q�. The mode for the �
distribution is u� � p�1

p�q�2 and the mean is �u � p
p�q , with

�p; q� determined by the parameterizations in Fig. 14. The
mode on y is y� � u�ymax � �1� u��ymin.

In Fig. 16 (left panel) we show measured values of ��p in
the form ymax � ��p � y� (consistent with Fig. 4) vs ymax

[comparable to plots of ��p vs ln�Q=��] for eight quark-jet
and 14 gluon-jet energies [26,32,62]. The solid curve
y��ymax� for quark jets inferred from our �p; q� parameteri-
zation is the same as the dashed curve in Fig. 15 (left
panel). The five stars are obtained from our fits to the
fiducial FFs in Table I (compare to peak modes in
Fig. 3). The errors are smaller than the points.

The MLLA predicts for inclusive jets ��p � 0:5Y2 �

c2

�����
Y2

p
� c2

2, with Y2 � ln�Q=2�� (note the 2 in the de-
nominator), c2 � a=

�������������
16bnc
p

, a � b=n2
c and b � �11nc �

2nf�=3 [31]. The MLLA prediction for ��p transformed to
ymax � �

�
p is plotted as the dashed-dotted curve in the left

panel. The curve corresponds to nf � 5, but changes with
nf ! 3 are within the data errors. The hatched area is the
region of interest for study of low-Q2 partons. The MLLA
curve diverges from the �pq; qq� parameterization (solid
curve) in that region.

We can also obtain a mode prediction for gluon jets.
The MLLA prediction for the quark-gluon mode difference
is ��� � ��g � ��q �

1
12 �1�

nf
n3
c
� �O�

������
�s
p
� � 0:1 [61,62].

Taking the inclusive ��p prediction above as ��q we plot
ymax � ��g � ymax � ��q � ��� as the dotted curve in
Fig. 16, which agrees fairly well above ymax � 4:5 (Q�
12 GeV) with the gluon y� trend (dashed curve) obtained
from parameters �pg; qg� in Fig. 14. Data from [62] for FF
modes from gluon jets are plotted as solid triangles. The
modes were obtained from Gaussian fits to gluon FF data
over limited intervals on �p. The data are well described by
the dashed curve obtained from our �p; q� energy system-
atics and by the MLLA prediction.

The MLLA width prediction on �p is ��p � Y3=4=
��������
2c1

p
,

with c1 �
����������������
36nc=b

p
[26]. The width on �p should be

equivalent to the width on y (cf. Figure 4). The variance
of the beta distribution on u is �2

u �
pq

�p�q�2�p�q�1�
’

1
4�p�q�1� � 0:035 for flavor-inclusive e�-e� jets. Thus,
the observed r.m.s. width on y is �y � 0:2ymax � 0:2Y,
the coefficient nearly independent of ymax per the �p; q�
systematics in Fig. 14. That result is inconsistent with the
MLLA width prediction �y � 0:37Y3=4.

Measured FFs have been compared directly with ana-
lytical predictions of peak statistics from the MLLA and
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FIG. 16. Left panel: Comparison of fragmentation-function
modes vs parton rapidity from quark and gluon data (points)
with ‘‘locus of modes’’ trends (solid and dashed curves) derived
from �p; q� energy systematics in Fig. 14 (left panel) and from
the MLLA (dashed-dotted and dotted curves). Right panel:
Comparison at two energies of FF data, beta distributions on u
and MLLA Gaussians suitably transformed to u.
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FIG. 15 (color online). Left panel: Joint fragment distribution
D�y; ymax� on fragment and parton rapidities for inclusive partons
(� udsc quarks) and inclusive hadrons. Fragmentation functions
are vertical slices (conditional distributions) from the joint
distribution. Right panel: The same distribution transformed to
�y� ymax; ymax�, with ymax � y� �p, the logarithmic relative
momentum. The vertical dashed-dotted lines define the interval
determined by fiducial FFs plus dijet multiplicities. The intervals
between vertical dashed-dotted and dotted lines are defined only
by multiplicity trends. The upper-right region of the right panel
illustrates scaling violations.
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with Gaussians on �p defined by parameters from pertur-
bative approximations [19]. In Fig. 16 (right panel) we
compare beta distributions and data for two energies on
normalized rapidity u with corresponding MLLA Gauss-
ians (normalized to unit integral) using the parameters
described above. The Gaussian tails do not describe the
data. Our parameterized model is consistent with pQCD
predictions at larger Q2, and the beta distributions (solid
curves) demonstrate good sensitivity to small but mean-
ingful systematic variations with energy of the FF data.
The good fit of beta distributions to data over all fragment
momenta insures a well-defined peak integral.

XII. SCALING VIOLATIONS

The naı̈ve parton model predicts that parton distribution
functions (PDFs) measured in deep inelastic scattering
[analogous to FFs D�x;Q2�] should be independent of
energy scale Q2 (Feynman-Bjorken scaling) [63]. Scaling
violations [51]—variations of PDFs and FFs with energy
scale—are described by the DGLAP equations [38,39] and
depend on the running of strong coupling constant �s, on
the available phase space for fragmentation and on 1! 2
parton splitting described by the Altarelli-Parisi splitting
functions. Scaling violations of measured FFs can in turn
be used to determine �s (cf. Figure 18) and to test the
predicted values of QCD color factors CA and CF. In this
section we describe scaling violations on conventional
momentum/energy fractions and on rapidity variables in
terms of the FF parameterization developed in this study.

A. Scaling violations on �x;Q2�

Fragment distributions on xp are approximately expo-
nential (cf. Figure 2—left panel). Scaling violations are
described in that format as follows. The slope of the FF on
xp becomes more negative (the distribution ‘‘softens’’)
with increasing energy scale. Scaling violations (slope
change with increasing energy scale) are larger for gluon
jets than for quark jets (more radiation is produced by the
larger effective color charge of gluons). The strength of
scaling violations at large xp and the accompanying in-
crease of the FF at small xp (another manifestation of
scaling violations) are directly related by energy conser-
vation, as noted in Sec. IX. Comparisons of quark-jet FFs
at different energy scales have been used to measure the
running of �s [28,40,64]. Comparisons of gluon- and
quark-jet FFs have been used to measure the ratio of color
factors CA=CF [46,52,59,62].

Scaling violations are described by QCD theory in the
form of the DGLAP equations [38,39], which are in lead-
ing order (LO)

 

dDb�x; s�
d lns

�
�s�s�
2�

X
a

Z 1

x

dz
z
Pab�z�Da�x=z; s�: (2)

Pab�z� are the Altarelli-Parisi splitting functions [39], and

a, b denote parton combinations. In a typical study of
scaling violations FFs are parameterized at several energy
scales s with a model function such as D�x; s� � Nx��1�
x���1� 	=x� [40,41,62]. Such parameterizations can be
quite extensive. The KKP parameterization [41] employs
14 parameters for each parton-hadron combination, the
energy dependence of each of �N;�; �; 	� being described
by several polynomial coefficients. The parameters are
determined by using the DGLAP equations to evolve the
model FFs across energy scales, varying �N;�;�; 	� with
energy to best fit the data and emphasizing the region x >
0:1 where pQCD is most applicable (cf. Fig. 19—left
panel).

To illustrate scaling violations in a conventional context
with the results of the present study we transform parame-
terized joint fragment distribution D�y; ymax� in Sec. X D
(Fig. 15) to D�xE;Q2� � p=�ExE�D�y�xE;Q�; ymax�Q�	. In
Fig. 17 (left panel) we plot conditional distributions
D�xE;Q

2� for xE � 0:02, 0.07, 0.15, 0.27, 0.41, 0.60, 0.81
vsQ � m0 cosh�ymax�. The curves for both udsc jets (solid)
and gluon jets (dashed) compare well with previous analy-
ses (e.g., Fig. 10 of [46]). The general trends agree with the
description of scaling violations noted above but extend
over a broader energy range than is usually obtained from
data. The sharp falloffs at smaller Q and xE occur at kine-
matic limits lnxE � ymin � ymax defined by the dotted line
in Fig. 15 (right panel). Other features of the distributions
correspond to structures in the �p; q� trends of Fig. 14 (left
panel). In Fig. 17 (right panel) we replot the same curves vs
ymax on a logarithmic scale. Above ymax � 5 (Q �
20 GeV) the curves are nearly straight, revealing the
power-law behavior expected for pQCD.

The vertical dotted lines in both panels separate three
regions. Region A (Q � 1–5 GeV) is dominated by non-
perturbative effects. Color charge is effectively hidden
(quarks appear similar to gluons) and parton fragment
multiplicities are �1� 3. Although it is least amenable
to theoretical treatment, region A produces the majority of
parton fragments in nuclear collisions and therefore re-

Q (GeV)

D
(x

E
,Q

2 )

g-g

q-q̄
0.81

0.60

0.41

0.27

0.150

0.07

0.02

xE

A B

ymax

D
(x

E
,Q

2 )

A B

10
-3

10
-2

10
-1

1

10

10 2

10 3

1 10 10
2

10
-3

10
-2

10
-1

1

10

10 2

10 3

82
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quires at least a phenomenological characterization con-
sistent with QCD theory. Extrapolation of FF systematics
into this region is the purpose of the present analysis.

Region B (Q � 5–20 GeV) is the transition region in
which color emerges and fragmentation approaches the
perturbative description. Convergence of the gluon FF
with the quark FF near and below Q � 10 GeV in
Fig. 17, determined in this analysis by multiplicity trends
alone, is also apparent in direct measurements of scaling
violations in FFs [46], for example, deviation of the gluon
FF from the HERWIG Monte Carlo at large xE and for
energy scale (Qjet � Q=2) 5–10 GeV in Fig. 6 of [46].

Parameters �p; q� vary weakly and linearly in the energy
range above Q � 20 GeV (cf. Fig. 14—left panel). If we
set the slopes of p and q on ymax to zero in that interval the
changes in Fig. 17 are small compared to the dominant
structure. We conclude that much of the variation in the
perturbative region of Fig. 17 is determined by phase-space
acceptance variations with parton energy. The subtle linear
variations of the �p; q� parameters in that region may
provide more differential access to the parton cascade
process. To explore that possibility we consider a modified
form of the DGLAP equations in the remainder of this
section.

B. The running of �s�Q�

The energy-dependent �s factor in the LO DGLAP
equations can be approximately eliminated as follows
(this procedure reverses use of the energy dependence of
scaling violations to infer �s [28]). Data showing the
running of �s with energy scale Q are summarized in
Fig. 18 (left panel) [65,66] using a conventional plotting
format. A NLO expression for �s�Q� is [67]

 �s�Q� �
2�
�1Y

�
1�

�2

�2
1

ln�2Y�
2Y

�O�1�
�1

�2Y�2

�
; (3)

with Y � ln�Q=��, �1 � �11nc � 2nf�=3, nc, and nf the
color and effective flavor numbers and �2 � �102nc �
38nf�=3. Equation (3) is plotted as the dashed-dotted
curves in Fig. 18. For � � 0:2 GeV, nf � 5, and O�1� �
0:3 the NLO curves describe the data well. The solid curve
in the left panel is obtained from the straightline parame-
terization in the right panel.

Figure 18 (right panel) shows an alternative plotting
format in which the data are consistent with a linear trend
on rapidity, and the low-Q2 region is visually more acces-
sible. In the leading-log (LL) approximation the strong
coupling constant is given by [39]

 1=�s�Q� � 1=�s�Q0� � �1=2� � ln�Q=Q0�: (4)

Since ymax�Q=2; �� � ln�Q=�� forQ
 � we parameter-
ize �s in the form 1=�s�Q� � A���ymax�Q=2; ��, with the
constraint that for any � the line should pass through the

current average �s�MZ0
� � 0:118 (crossed dotted lines).

The linear relation is then a single-parameter expression
since A��� � �1=�s�MZ0

�	= ln�MZ0
=��. The range of �

values permitted by one-sigma deviations at both the 1.78
and 4.1 GeV data points is � � 0:2� 0:05 GeV, consis-
tent with the adopted NLO value above. The corresponding
A value is A � 1:37� 0:05, which can be compared with
the LL slope �1=2� � 1:22 for nf � 5 flavors. The
hatched box denotes the region of primary interest for the
study of low-Q2 parton fragmentation (�s 2 �0:2; 0:4	).
The approximate proportionality of 1=�s and ymax appar-
ent in both the LL and NLO descriptions is used in what
follows.

C. Scaling violations on (y; ymax)

We have determined that D�x; s� ! D��; lns� !
D�y; ymax� has a simple underlying structure (beta distri-
bution) and energy dependence [�p; q� parameters]. What
are the implications for pQCD and the DGLAP equations?
The general behavior of joint distribution D�y; ymax� is
evident from the surface plots in Fig. 15, where the trivial
� term in lnD�x; s� � lnD��; s� � � which dominates
Fig. 17 is eliminated, permitting more precise compari-
sons on a linear scale. Equation (2) has the form
dD�x; s�=d lns / �s�s� � convolution integral. The run-
ning coupling constant introduces an energy dependence
which can be eliminated.

As an alternative approach we introduce the logarithmic
derivative [62] motivated by the relation between Mellin
transforms of FFs and splitting functions. The Mellin trans-
form of an FF is

 D̂�w; s� �
Z 1

0
dxxw�1D�x; s�; (5)

which is also the Laplace transform of D��; s�. The
DGLAP equations, written in terms of Mellin transforms,
are represented by a simple matrix equation [39]. For the
nonsinglet case D̂ns � D̂q � D̂�q the logarithmic derivative
is
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rapidity ymax. The dotted lines cross at �s�MZ0
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d lnD̂ns�w; s�
d lns

�
�s�s�
2�

P̂qq�w� � 	qq�w; s�; (6)

where P̂qq�w� is the Mellin transform of splitting function
Pqq�z� for the process q! q�z� � g�1� z�, with the re-
spective momentum fractions noted, and 	ab�w; s� are the
anomalous dimensions of QCD [68,69]. Since d lns �
2dymax we multiply through by 2ymax and use the results
of the previous subsection to obtain

 

d lnD̂ns�w; ymax�

d lnymax

�
1

�A
P̂qq�w�: (7)

For the nonsinglet case the logarithmic derivative of the
Mellin transform of an FF is proportional to the Mellin
transform of a splitting function, independent of energy
scale in LO. That simple relation motivates a similar
approach to the FFs themselves.

We multiply Eq. (2) by x ln�s=m2
0�=xD�x; s� to obtain

d lnD��; s�=d ln�ln�s=m2
0�	 ! d lnD�y; ymax�=d lnymax on

the LHS. The additional factor ln�s=m2
0� � 2ymax intro-

duced in converting to the logarithmic derivative cancels
the 1=ymax trend of �s�ymax� on the RHS to good approxi-
mation (Sec. XII B). What remains on the RHS is the
convolution integral, including splitting function zP�z� �
P��� with � � ln�1=z� and fragmentation-function ratio
Da��� �; s�=Db��; s�. We then use the following trans-
formations, �! ymax � y, � ! ymax � y0, D��� !
D�ymax � �� �D�y�, and D��� �� ! D�ymax � ��
�� �D�y� ymax � y0�, to obtain

 

d lnDb�y; ymax�

d lnymax

�
1

�A

X
a

Z ymax

y
dy0Pab�ymax � y

0�

�
Da�y� ymax � y0; ymax�

Db�y; ymax�
; (8)

a modified form of the DGLAP equations on �y; ymax�.
In Fig. 19 (left panel) we plot d lnD�y; ymax�=d lnymax vs

ymax for quark (solid) and gluon (dashed) FFs using the
parameterized D�y; ymax� from the present analysis for
each parton type. The structure is completely defined by
parameters �p; q� in Fig. 14 (left panel) and corresponds
exactly to the scaling violations in Fig. 17. Because of the
form of the beta distribution the logarithmic derivative
directly relates exponents p and q to the splitting functions.
There are three main features in the distributions:
(1) nearly-horizontal linear trends at larger energy scales
(to the right of the dotted line), (2) ‘‘singularities’’ at
smaller energy scales due to kinematic boundaries and
3) minima at intermediate energies corresponding to a
transition from ‘‘small’’ (1–2) to ‘‘large’’ (3 or more)
fragment number, which may also relate to the emergence
of color charge (quark-gluon distinction) at Q� 8 GeV.
The nearly constant values for larger xE (y! ymax) and
ymax are the slopes or ‘‘power-law’’ exponents in Fig. 17
(right panel).

In Fig. 19 (right panel) d lnD�y; ymax�=d lnymax vs xE �
cosh�y�= cosh�ymax� is plotted for quarks and gluons. In the
limit xE ! 1 (y! ymax) and large ymax we expect [62]

 

fd lnD�y; ymax�=d lnymaxggluon

fd lnD�y; ymax�=d lnymaxgquark
!
CA
CF
� 2:25: (9)

The dotted lines are a�xE � b� and 2:25� a�xE � b�, with
a � �1:8 and b � 0:35 adjusted to best match the quark
points. The ratio trend is in reasonable agreement with the
QCD expectation above xE � 0:2. Within the constraints
established in this analysis there is freedom to adjust the
energy dependence of �pg; qg� to achieve that agreement.
Changing the slopes of �pg; qg� on ymax changes the posi-
tion of the gluon curve in Fig. 19 (right panel). Variations
of �20% sketched by the lower hatched area are possible
without disturbing agreement with data.

The opposite-sign slopes for �pq; qq� in Eq. (1) are
strongly constrained by the quark-jet multiplicity trend
2nq�ymax� in Fig. 13. Setting those slopes to zero gives
the lower dotted (quadratic) curve in the right panel of that
figure expected for self-similar FF scaling and fixed mode
u�. Varying the same-sign slopes in the �pg; qg� expres-
sions together does not affect the gluon-jet multiplicity
trend 2ng�ymax� determined by the q� p difference but
does affect the slopes of the gluon logarithmic derivatives
at larger xE in Fig. 19 (left panel) and the slope of the gluon
curve in the right panel. Setting the same-sign �pg; qg�

slopes to zero makes the logarithmic derivative slopes
zero, and the gluon curve in the right panel becomes
parallel to the quark curve (upper edge of lower hatched
region). Increasing the �pg; qg� same-sign slopes, which
reduces the width of the gluon FF, and hence its amplitude
at larger xE, without changing its mode or the multiplicity
trend provides a match to the expected CA=CF ratio.
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FIG. 19. Left panel: Scaling violations in the form of logarith-
mic derivatives of the distributions in Fig. 17 (left panel). Solid
curves represent udsc-quark jets, dashed curves represent gluon
jets. The near uniformity to the right of the dotted line (Q �
20 GeV) for larger xE is notable. Right panel: Logarithmic
derivatives for quark and gluon jets at ymax � 7:8 vs energy
fraction xE � cosh�y�= cosh�ymax�.
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XIII. DISCUSSION

Our intention in this study has been to provide the
phenomenological means to extrapolate e�-e� parton
fragmentation functions to low Q2 where the perturbative
description of QCD is not applicable. We have been guided
by the many precise measurements of e�-e� fragmentation
functions and their relationship to pQCD predictions now
available. Parton scattering and fragmentation at low Q2

are in turn important for understanding p-p and A-A colli-
sions at RHIC. As a result of this study we have found that
the beta distribution provides a simple but precise descrip-
tion of FFs which accomplishes the desired extrapolation
but also reveals some interesting new aspects of parton
fragmentation.

A. Motivation from p-p and A-A collisions

We observe large-amplitude two-particle correlations in
nuclear collisions at RHIC, produced in part by fragmen-
tation of low-Q2 partons (minijets). Minijet-related corre-
lations observed in p-p collisions are strongly modified
with increasing centrality in Au-Au collisions. While
low-Q2 partons play an important role in forming the
colored medium and driving large-scale hydrodynamic
phenomena according to theory, they may also function
as sensitive probes of that medium. However, theoretical
descriptions of low-Q2 scattering and fragmentation are
limited. Factorization is not applicable since low-Q2 par-
ton scattering and fragmentation remain intimately con-
nected. However, new aspects of fragmentation observed
via correlations in nuclear collisions (including strong
dependence of fragment angular correlations on Q2 [9])
suggest a complex but understandable low-Q2 process.

To facilitate theoretical descriptions of low-Q2 phe-
nomena we have attempted to extrapolate a phenomeno-
logical representation of measured FFs in e�-e� collisions
to low Q2. We want to connect two-particle fragment
correlations in p-p and heavy ion collisions to pQCD and
conventional jet phenomenology through single-particle
fragmentation functions. The extrapolation imposes spe-
cial demands on the fragment representation (particularly
for small particle momenta) which have led us to employ
rapidity y and normalized rapidity u as our basic kinematic
variables. That decision led to the discovery that the beta
distribution on u is a good model of light-quark and gluon
fragmentation functions.

In p-p and A-A collisions at RHIC we encounter copious
parton fragmentation in an energy regime where pQCD is
not applicable, but where trends from pQCD may provide
semiquantitative guidance for analysis and interpretation.
We therefore distinguish between conditional pQCD frag-
mentation functions and unconditional fragment distribu-
tions measured in nuclear collisions. Given that distinction
we can attempt to connect low-Q2 phenomena in nuclear
collisions to QCD through the close connection between
FFs and fragment distributions as a limiting case. This is a

new aspect of fragmentation which lies outside the scope of
conventional pQCD fragmentation analysis.

B. The beta distribution as compact representation

FFs for e�-e� collisions transformed to y are approxi-
mately self-similar with increasing ymax, as sketched
in Fig. 1. They are bounded by parton rapidity ymax and
lower limit ymin. Those trends suggest a further transfor-
mation to normalized rapidity u � �y� ymin�=�ymax �
ymin�. Measured FFs plotted on u are nearly independent
of parton energy and can be factorized into dijet multi-
plicity 2n�ymax� and unit-normal form factor g�u; ymax�
which is modeled by the beta distribution. Since energy
conservation relates the dijet multiplicity to the form-factor
shape the fragmentation process is completely represented
by the energy-scale dependence of parameters �p; q� of the
beta distribution.

The beta distribution with two energy-dependent pa-
rameters thus precisely describes light-flavor FF data
over the scale interval Q 2 �5; 100	 GeV (e.g., Figs. 2–
5) and can be extended to lower energies, accomplishing
the main goal of this study: extrapolation of fragmentation
systematics down to fragment multiplicity n� 1–2 and
energy scale Q� 1 GeV. We also obtain simple represen-
tations of FFs on �x; s� or �y; ymax� (continuous 2D surface)
for studies of scaling violations over the full kinematic
range.

C. Fragmentation as an equilibration process

Why does the beta distribution provide a good descrip-
tion of e�-e� FFs? ��u;p; q� describes systems in which
entropy is maximized (e.g., by a parton cascade) on a
bounded interval (e.g., bounded by the leading-parton
energy). ��u;p; q� is one instance of the exponential fam-
ily of probability distributions p�x�which can be defined in
terms of a maximum-entropy condition with constraints
[70]. The beta distribution defined on x 2 �0; 1	maximizes
the Shannon entropy S � �

R
dxp�x� ln�p�x�	 subject to

constraints on geometric means ln�x� �
R
dxp�x� ln�x� and

ln�1� x�. The Gaussian distribution can be similarly de-
fined, with constraints on its first and second moments �x
and �x2.

Given those properties of the beta distribution and its
good description of FFs, fragmentation of light quarks and
gluons can be viewed as an equilibration process controlled
by two opposing tendencies: parton splitting as a form of
downscale energy transport which increases entropy and
gluon coherence which constrains the splitting at a scale
conjugate to hadron size. The observed fragment distribu-
tion is then a maximum-entropy configuration balancing
those two tendencies. Of the two beta parameters q reflects
the splitting tendency and p reflects the hadron size con-
straint. The DGLAP equations which describe the pertur-
bative splitting (transport) process are thus coupled to the
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soft part of the FF by entropy maximization as well as
energy conservation.

D. Conventional pQCD fragmentation functions

Do benefits from the introduction of �y; ymax�, u and the
beta distribution justify a new approach to fragmentation?
In Fig. 20 we compare FF data to a beta distribution fit
from this analysis and a pQCD model FF (KKP) obtained
from a conventional scaling violations analysis using the
DGLAP equations [41] and defined by 14 parameters for
each parton-hadron combination. Figure 20 (left panel)
shows the OPAL 91 GeV FF data from Fig. 2 with the
KKP fragmentation function (dashed curve) and the FF
from this analysis (solid curve). With the exception of a
small deviation at large xp the agreement in this format
appears to be good (also cf. Figure 2—left panel).

Figure 20 (right panel) shows the same distributions on
normalized rapidity u. The KKP FF based on DGLAP
evolution deviates strongly from data below u � 0:7 and
accurately represents less than 10% of the fragments at
91 GeV. The vertical dotted line in each panel shows the
intended region of validity (xp > 0:1) of the KKP and
similar FFs. In contrast, the FF from our analysis, based
on the beta distribution and defined by two parameters per
parton-hadron combination with simple energy depen-
dence above Q � 20 GeV, accurately describes the data
on xp over 6 orders of magnitude and, extrapolating the full
data distribution down to zero momentum, provides a well-
defined multiplicity integral.

Recent improvements in the pQCD description of FFs
have lead to much improved coverage on xp. In [24] a
consistent combination of DGLAP evolution, resummation
of soft gluon logarithms and incorporation of hadron mass
effects provides a semiquantitative description below the
FF mode on y or u while retaining good agreement above
the mode. Such theoretical advances provide a context for
the present phenomenological analysis.

E. Energy dependence and scaling violations

We have studied the energy dependence of FFs as rep-
resented by beta-distribution parameters �p; q� in Figs. 13–
16. The direct relation between dijet multiplicities and FF
shape parameters via the energy sum rule provides a new
method for extending the FF description over a broad
energy range. The connection between shape parameters
�p; q� and dijet multiplicity 2n�ymax� is particularly impor-
tant for extrapolation to low Q2 (e.g., the CLEO multi-
plicity data provide strong constraints on low-energy FF
evolution).

A striking feature of Fig. 13 is the bifurcation of quark
and gluon trends near Q� 5 GeV and evolution to large
separation by Q� 20 GeV, with a dramatic correspon-
dence in Fig. 14 (left panel). Above 20 GeV the system
exhibits simple pQCD trends which are most apparent in
Fig. 14. Corresponding peak modes on u remain close to
0.4 over a broad energy range. It is not clear from Fig. 13
that peak modes increase rapidly near 5 GeV and approach
unity below that point, but that trend can be inferred from
Fig. 14 which provides important extrapolation guidance.
Mode trends are illustrated in Fig. 16 and agree well with
data and pQCD predictions in the energy range above
15 GeV.

We have considered scaling violations in Fig. 15 and 17–
19. We find that a combination of QCD scaling violations
and gluon coherence leads to approximate self-similarity of
FFs on rapidity with changing energy scale, as illustrated in
Fig. 1 and demonstrated in Fig. 3. Normalized FFs plotted
on normalized rapidity u are therefore nearly independent
of energy scale. However, relative to the self-similarity
trend we observe more subtle forms of ‘‘scaling viola-
tions’’ as described in the previous paragraph.

Conventional scaling-violation systematics are easily
and precisely reproduced by our parameterization over a
broad energy range, as demonstrated in Fig. 17 down to
kinematic limits. It is straightforward to explore the con-
sequences of varying �p; q� energy trends. For example,
Fig. 19 (right panel) demonstrates that the CA=CF limit for
logarithmic derivatives previously established by specific
experimental measurements (e.g., [46,52,59,62]) is consis-
tent with the �p; q� parameterization determined by the
present study.

XIV. SUMMARY

In conclusion, we have examined the variation of frag-
mentation functions (FF) with parton energy on conven-
tional kinematic variables xp and �p, on rapidity y and on
normalized rapidity u. We find that FFs plotted on rapidity
y vary with energy in a nearly self-similar manner. FFs
transformed to u are well described by a product of the
dijet multiplicity and a unit-normal form factor modeled by
the beta distribution. The latter is determined by parame-
ters �p; q� which exhibit modest linear variations within
perturbative energy-scale range Q> 20 GeV. The beta-

xp

2d
n

/d
x p

KKP

from β(u;p,q)

u

1/
n(

y m
ax

) 
dn

/d
u

KKP

OPAL
91 GeV

β(u;p,q)

10
-3

10
-2

10
-1

1

10

10 2

10 3

0 0.25 0.5 0.75 1

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.2 0.4 0.6 0.8 1

FIG. 20. Left panel: Beta distribution (solid) and KKP FF
(dashed) curves compared to OPAL 91 GeV data points (open
circles) on linear momentum variable xp. Right panel: The same
curves and data transformed to normalized rapidity u. The
vertical dotted lines both correspond to xp � 0:1.
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distribution shape, when combined with an energy-
conservation sum rule, also determines FF multiplicities.
The factored representation on u thus provides a simple
and compact representation of e�-e� FFs over a broad
energy range and permits extrapolation to small energy
scales.

Reduction of scaling violations to near-linear variations
of beta parameters �p; q� may provide more differential
access to the energy dependence of parton fragmentation.
The beta-distribution model suggests that fragmentation of
light partons can be viewed at larger energy scales as an
entropy-maximizing equilibration process. In this analysis
the energy dependence of fragmentation has been extrapo-

lated down to a kinematic region not accessed by conven-
tional methods. Such low-Q2 extrapolation provides a
phenomenological context for minijet-related two-particle
correlations in p-p and A-A collisions at RHIC, forming a
basis for theoretical treatments of in-medium dissipation of
low-Q2 partons and the subsequent hadronization process
in heavy ion collisions.
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