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We examine the anomalous dimension matrix appropriate for the phase space restricted �B! Xu‘ �� and
�B! Xs� decay spectra to subleading nonperturbative order. The time ordered products of the HQET

Lagrangian with the leading order shape function operator are calculated, as are the anomalous
dimensions of subleading operators. We establish the renormalizability and closure of a subset of the
nonlocal operator basis, a requirement for the establishment of factorization theorems at this order.
Operator mixing is found between the operators which occur to subleading order, requiring the subleading
operator basis be extended. We comment on the requirement for new shape functions to be introduced to
characterize the matrix elements of these new operators, and the phenomenological consequences for
extractions of jVubj.
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I. INTRODUCTION

Extracting the CKM parameter jVubj is an important step
in testing of the CKM description of CP violation in the B
meson system. Currently, the theoretically cleanest deter-
minations of jVubj come from inclusive semileptonic de-
cays which are not sensitive to the details of hadronization;
although recently an approach of extracting jVubj, utilizing
B! ��, has been advanced with a competitive error to
inclusive methods. [1]

In inclusive extractions of jVubj, experimental cuts to
exclude the charm background of �B! Xc‘ �� are imposed.
This restricts the decay products to hadronic final states
that have large energy EX �mB and low invariant mass

MX �
�������������������
mB�QCD

q
. With these phase space restrictions the

local OPE expansion [2] appropriate for sufficiently inclu-
sive decays used to extract jVcbj [3], typically breaks down
[4].

As the local OPE and the clean separation of scales that
the local OPE represented in the analysis of �B! Xc‘ �� is
no longer valid, a more involved theoretical approach is
required to separate the scales relevant to these decays.
Decay rates are expressed as convolutions of hard (H), jet

(J) and soft physics (S) associated with the scales mb �������������������
�QCDmb

q
� �QCD, in the following way,

 d� � H
�
mb

�
;�s���

�Z
d!J

� ������������������
mb�QCD

q
�

;�s���; !
�
S�!�:

(1)

This factorization theorem has been proven diagrammati-
cally [5] at leading order in 1=mb, however it is not known

to hold to all orders in the nonperturbative expansion. The
form of corrections present in the expansion of the soft
sector, which begins at O�1=�QCD� to subleading order
(O�1=mb�) has only recently been examined [6].

The systematic treatment of the nonperturbative correc-
tions involves a two step matching procedure. One matches
QCD onto the effective field theory of the intermediate
scale, describing quarks and gluons with large energy and
small offshellness, known as SCET [7–9], and uses the
renormalization group evolution to run down to the soft
scale. One then matches SCET onto the lightcone wave-
function of the B meson, expressed in terms of HQET
fields. One can also match directly from QCD onto HQET,
a much simpler procedure at the cost of not summing the

logarithms of the ratio of scales log�
������������������
mb�QCD

q
=mb� via

SCET. In either case, the soft sector of the theory is
expanded in terms of nonlocal operators. The leading order
term in the �QCD=mb expansion of the lightcone distribu-
tion function of the B meson [10,11] is know as the shape
function.

At subleading order in the nonperturbative expansion,
four additional nonlocal operators have been determined to
be present [12–20], the matrix elements of which are
referred to as subleading shape functions.

It is of some intrinsic interest to examine the renormal-
ization of these nonlocal operators, as they are nonlocal
and their renormalizability is not know a priori. It is also
important to know if this set of operators is complete for
both determining their associated error in extractions of
jVubj and in considering the above factorization theorem
beyond leading order. Examining the perturbative behavior
of these subleading operators is also a necessary step in the
one loop matching calculations onto the soft sector. For
these reasons we have examined the anomalous dimension
to subleading nonperturbative order.
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We have determined the contributions of the time or-
dered products of the subleading LHQET with the leading
order shape function, and examined the anomalous dimen-
sions of the subleading nonperturbative operators. We
establish the renormalizability and closure of a subset of
the subleading nonlocal operators. We find that the known
operator basis mixes with new operators, requiring that the
subleading operator basis be extended. We also comment
on the phenomenological consequences of these results.

II. ANOMALOUS DIMENSION TO SUBLEADING
ORDER

A. Notation

We introduce two lightlike vectors n� and �n� related to
the velocity of the heavy quark by v � 1

2 �n� �n�, and
satisfying

 n2 � �n2 � 0; v � n � v � �n � 1; n � �n � 2: (2)

In the frame in which the b quark is at rest, these vectors
are given by n� � �1; 0; 0; 1�, �n� � �1; 0; 0;�1� and v� �
�1; 0; 0; 0�. The projection of an arbitrary four-vector a�

onto the directions which are perpendicular to the light-
cone is given by a�? � g��? a�, where

 g��? 	 g�� �
1

2
�n� �n� � n� �n��: (3)

We also define a perpendicular Levi-Civita tensor

 ���? � ����	v�n	: (4)

We also use the projector P� � 1=2�1� v6 � as well as the
Dirac structure s
 � P��
�5P�, so that v � s � 0.

Distribution notation

Rather than the usual definitions of the star distribution
as given in Neubert and deFazio [21],
 �

1

x

�


� lim

�!0

�
��x� ��

x
� ��x� �� log�x�

�
�

log�x�
x

�


� lim

�!0

�
��x� ��

x
log�x� �

1

2
��x� ��log2�x�

�
;

(5)

we utilize the alternate notation, equivalent to the
�-distribution’s in [22]

 
n�x� 	 lim
�!0

�
1

n� 1
��x� ��logn�1�x�

�
: (6)

This notation has a fairly easy correspondence to the usual
star distribution notation

 
00�x� �
�
1

x

�


; 
01�x� �

�
log�x�
x

�


: (7)

A useful identity given by analytic continuation is

 

��x�

x1��
� �

1

�
��x� �
00�x� � �


0
1�x� �O��2� (8)

This relationship is valid when integrated against arbitrary
functions f�x�, where f is not singular at the origin. In
general we can write the recursion relation

 

��x�
xn��

�
�1

n� 1� �
d
dx

�
��x�

xn�1��

�
for n � 2: (9)

Several other useful properties of this function are (for
some positive constant a):

 x
00�x� � ��x� x
000 �x� � ��x� �
00�x�

a
00�ax� � 
00�x� � ��x� log�a�;
(10)

as well as

 

Z a

�1
dxf�x�
00�x� �

Z a

0
dx
�
��x�
x

�
�
f�x� � f�0� log�a�:

(11)

B. Operators to subleading order

At leading order a single nonlocal operator characterizes
the nonperturbative physics,

 Q0�!;�� � �hv��!� in �D��hv; (12)

where the covariant derivative is D� � @� � igA�.
The order �QCD=mb corrections to the �B! Xu‘ �� and

�B! Xs� decay spectra require the introduction of four
additional nonlocal operators [12–16],
 

mbQ
�
1 �!;�� � �hvfiD

�
?; ��!� in �D�g�hv;

mbQ
�
2 �!;�� � �hv�iD

�
?; ��!� in �D�
�hv;

mbQ3�!;�� �
Z
d!1d!2��!1; !2;!� �hv��!2 � in �D�

� g��? fiD
�
?; iD

�
?g��!1 � in �D��hv;

mbQ4�!;�� � �
Z
d!1d!2��!1; !2;!� �hv

� ��!2 � in �D�i�
��
? �iD

�
?; iD

�
?


� ��!1 � in �D��hv; (13)

where

 ��!1; !2;!� �
��!�!1� � ��!�!2�

!1 �!2
: (14)

We define these operators rescaled by mb for later conve-
nience in the anomalous dimension. This rescaling should
be noted when comparing to other work dealing with
subleading shape functions. We also use the convention
of labeling operators as Qi operators when the Dirac
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structure is general and refer to them as Oi�!� � Qi�!; 1�
and P
i � Qi�!; s


� for particular Dirac structures.
We find that the operator basis must be extended beyond

tree level to include, at least the following operator

 mb
�Q�

1 �!;�� � �2
Z
d!1d!2��!1; !2;!�K�

2 �!1; !2; ��;

(15)

where we have defined the following kernel and coefficient
functions
 

K�
2 �!1;!2; �� � �hv��!1� in �D�iD

�
?��!2� in �D��hv;

(16)

 ��!1; !2;!� �
��!�!1� � ��!�!2�

!1 �!2
: (17)

The operator �Q1 was originally defined in [12] by
Mannel and Tackmann [23,24] based on symmetry argu-
ments and examining the endpoint of �B! Xc‘ �� and taking
the massless limit. We find that the operator is unambigu-
ously required beyond tree level due to the mixing experi-
enced with the original set of operators.

C. Operator Feynman rules

We use Feynman gauge to calculate the anomalous
dimension to subleading order as the usual choice of light-
cone gauge introduces nonphysical poles in the calcula-
tion; for a review of the relevant issues see [25].

Below, we present the required zero and one gluon
Feynman rules (see Fig. 1). The two gluon Feynman rules

are also required but are too lengthy to include here.1 The
nonvanishing zero gluon Feynman rules in Feynman gauge
are:

 

Q0�!;���0� gluon
 � ��!� n � k��;

Q�
1 �!;����0� gluon
 � 2

k�?
mb

��!� n � k��;

�Q�
1 �!;����0� gluon
 � 2

k�?
mb

��!� n � k��;

Q3�!;����0� gluon
 � �2
k2
?

mb
�0�!� n � k��:

(18)

The one gluon Feynman rule for the leading order
operator is

 Q0�!;���1� gluon
 � �gTan�
�
���n � ‘�
n � ‘

�
�: (19)

The one gluon Feynman rules for single covariant deriva-
tive operators are:

 Q�
1 �!;���1� gluon
 � �gTag

��
? ���n � ‘�

�

mb
� gTan��2k� ‘�

�
?

�
���n � ‘�
n � ‘

�
�

mb
;

�Q�
1 �!;���1� gluon
 � �2gTag

��
?

�
���n � ‘�
n � ‘

�
�

mb
� 2gTan�‘

�
?

�
���n � ‘�

�n � ‘�2

�
�

mb
� 2gTan�k

�
?

�
���n � ‘�
n � ‘

�
�

mb

� 2gTan
�‘�?

�
��!� n � k� n � ‘�

n � ‘

�
�

mb
;

Q�
2 �!;���1� gluon
 � gTag

��
? ���n � ‘�

�

mb
� gTan�‘

�
?

�
���n � ‘�
n � ‘

�
�

mb
:

(20)

Finally, the one gluon Feynman rules for two covariant derivative operators are as follows:
 

Q3�!;���1� gluon
 � 2gTa

�
�2k� ‘��?

�
���n � ‘�
n � ‘

�
� n�k2

?

�
�0�!� n � k�

n � ‘

��
�

mb

� 2gTa

�
n��k� ‘�2?

�
�0�!� n � k� n � ‘�

n � ‘

�
� n��2k? � ‘? � ‘

2
?�

�
���n � ‘�

�n � ‘�2

��
�

mb
;

Q4�!;���1� gluon
 � 2gTai�
��
? ‘?�

�
���n � ‘�
n � ‘

�
�

mb
:

(21)

QQ

1 2

kk

a 1 a1 2 a2

(b () c)(a)

Qk

αα α

FIG. 1. Gluon labels and momentum routing for the zero, one
and two gluon Feynman rules.

1All the Feynman rules have been collected in a Mathematica file that can be supplied if requested.
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where ‘ is the gluon momentum flowing into the vertex,
and the gluon carries Lorentz index � and color index a.
We have also made the convenient definitions

 ���x� � ��!� n � k� x� � ��!� n � k� (22)

 ���x� � ��!� n � k� x� � ��!� n � k�: (23)

D. The anomalous dimension matrix

The renormalization of the operators Qi�!;�� is per-
formed in the usual fashion,

 Qi�!;��bare �
Z
d!0Zij�!

0; !; ~��Qi�!
0; ~�;��ren; (24)

where Zij�!0; !; ~�� is a matrix of renormalization con-
stants. The values of the elements of Zij can be found by
taking arbitrary partonic matrix elements of both sides,
which at leading order gives Z�0�ij �!

0; !; ~�� � �ij��!�
!0�.

To subleading order in �s we have

 hQi�!;��i
�0�
bare � �shQi�!;��i

�1�
bare

�
Z
d!0�Z�0�ij �!

0; !; ~�� � �sZ
�1�
ij �!

0; !; ~��


� �hQj�!
0; ~�;��i�0�ren � �shQj�!

0; ~�;��i�1�ren
; (25)

from which one obtains

 

Z
d!0Z�1�ij �!

0; !; ~��hQj�!0; ~�;��i�0�

� hQi�!;��i
�1�
bare � hQi�!;��i

�1�
ren

� �hQi�!;��i
�1�
bare�div

(26)

where by �hQi�!;��i
�1�
bare�div, we refer to the UV divergent

part of hQi�!;��i
�1�
bare. Because there are operators such as

Q2 and Q4 which do not have a zero gluon form, we must
consider matrix elements of Eq. (24) with at least one
external gluon. These will be sufficient to identify the
mixing of the various operators into Q2 and Q4. It should
be noted that matrix elements with zero and one external
gluon states are not sufficient in principle to determine the
anomalous dimension matrix to subleading order. The
operator
 

Q���!1; !2;�� � �hv�iD
�
?; ��!2 � in �D�


� �iD�
?; ��!1 � in �D�
�hv; (27)

does not have a zero gluon or one gluon Feynman rule. Its
first nonvanishing Feynman rule contains two gluons. In
this paper, we will not be calculating the two external gluon
diagrams necessary to find mixing into this operator, if any
exists. We extract the anomalous dimension matrix of the
subleading operators by examining matrix elements con-
taining one perpendicularly polarized external gluon:

 

Z
d!0Z�1�ij �!

0; !; ~��hhvA?jQi�!
0;��jhvi

�0�
ren

� �hhvA?jQi�!;��jhvi
�1�
bare�div: (28)

The nonperpendicular components of the gluon field were
also examined but found to induce no further mixing.

The mixing of Q0 into the other operators is determined
by calculating matrix elements of this operator with inser-
tions of the subleading HQET Lagrangian. Zero gluon
matrix elements are sufficient to find the mixing into Q0,
while one gluon matrix elements are required for mixing
into the remaining operators. Because of the spin symme-
try violating effects of the subleading HQET Lagrangian,
the anomalous dimension of the Pi operators can differ
from that of the Oi operators.

The wavefunction renormalization of the bare operators
expressed in terms of renormalized fields is Qi�!;��bare �

ZhZ
n=2
3 Qi�!;�� where n is the number of gluons in the

operator, and Qi�!;�� is written in terms of renormalized
fields. For diagrams with an external state gluon we use the
background field method to treat the external gluon as a
background field [26].

E. Diagram calculations

1. One gluon matrix elements

The one gluon matrix elements are determined by cal-
culating the diagrams shown in Fig. 2 for each operator.
The external gluon in each of these diagrams is a back-
ground field gluon chosen to have perpendicular polariza-
tion. We utilize dimensional regularization and the MS
scheme to regulate our divergences. To isolate and remove
the IR divergences in the calculation we keep all the
particles off shell by retaining factors of v � k, v � ‘ and
‘2, where ‘ is the external gluon momentum.

(aa) (ac) (ad) (dc)

(bb) (bc) (bd) (dd)

(ca) (cb) (cc) (cd)

FIG. 2. The one gluon diagrams which must be calculated for
each operator.
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To clearly illustrate the need to extend the operator basis we present the results for Q1 diagram by diagram. In general, for
perpendicular polarized external gluons, only diagrams (ac), (ad), (bc), (bd) and (dc) contribute to the amplitude. For
diagram (dc), the loop integrals to perform are as follows, with c1 	 ��sgTag

��
? �=�4��,

 

hiAdci
�1� � �

c1

mb
CA�n � ‘�

2�4�d
Z ddq

�2��d
���n � ‘�

n � q�n � ‘� n � q��q2 � i����q� ‘�2 � i��
�
c1

mb
CA�n � ‘�

2�4�d

�
Z ddq

�2��d
��!� n � k� n � q� � ��!� n � k� n � ‘� n � q�

n � q�n � ‘� n � q��q2 � i����q� ‘�2 � i��
: (29)

The integrals are perfomed via the standard techniques of dimensional regularization with d � 4� 2�, the MS renor-
malization scale ~�2 � 4��2e��E , and the utilization of Eq. (8) and we have suppressed the Lorentz and color indicies.
The UV poles obtained from this diagram forQ1 after the integrals are performed and consideration of the symmetry factor
are
 

hiAdci
�1�
div �

c1CA
mb�

�
n � ‘

~��!� n � k�

00

�
!� n � k� n � ‘

~�

�
�

n � ‘
~��!� n � k� n � ‘�


00

�
!� n � k

~�

��

�
c1CA
mb�

�
���n � ‘� log

�
n � ‘

~�

��
:

The results for diagrams ac and bc when inserting Q1 are
 

hiAaci
�1�
div �

c1CA
mb�

�
��!� n � k� n � ‘�

2�
� ��!� n � k� n � ‘�

�
�
c1CA
mb�

�
log

�
n � ‘

~�

�
��!� n � k� n � ‘�

�

�
c1CA

mbn � ‘�

�
�!� n � k�

�!� n � k� n � ‘�
�
�
!� n � k

~�

�
� �

�
!� n � k� n � ‘

~�

��
; (30)

 

hiAbci
�1�
div �

c1CA
mb�

�
��!� n � k�

2�
� ��!� n � k� � log

�
n � ‘

~�

�
��!� n � k�

�

�
c1CA

mbn � ‘�

�
�
�!� n � k� n � ‘�
�!� n � k�

�
�
!� n � k� n � ‘

~�

�
� �

�
!� n � k

~�

��
: (31)

Finally, the results for diagrams ad and bd for Q1 insertions are

 

hiAadi
�1�
div �

c1CF
mb�

�
���n � ‘�

�
�

2

~�

00

�
!� n � k� n � ‘

~�

�
�

2

~�

00

�
!� n � k

~�

��

�
c1CA
mb�

�
�
��!� n � k� n � ‘�

2�
�

1

~�

00

�
!� n � k� n � ‘

~�

��
;

hiAbdi
�1�
div �

c1CF
mb�

�
���n � ‘�

�
�

2

~�

00

�
!� n � k� n � ‘

~�

�
�

2

~�

00

�
!� n � k

~�

��

�
c1CA
mb�

�
�
��!� n � k�

2�
�

1

~�

00

�
!� n � k

~�

��
:

(32)

The amplitudes combine to give the following UV poles

 

hiAQ1
i�1�div �

c1CF
mb�

�
2���n � ‘�

�
�

4

~�

00�

�
n � ‘

~�

��
�
c1CA
mb�

�
���n � ‘� �

2���n � ‘�
n � ‘

�
: (33)

Once the wavefunction renormalization terms are multiplicatively combined with the result, we express the amplitude in
terms of renormalization matrix elements di and the one gluon Feynman rules for the operators Q�

1 and �Q�
1 as follows

 

hiAQ1
i�1�div �

�s
4�

Z
d!0d1�!;!

0; ~��hQ�
1 �!

0�i�0� �
�s
4�

Z
d!0d4�!;!

0��h �Q�
1 �!

0�i�0� � hQ�
1 �!

0�i�0��; (34)

where
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d1�!;!0; ~�� � �
2CF
�2 ��!�!0� �

2CF
�
��!�!0�

�
4CF
~��


00

�
!�!0

~�

�
;

d5�!;!
0� �

CA
�
��!�!0�:

(35)

The form of the mixing betweenQ�
1 and �Q�

1 deserves some
comment. At zero gluon the matrix elements of these
operators are identical causing this mixing to be undeter-
mined for zero gluon external state diagrams, even though
the zero gluon matrix elements of both operators are non-
zero, contrary to naive expectations. The contribution of
the operator �Q�

1 to the renormalization matrix was also
determined. We find that this operator mixes with itself
contributing a d1 form to the matrix ZSL. The antisymmet-
ric operators Q2 and Q4 mix only with themselves and
contribute diagonal factors of d1 to the matrix of renor-
malization constants.

The operator Q3 is still under investigation and left for a
future work. Because of this complication in determining
the full anomalous dimension matrix and the need for a two
gluon calculation to determine the possible mixing with
Q���!1; !2;��we present the results of our initial study of
the anomalous dimension to subleading order in this paper
and comment on the phenomenological consequences of
the presented results. We collect our results in Sec. III.

2. The T products of LHQET with O0 and P0

To find the mixing of the operators

 O0 � �hv��!� in �D�hv;

P�0 � �hv��!� in �D����5hv
(36)

into the subleading operators, we must evaluate the time
ordered products of the operators with the the subleading
terms of the HQET Lagrangian (L1)

 TO�!� �
Z
d4xT�iL1�x�; O0�0; !�
;

T�P �!� �
Z
d4xT�iL1�x�; P

�
0 �0; !�
:

(37)

We now explicitly refer to the Dirac structure of the
operators. This is necessary due to the Dirac structure of
the operators in the subleading Lagrangian. We treat the
subleading Lagrangian as a single operator insertion for the
purposes of our calculation. The different renormalization
of the kinetic and chromomagnetic terms is accommodated
by breaking the T products up in to T�O0;Ok�

, T�O0;Om�
,

T�P0;Ok�
, T�P0;Om�

after the diagram calculations, where Ok,
Om refer to the kinetic and chromomagnetic operators of
the subleading Lagrangian.

We start with the zero gluon diagrams. They are illus-
trated in Fig. 3. The crosses in the diagrams represent the
possible locations where one inserts the subleading HQET

Lagrangian, given by

 L 1 � �hv
�iD?�

2

2mb
hv � a� ~�� �hv

�g���G
���

4mb
hv: (38)

The zero, one and two gluon Feynman rules for this
Lagrangian, where we suppress the renormalization scale
dependence of the Om operator, are
 

iL1�0� gluon
 � i
k2
?

2mb
P�

iL1�1� gluon
 � �igTa
�2k? � ‘?��

2mb
P�

� igTa
i���	
l�v	

2mb
s


iL1�2� gluon
 � ig2fTa1 ; Ta2g
g�1�2

?

2mb
P�

� ig2�Ta1 ; Ta2

i��1�2	
v	

2mb
s
:

(39)

O0

(a)

O0

(b)

O0

(c)

FIG. 3 (color online). The diagrams which must be calculated
for Q0. The crosses represent possible locations to insert the
subleading HQET Lagrangian.

(aa) (ac) (ad)

(ae) (ca) (cb)

(cc) (cd) (ce)

FIG. 4 (color online). The one gluon diagrams which must be
calculated for O0 and P0. The crosses represent insertions of the
subleading HQET Lagrangian. The mirror diagram correspond-
ing to each of the above diagrams is not shown.
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The UV divergent part of the sum of the subleading
LHQET zero gluon results for both O0 and P0 (up to
Dirac structure) is the same. Our result for the general
Dirac structure operator Q0, with indices suppressed, is
 

hhv�k�jT�Q0;Ok�
�!;��jhv�k�i

�1�
div

�
�s
4�

CF
Z
d!0

4!0��!�!0�
mb�

hhv�k�jQ0�!0;��jhv�k�i�0�

�
�s
4�

CF
Z
d!0

3��!�!0�
�

� hhv�k�jv �Q1�!
0;��jhv�k�i

�0�; (40)

where we have introduced the operator v �Q1 defined by,

 mbv �Q1�!;�� � �hvfiv �D;��!� in �D�g�hv: (41)

This operator vanishes by the leading order equations of
motion and will not contribute to decay spectra. We do not
include this operator in our operator basis for consistency
in our stated results.

There are many more one gluon diagrams than zero
gluon diagrams, as illustrated in Fig. 4. The diagrams
explicitly given constitute half of the total number of
diagrams that must be calculated for each of O0 and P0.
The other diagrams can be looked upon as either the mirror

diagrams of those given, or the transposed diagrams which
have the L1 operator and lightcone operator interchanged.

The Dirac structure of the subleading Lagrangian force
us to consider the Dirac structure of these diagrams. Let us
consider the one gluon diagrams of Fig. 4, where the
lightcone operator is Q0. We will denote by h::jARj::i
and h::jALj::i the amplitude of these diagrams and the
amplitude of the mirror diagrams, respectively. Because
of the simple relationship between O0 and P�0 , the corre-
sponding amplitues for P�0 are h::js�ARj::i and
h::jALs

�j::i.
Each of hARi and hALi can be decomposed into the

two Dirac structures P� and s
, for example, with a heavy
quark target, with one gluon in the final external state:

 hhvA�ajARjhvi � hhvA�ajAR�P�jhvi

� hhvA
�
ajA



Rss
jhvi;

hhvA�ajALjhvi � hhvA�ajAL�P�jhvi

� hhvA
�
ajA



Lss
jhvi:

(42)

Thus for operator O0 we can write the total amplitude
proportional to each of the Dirac structures after the cal-
culations of the 40 diagrams required. The results for
insertions of the Ok are:

 

hhvA�ajT�O0;Ok�
jhvi

�1�
div � hhvA

�
aj�AR� �AL��P�jhvi

�1�
div;

��
CF!�sgs
�mb�

n�Ta

�
���n � ‘�
n � ‘

�
P� �

3CF�sgs
4�mb�

Ta

�
v����n � ‘��n

��2k �v� ‘ �v�
�
���n � ‘�
n � ‘

��
P�:

(43)

This result is easily matched, it is identical to the mixing form found in the zero gluon result with � � P�, so that the
mixing occurs with the operators O0 and O1:
 

hhvA
�
ajT�O0;Ok�

jhvi
�1�
div�

�s
4�
CF

Z
d!0

4!0��!�!0�
�mb

hhvA
�
ajO0�!

0�jhvi
�0��

�s
4�
CF

Z
d!0

3��!�!0�
�

hhvA
�
ajv �O1�!

0�jhvi
�0�:

(44)

The result of the T product with Om is

 hhvA�ajT�O0;Om�
jhvi

�1�
div � hhvA

�
aj�A



Rs �A


Ls
s
jhvi
�1�
div;� �

CAgs�T
a

8mb��

�
i��s?���n � ‘� � i�

‘s
?n

� ���n � ‘�
n � ‘

�
: (45)

This result matches onto the one gluon rule for P2, as expected by the symmetry of the single derivative operators:

 hhvA�ajT�O0;Om�
jhvi

�1�
div � �

�s
4�

CA
Z
d!0

��!�!0�
2�

i���? hhvA
�
ajP2���!0�jhvi�0�:

The total T�
�P0;Ok�

and T�
�P0;Om�

amplitudes can be written as

 hhvA
�
ajT

�
�P0;Ok�

jhvi � hhvA
�
ajs

�AR�jhvi � hhvA
�
ajs

�AL�jhvi;

hhvA�ajT��P0;Om�
jhvi � hhvA�ajs�s
�ARs�
jhvi � hhvA�ajs
s��ALs�
jhvi:

(46)

Using the decomposition
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 s�s	 � i��	

s
v
 � �g
�	 � v�v	�P�; (47)

we can decompose in terms of the pieces proportional to P� and s
 for these amplitudes. For T�
�P0;Ok�

and T�
�P0;Om�

we find
the following mixing
 

hhv�A
�
ajT

�
�P0;Ok�

jhvi
�1�
div � hhvA

�
ajs

��AR� �AL��jhvi;

�
�s
4�

CF
Z
d!0

4!0��!�!0�
�mb

hhvA
�
ajP

�
0 �!

0�jhvi
�0�

�
�s
4�

CF
Z
d!0

3��!�!0�
�

hhvA
�
ajv � P

�
1 �!

0�jhvi
�0�;

 hhvA�ajT��P0;Om�
jhvi

�1�
div � �v

�v� � g���hhvA�aj��ARs�� � �ALs���P�jhvi � hhvA�aj�i��

�v���ARs�
 � �ALs�
�s
jhvi;

�
�s
4�

CA
Z
d!0

��!�!0�
2�

i���? hhvA
�
ajO2��!

0�jhvi �
�s
4�

CA
Z
d!0

��!�!0�
2�

��v� � n��g�
?

� n
g��? 
�hhvA
�
ajP

�

1 �!

0�jhvi�0� � hhvA�aj �P
�

1 �!

0�jhvi�0��

�
�s
4�

CA
Z
d!0

��!�!0�
�

n
v�hhvA
�
ajv � P



1 �!

0� � v � �P
1 �!
0�jhvi

�0�:

where in analogy to v �Q1 we define

 

mbv � �Q1�!;�� � �2
Z
d!1d!2��!1; !2;!� �hv��!1 � in �D�iv �D��!2 � in �D��hv: (48)

For consistency, we do not consider the mixing into this
operator in Sec. III.

III. RESULTS

A. Leading nonperturbative order

The order �s perturbative and leading order nonpertur-
bative anomalous dimension matrix has been calculated by
a variety of authors [22,27]. Our results agree with theirs,
and in the basis

 fO0; P0g (49)

the pertrubative expansion is given by

 Z�0��!;!0� �
��!�!0� 0

0 ��!�!0�

� �
; (50)

 Z�1��!;!0; ~�� �
�s� ~��

4�
d1�!;!0; ~�� 0

0 d1�!;!0; ~��

� �
:

(51)

The distribution d1�!;!0; ~�� is the combination of the
operator and wavefunction renormalization counter terms,
given by
 

d1�!;!0; ~�� � �
2CF
�2 ��!�!0� �

2CF
�
��!�!0�

�
4CF
~��


00

�
!�!0

~�

�
: (52)

Recall, our initial expression related the bare and renor-
malized operators,

 Q0�!;��bare �
Z
d!0Z�!0; !; ~��Q0�!0; ~�;��ren: (53)

We differentiate this equation with respect to ~� to obtain
our renormalization group equation
 

~�
d
d ~�

Q0�!; ~�;��ren ��
Z
d!0��!0;!; ~��Q0�!

0; ~�;��ren:

(54)

The anomalous dimension matrix is determined using the
useful result for MS [28]

 ��gs� � �2�s
dZ1��s�
d�s

; (55)

where Z1 is the coefficient of the 1=� poles. We find

 ��!;!0; ~�� �
�1�!;!

0; ~�� 0
0 �1�!;!0; ~��

� �
; (56)

with,

 �1�!;!0; ~�� � �
�s� ~��
�

CF

�
��!�!0�

�
2

~�

00

�
!�!0

~�

��
: (57)
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B. Subleading nonperturbative order

We have determined the matrix of renormalization con-
stants at subleading nonperturbative order ZSL, excluding
operators of class Q3. If we order our Qi operators as

 O i � fO0; T�O0;Ok�
; T�O0;Om�

; O�
1 ; �O�

1 ; O
�
2 ; O4g;

P�
i � fP

�
0 ; T

�
�P0;Ok�

; T�
�P0;Om�

; P��1 ; �P��1 ; P��2 ; P�4 g;
(58)

the leading order term in the perturbative expansion in the
basis fOi;P ig is given in block form as

 Z�0�SL�!;!
0� �

�0
Oi;Oj
�!;!0� �0

Oi;P j
�!;!0�

�0
P i;Oj
�!;!0� �0

P i;P j
�!;!0�

0@ 1A: (59)

Where the entries in the matrices in the above expression

with i, j � 0; 1 . . . 6 are given by

 �0
Oi;Oj
�!;!0� � ��i;j � �0;j�i;0���!�!0�;

�0
P i;P j
�!;!0� � ��i;j � �0;j�i;0���!�!0�;

�0
Oi;P j
�!;!0� � 0; �0

P i;Oj
�!;!0� � 0:

(60)

While the O��s� term in the expansion is

 Z�1�SL�!;!
0; ~�� �

�s� ~��
4�

�1
Oi;Oj
�!;!0� �1

Oi;P j
�!;!0�

�1
P i;Oj
�!;!0� �1

P i;P j
�!;!0�

 !
:

(61)

with the diagonal block matrices

 �1
Oi;Oj
�!;!0� �

0 0 0 0 0 0 0
d2�!;!0; ~�� 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 d4�!;!0; ~�� d5�!;!0� 0 0
0 0 0 0 d1�!;!

0; ~�� 0 0
0 0 0 0 0 d1�!;!0; ~�� 0
0 0 0 0 0 0 d1�!;!

0; ~��

2
66666666664

3
77777777775
;

 �1
P i;P j
�!;!0� �

0 0 0 0 0 0 0
d2�!;!

0; ~�� 0 0 0 0 0 0
0 0 0 �d��
7 �!;!0� d��
7 �!;!0� 0 0
0 0 0 d4�!;!

0; ~�� d5�!;!
0� 0 0

0 0 0 0 d1�!;!0; ~�� 0 0
0 0 0 0 0 d1�!;!

0; ~�� 0
0 0 0 0 0 0 d1�!;!

0; ~��

266666666664

377777777775
:

The off diagonal block matrices are as follows

 �1
Oi;P j
�!;!0� �

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 �d��6 �!;!

0� 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

2
66666666664

377777777775
;

 �1
P i;Oj
�!;!0� �

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 d��6 �!;!

0� 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

2
66666666664

3
77777777775
:

The di�!;!0; ~�� distributions are given by
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d2�!;!
0; ~�� �

4CF
�

!0

mb� ~��
��!�!0�; d4�!;!

0; ~�� � d1�!;!
0; ~�� �

CA
�
��!�!0�;

d5�!;!0� �
CA
�
��!�!0�; d��6 �!;!

0� � �
CA
2�
�i���? ���!�!

0�;

d��
7 �!;!0� �
CA
2�
��v� � n��g�
? � n


g��? ���!�!
0�:

(62)

We directly determine the anomalous dimension matrix to subleading order using Eq. (55) to be the following

 �SL�!;!0; ~�� �
�Oi;Oj

�!;!0; ~�� �Oi;P j
�!;!0; ~��

�P i;Oj
�!;!0; ~�� �P i;P j

�!;!0; ~��

 !
: (63)

The diagonal entries of the anomalous dimension matrix are

 �Oi;Oj
�!;!0; ~�� �

0 0 0 0 0 0 0
�2�!;!

0; ~�� 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 �4�!;!

0; ~�� �5�!;!
0; ~�� 0 0

0 0 0 0 �1�!;!0; ~�� 0 0
0 0 0 0 0 �1�!;!

0; ~�� 0
0 0 0 0 0 0 �1�!;!0; ~��

266666666664

377777777775
;

 �P i;P j
�!;!0; ~�� �

0 0 0 0 0 0 0
�2�!;!

0; ~�� 0 0 0 0 0 0
0 0 0 ����
7 �!;!0; ~�� ���
7 �!;!0; ~�� 0 0
0 0 0 �4�!;!0; ~�� �5�!;!0; ~�� 0 0
0 0 0 0 �1�!;!

0; ~�� 0 0
0 0 0 0 0 �1�!;!0; ~�� 0
0 0 0 0 0 0 �1�!;!

0; ~��

2
66666666664

3
77777777775
:

The off diagonal entries are as follows

 �Oi;P j
�!;!0; ~�� �

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 ����6 �!;!

0� 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

266666666664

377777777775
;

 �P i;Oj
�!;!0; ~�� �

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 ���6 �!;!

0� 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

2
66666666664

3
77777777775
:

With the following entries in the anomalous dimension matrix,
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�1�!;!
0; ~�� � �

�s� ~��
�

CF

�
��!�!0� �

2

~�

00

�
!�!0

~�

��
; �2�!;!

0; ~�� � �2�s� ~��
!0CF
�mb� ~��

��!�!0�;

�4�!;!
0; ~�� � �1�!;!

0; ~�� �
�s� ~��CA

2�
��!�!0�; �5�!;!

0; ~�� � �
�s� ~��CA

2�
��!�!0�;

���6 �!;!
0; ~�� �

�s� ~��CA
4�

�i���? ���!�!
0�; ���
7 �!;!0; ~�� � �

�s� ~��CA
4�

��v� � n��g�
? � n

g��? ���!�!

0�:

(64)

IV. CONCLUSIONS

We have examined the anomalous dimension matrix
appropriate for the phase space restricted �B! Xu‘ �� and
�B! Xs� decay spectra to subleading nonperturbative or-

der. The effects of the time ordered products of the HQET
Lagrangian with the leading order shape function operator
were determined and the renormalizability and closure of a
subset of the nonlocal operator basis used to describe these
spectra, to subleading order, was established.

Operator mixing was found between the operators which
occur to subleading order, requiring that the subleading
operator basis be extended to include the operator �Q1. This
requires the introduction of new shape functions to char-
acterize the decay spectra of �B! Xu‘ �� and �B! Xs�
beyond tree level. The mixing determined between the
operators Q1 and �Q1 is of the pernicious form that required
a one gluon external state calculation to determine, despite
the nonvanishing zero gluon Feynman rules of the opera-
tors. We have also demonstrated that the possible mixing
with the operator Q���!1; !2;�� (see (27)) in a similar
manner; with vanishing Feynman rules for zero and one
gluon, requires a two gluon external state calculation to
completely determine the anomalous dimension at sub-
leading nonperturbative order.

Mixing was also determined between the T product
T�O0;Ok�

and the leading order shape function, and the T
product T�O0;Om�

was shown to lead to mixing between the
Pi and Oi operators at this order.

The anomalous dimension and running of the �Q�
1 ; Q

�
2

and Q4 operators was shown to be identical to the leading
order shape function Q0.

This work can be built upon in a number of ways. The
anomalous dimension of the operator Q3 is under inves-
tigation by the authors to establish the closure at one loop

of the set of subleading operators discussed in this paper.
The anomalous dimension of the subleading four quark
operators should be investigated to determine the full
anomalous dimension matrix at subleading order. Once
the full anomalous dimension is determined, Sudakov
logarithms in the perturbative corrections to the subleading
operators can be resummed, so that renormalization group
improved calculations can be undertaken for the �B!
Xu‘ �� and �B! Xs� decay spectra to subleading nonper-
turbative order. As the Sudakov resummation that can be
accomplished with these results are resummations of per-
turbative corrections to order �s=mb we expect the nu-
merical size of these corrections on the extraction of jVubj
to be small. The fact that this work establishes the renor-
malizability of a subset of the soft sector nonperturbative
expansion beyond leading order is more significant. This is
a necessary step in extending QCD factorization theorems
beyond leading nonperturbative order, validating the fac-
torization based approach used for the phase space re-
stricted �B! Xu‘ ��‘ and �B! Xs� decay spectra beyond
leading nonperturbative order.
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