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B! K� and related decays are studied in the heavy quark limit of QCD using the soft collinear
effective theory (SCET). We focus on results that follow solely from integrating out the scale mb, without
expanding the amplitudes for the physics at smaller scales such as �s�

������������������
E��QCD

q
�. The reduction in the

number of hadronic parameters in SCET leads to multiple predictions without the need of SU(3). We find
that the CP-asymmetry in B� ! �0K� should have a similar magnitude and the same sign as the well
measured asymmetry in �B0 ! ��K�. Our prediction for Br�K���� exceeds the current experimental
value at the 2� level. We also use our results to determine the corrections to the Lipkin and
CP-asymmetry sum rules in the standard model and find them to be quite small, thus sharpening their
utility as a tool to look for new physics.
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I. INTRODUCTION

Two-body nonleptonic decays are the most widely used
processes to study CP violation in the B system. Because
of the large mass of the Bmeson there is a plethora of open
channels, each of which provides unique ways for testing
the consistency of the standard model. For each channel
observables include the CP averaged branching ratios (Br),
direct CP asymmetry (ACP � �C), and for certain neutral
B decays, the time dependent CP asymmetry (S). For the
decays we are interested in

 Br �
1

�B

sj ~pj

8�m2
B

�
jAj2 � j �Aj2

2

�
; �CP �

q
p

�A
A
;

ACP �
jAj2 � j �Aj2

jAj2 � j �Aj2
; S �

2 Im��CP�

1� j�CPj2
;

�B0�t� � � �B0�t�
�B0�t� � � �B0�t�

� �S sin��mt� � C cos��mt�;

(1)

where A is the amplitude of the decay process A � A� �B!
M1M2�, �A is the amplitude for CP-conjugate process, and
q=p is the mixing parameter for B0 � �B0 and/or K0 � �K0

mixing. The other parameters in Eq. (1) are j ~pj, the final
meson momentum in the B rest frame, s, a possible iden-
tical particle symmetry factor, and �m, the difference
between mass eigenstates in the neutral B two-state
system.

Using the unitarity of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix to remove top-quark CKM elements, the
amplitude for any decay can be written with the CKM
elements factored out as

 A � ��f�u Au � �
�f�
c Ac; (2)

where ��f�p � V�pbVpf. Theoretical predictions for the ob-
servables in (1) are often hampered by our ability to

calculate Au;c. In general the CP asymmetries depend on
the ratio of amplitudes jAu=Acj and their relative strong
phase �. In fact ACP / sin���, and so non-negligible strong
dynamics are required for the existence of a direct CP
asymmetry.

The parameters Au and Ac are in principle different for
each decay channel. In order to accurately determine Au
and Ac we need model independent methods to handle the
strong dynamics in these decays. All such methods involve
systematic expansions of QCD in ratios of quark masses
and the scale � ’ �QCD associated with hadronization.
This includes flavor symmetries for the light quarks,
SU(2) and SU(3), from mq=�� 1, as well as expansions
for the heavy b quark from �=mb � 1. For nonleptonic
decays to two light mesons with energies Em 	mb=2,
kinematics implies that we must also expand in �=EM �
1. A formalism for systematically expanding QCD in this
fashion is the soft collinear effective theory (SCET) [1]. In
nonleptonic B decays the expected accuracy of these ex-
pansions are

 SU �2�
mu;d

�
	 0:03� 1;

SU�3�
mu;d

�
� 1;

ms

�
	 0:3� 1;

SCET
�

EM
	

2�

mb
	 0:2� 1:

(3)

The flavor symmetries SU(2) and SU(3) provide amplitude
relations between different nonleptonic channels, thereby
reducing the number of hadronic parameters. The expan-
sion in �=mb 	�=EM also reduces the number of had-
ronic parameters. In this case the expansion yields
factorization theorems for the amplitudes in terms of mo-
ments of universal hadronic functions.
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In this paper we study standard model predictions for
B! K�, K �K, and �� decays. These channels provide 25
observables, of which 19 have been measured or bounded
as summarized in Table I. We make use of the expansions
in Eq. (3), focusing on SCET. Our goal is to quantify the
extent to which the current data agrees or disagrees with
the standard model in the presence of hadronic uncertain-
ties, and to provide a road map for looking for deviations in
future precision measurements of these decays.

The SU(2) isospin symmetry is known to hold to a few
percent accuracy, and thus almost every analysis of non-
leptonic decays exploits isospin symmetry. (Electroweak
penguin contributions are simply �I � 1=2 and �I � 3=2
weak operators, and are not what we mean by isospin
violation.) Methods for determining or bounding � (or �)
using isospin have been discussed in [7,8] and are actively
used in B! �� and B! �� decays. In B! �� this
yields ��� � 96
 � 13
 [2]. For B! �� this analysis
has significantly larger errors, since the Ac amplitudes
are larger and the asymmetry C��0�0� is not yet measured
well enough to constrain the hadronic parameters. Isospin
violating effects have been studied in [9]. For B! K� and
B! K �K an SU(2) analysis is not fruitful since there are
more isospin parameters than there are measurements, so
further information about the hadronic parameters is
mandatory.

In B! ��, even if C��0�0� were known precisely it
would still be important to have more information about
the amplitudes Au and Ac than isospin provides. For ex-
ample, isospin allows us to test whether ��� differs from
the value obtained by global fits [10,11],

 �CKMfitter
global �58:6
�6:8


�5:9
 ; �UTfit
global�57:9
�7:4
: (4)

However, a deviation in � is not the only way that new
physics can appear in B! �� decays. Simply fitting the
full set of SU(2) amplitudes can parametrize away a source
of new physics. For example, Ref. [12] has argued that it is
impossible to see new physics in the ����I�0 amplitudes in
an isospin based fit. Thus, it is important to consider the
additional information provided by SU(3) or factorization,

since this allows us to make additional tests of the standard
model. The expansion parameters here are larger, and so
for these analyses it becomes much more important to
properly assess the theoretical uncertainties in order to
interpret the data.

The analysis of B! K� decays has a rich history in the
standard model, provoked by the CLEO measurements
[13] that indicated that these decays are dominated by
penguin amplitudes that were larger than expected. The
dominance by loop effects makes these decays an ideal
place to look for new physics effects. Some recent new
physics analyses can be found in Refs. [14]. This literature
is divided on whether or not there are hints for new physics
in these decays. The main obstacle is the assessment of the
uncertainty of the standard model predictions from had-
ronic interactions.

Several standard model analyses based on the limit
ms=�� 1 (i.e. SU(3) symmetry) have been reported re-
cently [15–20] (see also [21–23] for earlier work). In the
�S � 1 decays the electroweak penguin amplitudes can-
not be neglected, since they are enhanced by CKM factors.
Unfortunately the number of precise measurements makes
it necessary to introduce additional ‘‘dynamical assump-
tions’’ to reduce the number of hadronic parameters be-
yond those in SU(3). In some cases efforts are made to
estimate a subset of the SU(3) violating effects to further
reduce the uncertainty. The dynamical assumptions rely on
additional knowledge of the strong matrix elements and in
the past were motivated by naive factorization or the large
Nc limit of QCD. Our current understanding of the true
nature of factorization in QCD allows some of these as-
sumptions to be justified by the �=EM expansion.
However, it should be noted that a priori there is no reason
to prefer these factorization predictions to others that fol-
low from the �=mb expansion (such as the prediction that
certain strong phases are small).

In Ref. [15] a �2 fit was performed with � as a fit
parameter, including decays to 	 and 	0. The result � �
61
 � 11
 agrees well with global CKM fits. Here evi-
dence for deviations from the standard model would show
up as large contributions to the �2. The most recent analy-
sis [18] has Br�K����, Br�K0�0�, and ACP�K0�0� con-
tributing ��2 � 2:7, 5.9, and 2.9, respectively, giving
some hints for possible deviations from the standard
model. Reference [16] extracted hadronic paramters from
B! �� decays, and used these results together with
SU(3) and the neglect of exchange, penguin annihilation,
and all electroweak penguin topologies except for the tree
to make predictions for B! K� and B! K �K decays.
They find large annihilation amplitudes, a large phase,
and magnitude for an amplitude ratio ~C= ~T which is inter-
preted as large Put penguin amplitudes. The deviation of
Br�K����=Br� �K0�0� from standard model expectations
was interpreted as evidence for new physics in electroweak
penguins.

TABLE I. Current B! ��, K�, and K �K data [2–6]. The S
for �K is S��0KS�.

Br� 106 ACP � �C S

���� 5:0� 0:4 0:37� 0:10 �0:50� 0:12
�0�0 1:45� 0:29 0:28� 0:40
���0 5:5� 0:6 0:01� 0:06 —
�� �K0 24:1� 1:3 �0:02� 0:04 —
�0K� 12:1� 0:8 0:04� 0:04 —
��K� 18:9� 0:7 �0:115� 0:018 —
�0 �K0 11:5� 1:0 �0:02� 0:13 0:31� 0:26
K�K� 0:06� 0:12
K0 �K0 0:96� 0:25
�K0K� 1:2� 0:3 —
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There has been tremendous progress over the last few
years in understanding charmless two-body, nonleptonic B
decays in the heavy quark limit of QCD [24–39]. In this
limit one can prove factorization theorems of the matrix
elements describing the strong dynamics in the decay into
simpler structures such as light cone distribution ampli-
tudes of the mesons and matrix elements describing a
heavy-to-light transition [24] (for earlier work see
Refs. [25]). It is very important that these results are
obtained from a systematic expansion in powers of
�QCD=mb. The development of soft collinear effective
theory [1] allowed these decays to be treated in the frame-
work of effective theories, clarifying the separation of
scales in the problem, and allowing factorization to be
generalized to all orders in �s. In Reference [26] a proof
of factorization was given for B! DM� type decays.
Power corrections can also be investigated with SCET
and in Ref. [27] a factorization theorem was proven for
the color-suppressed �B0 ! D0M0 decays, and extended to
isosinglet light mesons in Ref. [40]. Predictions from these
results agree quite well with the available data, in particu-
lar, the prediction of equal rates and strong phase shift for
D and D� channels.

Factorization for B! M1M2 decays involves three dis-
tinct distance scales m2

b  EM� �2. For B! M1M2

decays a factorization theorem was proposed by Beneke,
Buchalla, Neubert, and Sachrajda [24], often referred to as
the QCDF result in the literature. Another proposal is a
factorization formula which depends on transverse mo-
menta, which is referred to as PQCD [29]. The factoriza-
tion theorem derived using SCET [28,31] agrees with the
structure of the QCDF proposal if perturbation theory is
applied at the scales m2

b and mb�. (QCDF treats the c �c
penguins perturbatively, while in our analysis they are left
as a perturbative contribution plus an unfactorized large
O�v� term.) Because of the charm mass scale the identi-
fication of a convergent expansion for the c �c penguins
remains unclear [30,32–34]. For further discussion see
[33,34].) The SCET result improved the factorization for-
mula by generalizing it to allow each of the scales m2

b,
EM�, and �2

QCD to be discussed independently. In particu-
lar, it was possible to show that a reduced set of universal
parameters for these decays can already be defined after
integrating out the scale m2

b [31], opening up the ability to
make predictions for nonleptonic decays without requiring
an expansion in �s�

��������
E�
p

�. (If the m2
b and mb� scales were

separated in pQCD then this same result would be found
for this first stage of factorization.) As a secondary step,
additional predictions can be explored by doing a further
expansion in �s at the intermediate scale. The expense of
the second expansion comes in principle with the benefit of
a further reduction in the number of hadronic parameters
and additional universality. In this paper we will explore
the implications the first step of factorization has for B!
K� decays.

There are several ways results from factorization can be
used to analyze the data depending on (i) whether pertur-
bation theory is used at the intermediate EM� scale as
mentioned above, and (ii) whether light cone sum rules,
models, or data is used to determine the hadronic parame-
ters. In the QCDF [24] and PQCD [29] analyses perturba-
tion theory is used at the scale EM� and light cone sum
rules [41,42] or simple estimates were used for numerical
values of most of the hadronic parameters. Nonleptonic
decay has also been studied with light cone sum rules [43].
With this input, all nonleptonic observables can be pre-
dicted and confronted with the experimental data. In both
QCDF and PQCD a subset of power corrections are iden-
tified, parametrized in terms of new unknowns, and in-
cluded in the numerical analysis. These power corrections
are crucial to get reasonable agreement with the data. In
these analyses it is sometimes difficult to distinguish be-
tween the model independent predictions from the heavy
quark limit and the model dependent input from hadronic
parameters. Ciucchini et al. have argued that so-called
charming penguins could be larger than expected and
include unknowns to parametrize these effects [30].
Fitting the hadronic parameters to nonleptonic data in
some channels and using the results to make predictions
for other channels, as we advocate in this paper, has the
advantage of avoiding model dependent input. Fits in
QCDF have been performed in [10]. So far restrictions
on the size of leading and subleading hadronic parameters
necessary to guarantee convergence have not been ex-
plored. Other fits based purely on isospin symmetry have
been explored in [31,44].

In Refs. [31,45,46] the factorization theorem was used in
a different way, focusing on B! �� decays. Here pertur-
bation theory was only used at the m2

b scale and fits to
nonleptonic data were performed for the hadronic parame-
ters in the LO factorization theorem. The problematic
contributions from charm-quark penguins were treated
using only isospin symmetry. (This is also a good approach
if power corrections spoil the expansion for this observ-
able. Note that it avoids expanding the amplitude which
has possible contamination from ‘‘chirally enhanced’’
power corrections [24].) Here we continue this program
for B! K� and B! K �K decays (along with their com-
parison with B! ��). For simplicity we refer to this as a
‘‘SCET’’ analysis, although it should be emphasized that
other approaches to using the SCET-factorization theorem
are possible. A key utility of factorization for nonleptonic
decays is that the �=E and �s�mb� expansions are system-
atic and give us a method to estimate the theory uncer-
tainty. Based on these uncertainties we investigate if the
theory at leading order is able to explain the observed data.
When deviations are found there are several possible ex-
planations, all of which are interesting: either the expan-
sions inherent in the theoretical analysis are suspect, or
there are statistical fluctuations in the data, or we are seeing
first hints of physics beyond the standard model.

SOFT COLLINEAR EFFECTIVE THEORY ANALYSIS OF. . . PHYSICAL REVIEW D 74, 034010 (2006)

034010-3



This paper is organized as follows: In Sec. II we discuss
the theory input required to describe the decays of a B
meson to two light pseudoscalar mesons. We briefly review
the electroweak Hamiltonian at 
 � mb and then we dis-
cuss the counting of the number of parameters required to
describe these decays using SU(2), SU(3), and SCET
analyses. We finish this section by giving a general pa-
rametrization of the decay amplitudes in SU(2). (In the
appendix we give the relations between our parameters and
the graphical amplitudes [22,47,48].) In Sec. III we give
the expressions of the decay amplitudes in SCET. We begin
by giving the general expressions at leading order in the
power expansion, but correct to all orders in �s and com-
ment about new information that arises from combining
these SCET relations with the SU(3) flavor symmetry. We
then use the Wilson coefficients at leading order in �s�mb�
and give expressions for the decay amplitudes at that order.
We finish this section with a discussion of our estimate of
the uncertainties which arise from unknown O��s�mb��
and O��QCD=E� corrections. A detailed discussion of the
implications of the SCET results is given in Sec. IV. We
emphasize that within factorization the ratios of color

suppressed and color allowed amplitudes (C=T and
EWC=EWT) can naturally be of order unity at LO in the
power counting, contrary to conventional wisdom [31]. We
also perform an error analysis for the Lipkin and CP sum
rules in B! K� decays, and discuss predictions for the
relative signs of the CP asymmetries. We then review the
information one can obtain from only the decays B! ��,
before we discuss in detail the implications of the SCET
analysis for the decays B! K� and B! KK.

II. THEORY INPUT

A. The electroweak Hamiltonian

The electroweak Hamiltonian describing �b � 1 tran-
sitions b! f is given by

 HW �
GF���

2
p

X
p�u;c

��f�p

�
C1O

p
1 � C2O

p
2 �

X10;7�;8g

i�3

CiOi

�
; (5)

where the CKM factor is ��f�p � VpbV
�
pf. The standard

basis of operators are (with Op
1 $ Op

2 relative to [49])

 Op
1 � � �pb�V�A� �fp�V�A; Op

2 � � �p�b��V�A� �f�p��V�A; O3;4 � f� �fb�V�A� �qq�V�A; � �f�b��V�A� �q�q��V�Ag;

O5;6 � f� �fb�V�A� �qq�V�A; � �f�b��V�A� �q�q��V�Ag; O7;8 �
3eq
2
f� �fb�V�A� �qq�V�A; � �f�b��V�A� �q�q��V�Ag;

O9;10 �
3eq
2
f� �fb�V�A� �qq�V�A; � �f�b��V�A� �q�q��V�Ag; O7�;8g � �

mb

8�2
�f�
�feF
�; gGa


�Tag�1� �5�b:

(6)

Here the sum over q � u; d; s; c; b is implicit, �, � are
color indices, and eq are electric charges. The �S � 0 and
�S � 1 effective Hamiltonian is obtained by setting f � d
and f � s in Eqs. (5) and (6), respectively. The Wilson
coefficients are known to next-to-leading-logarithmic
(NLL) order [49]. At leading-logarithmic (LL) order tak-
ing �s�mZ� � 0:118, mt � 174:3, and mb � 4:8 GeV
gives C7��mb� � �0:316, C8g�mb� � �0:149, and
 

C1�10�mb� � f1:107;�:249; :011;�:026; :008;�:031;

4:9� 10�4; 4:6� 10�4;�9:8� 10�3;

1:9� 10�3g: (7)

Below the scale 
	mb one can integrate out the b �b
pairs in the operators O3–10. The remaining operators have
only one b-quark field, and sums over light quarks q �
u; d; s; c. This gives rise to a threshold correction to the
Wilson coefficients,

 C�i �mb� � C�i �mb�

�
1�

�s�mb�

4�
�rTs �

�
4�

�rTc

�
; (8)

where C� and C� are the Wilson coefficients with and
without dynamical b quarks, and �rTs and �rTc are given in
Eqs. (VII.31) and (VII.32) of [49]. This changes the nu-
merical values of the Wilson coefficients by less than 2%.

Integrating out dynamical b quarks allows for additional
simplifications for the electroweak penguin operators,
since now for the flavor structure we have
 

3
2eq�

�fb�� �qq� � 1
2�

�fb��2u �u� d �d� s�s� 2c �c�

� 3
2�

�fb��u �u� � 3
2�

�fb��c �c�

� 1
2

X
q�u;d;s;c

� �fb��q �q�: (9)

The operators O9 and O10 have the regular �V � A� �
�V � A� Dirac structure, and can therefore be written as
linear combinations of the operators O1–4,

 O9�
3
2O

u
2�

3
2O

c
2�

1
2O3; O10�

3
2O

u
1�

3
2O

c
1�

1
2O4: (10)

This is not possible for the operators O7 and O8, which
have �V � A� � �V � A� Dirac structure. Thus, integrating
out the dynamical b quarks removes two operators from
the basis. To completely integrate out the dynamics at the
scale mb we must match onto operators in SCET, as dis-
cussed in Sec. III below.

B. Counting of parameters

Without any theoretical input, there are 4 real hadronic
parameters for each decay mode (one complex amplitude
for each CKM structure) minus one overall strong phase. In
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addition, there are the weak CP violating phases that we
want to determine. For B! �� decays there are a total of
11 hadronic parameters, while in B! K� decays there are
15 hadronic parameters.

Using isospin, the number of parameters is reduced.
Isospin gives one amplitude relation for both the �� and
the K� system, thus eliminating 4 hadronic parameters in
each system (two complex amplitudes for each CKM
structure). This leaves 7 hadronic parameters for B!
�� and 11 for B! K�. An alternative way to count the
number of parameters is to construct the reduced matrix
elements in SU(2). The electroweak Hamiltonian mediat-
ing the decays B! �� has up to three light up or down
quarks. Thus, the operator is either �I � 1=2 or �I � 3=2.
The two pions are either in an I � 0 or I � 2 state (the I �
1 state is ruled out by Bose symmetry). This leaves 2
reduced matrix elements for each CKM structure,
h0jj1=2jj1=2i and h2jj3=2jj1=2i. For B! K� decays the
electroweak Hamiltonian has either �I � 0 or �I � 1.
The K� system is either in an I � 1=2 or I � 3=2 state
thus there are three reduced matrix elements per CKM
structure, h3=2jj1jj1=2i, h1=2jj1jj1=2i, and h1=2jj0jj1=2i.
Finally, K �K is either an I � 0 or I � 1, and there are again
three reduced matrix elements per CKM structure,
h0jj1=2jj1=2i, h1jj1=2jj1=2i, and h1jj3=2jj1=2i.

The SU(3) flavor symmetry relates not only the decays
B! �� and B! K�, B! KK, but also B! �	8, B!
	8K, and Bs decays to two light mesons. The decomposi-
tion of the amplitudes in terms of SU(3) reduced matrix
elements can be obtained from [50–52]. The Hamiltonian
can transform either as a �3s, �3a, 6, or 15. Thus, there are 7
reduced matrix elements per CKM structure, h1jj�3sjj3i,
h1jj�3ajj3i, h8jj�3sjj3i, h8jj�3ajj3i, h8jj6sjj3i, h8jj15sjj3i, and
h27jj15sjj3i. The �3a and �3s come in a single linear combi-
nation so this leaves 20 hadronic parameters to describe all
these decays minus 1 overall phase (plus additional pa-
rameters for singlets and mixing to properly describe 	 and
	0). Of these hadronic parameters, only 15 are required to
describe B! �� and B! K� decays (16 minus an over-
all phase). If we add B! KK decays then 4 more parame-
ters are needed (which are solely due to electroweak
penguins). This is discussed further in Sec. II D.

The number of parameters that occur at leading order in
different expansions of QCD are summarized in Table II,
including the SCET expansion. Here by SCET we mean
after factorization at mb but without using any information
about the factorization at

��������
E�
p

. The SCET results are
discussed further in Sec. III, but we summarize them
here. The parameters with isospin� SCET are
 

��: fB� � B�J ; ��B�J ; P��g;

K�: fB� � B�J ; � �K
B�
J ; B �K � B �K

J ; ��
B �K
J ; PK�g;

K �K: fB �K � B �K
J ; �K

B �K
J ; PK �Kg: (11)

Here PM1M2
are complex penguin amplitudes and the re-

maining parameters are real.1 In B! �� the moment
parameter �� is not linearly independent from the parame-
ters B� and B�J , and only the product��B�J was counted
as a parameter. In any case it is fairly well known from fits
to ���! �0 [53] 3�� � hx�1i� ’ 3:2� 0:2. In
isospin� SCET B! K� has 6 parameters, but the first
one listed in (11) appears already in B! ��, hence the
�5 in Table II. If the ratio �K=�� was known from else-
where then one more parameter can be removed for K�
(leaving� 4). For B! K �K we have 4 SCET parameters.
One of these appears already in B! K�, hence the �3,
and if �K=� �K is known from other processes it would
become �2.

Taking SCET� SU�3� we have the additional relations
B� � BK � B �K, B�J � BKJ � B �K

J , �� � �K � � �K,
and A��cc � AK�cc � AK �K

cc which reduces the number of pa-
rameters considerably. In Appendix A we briefly comment
on the reduction in the number of parameters from expand-
ing BMJ in �s at the intermediate scale.

Note that there are good indications that the parameters
BM and BMJ are positive numbers in the SCET-
factorization theorem. (�K, ��, � �K are also positive.)
This follows from: (i) the fact that BM � BMJ are related
to form factors for heavy-to-light transitions which with a
suitable phase convention one expects are positive for all
q2, (ii) that BMJ is positive (from the relatively safe as-
sumption that radiative corrections at the scale

��������
E�
p

do not
change the sign of M1M2

J and that J / ���B > 0), and
finally (iii) that the fit to B! �� data gives B�, B�J > 0
so that SU(3) implies BK, BKJ > 0. We will see that this
allows some interesting predictions to be made even with-
out knowing the exact values of the parameters.

TABLE II. Number of real hadronic parameters from different
expansions in QCD. The first column shows the number of
theory inputs with no approximations, while the next columns
show the number of parameters using only SU(2), using only
SU(3), using SU(2) and SCET, and using SU(3) with SCET. For
the cases with two numbers, #=#, the second follows from the
first after neglecting the small penguin coefficients, i.e. setting
C7;8 � 0. In SU�2� � SCET B! K� has 6 parameters, but 1
appears already in B! ��, hence the �5�6�. The notation is
analogous for the �3�4� for B! K �K.

No expn. SU(2) SU(3) SCET
�SU�2�

SCET
�SU�3�

B! �� 11 7=5
15=13

4
4

B! K� 15 11 �5�6�
B! K �K 11 11 �4=0 �3�4� �0

1The penguin amplitudes are kept to all orders in �=mb since
so far there is no proof that the charm mass mc does not spoil
factorization, with large �s�2mc�v contributions competing with
�s�mb� hard-charm loop corrections [31]. This is controversial
[33,34]. Our analysis treats these contributions in the most
conservative possible manner.
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In using the expansions in (3) it is important to keep in
mind the hierarchy of CKM elements, and the rough
hierarchy of the Wilson coefficients

 C1 * C2  C3�6  C9;10 * C7;8: (12)

Some authors attempt to exploit the numerical values of the
Wilson coefficients in the electroweak Hamiltonian to
further reduce the number of parameters. A common ex-
ample is the neglect of the coefficients C7;8 relative to
C9;10. In Eq. (10) the electroweak penguin operators O9

and O10 were written as linear combinations of O1–4. This
implies that if one neglects the electroweak penguin op-
erators Q7 and Q8, then no new operators are required to
describe the EW penguin effects. In some cases this leads
to additional simplifications. One can show that for B!
�� decays the �I � 3=2 amplitudes multiplying the CKM
structures �u and �c are identical [22,23]. Thus, SU(2)
gives one additional relation between complex amplitudes
in the �� system, reducing the hadronic parameters to 5.
For B! K� decays the operators giving rise to the A3=2

reduced matrix elements are identical for the �u and �c
CKM structures only if SU(3) flavor symmetry is used
[54]. Thus, for these decays two hadronic parameters can
be eliminated after using SU(3), leaving 13. Considering
B! K �K adds two additional parameters. Note that drop-
ping C7;8 makes it impossible to fit for new physics in these
coefficients. In our SCET analysis all contributions C7–10

are included without needing additional hadronic
parameters.

Finally, some analyses use additional ‘‘dynamical as-
sumptions’’ and drop certain combinations of reduced
matrix elements in SU(3). For example, the number of
parameters is often reduced by neglecting parameters cor-
responding to the so-called annihilation and exchange
contributions.

C. General parametrization of the amplitudes using
SU(2)

Using the SU(2) flavor symmetry, the most general
amplitude parametrization for the decay B! �� is

 

A� �B0 ! ����� � ���d�u T�� � �
�d�
c P��;

A� �B0 ! �0�0� � ���d�u C�� � �
�d�
c �EWT

�� � P���;���
2
p
A�B� ! ���0� � ���d�u �T�� � C��� � �

�d�
c EWT

��;

(13)

where we have used the unitarity of the CKM matrix
��f�t � ��

�f�
u � �

�f�
c . The amplitude parameter EWT

�� re-
ceives contributions only through the electroweak penguin
operators O7–10. For B! K� decays we write

 

A�B�!�� �K0����s�u AK���
�s�
c PK�;���

2
p
A�B�!�0K������s�u �CK��TK��AK��

���s�c �PK��EW
T
K��;

A� �B0!��K������s�u TK���
�s�
c �PK��EW

C
K��;���

2
p
A� �B0!�0 �K0�����s�u CK�

���s�c �PK��EW
T
K��EW

C
K��:

(14)

Finally for B! K �K decays there is no SU(2) relation
between the amplitudes and we define
 

A�B� ! K�K0� � ��d�u AKK � �
�d�
c PKK;

A� �B0 ! K0 �K0� � ��d�u BKK

� ��d�c �PKK � PAKK � EWKK�;

A� �B0 ! K�K�� � ��d�u EKK � �
�d�
c PAKK: (15)

As mentioned before, after eliminating ��f�t there are
four complex hadronic parameters for B! �� and six
for B! K�. The additional relation one obtains in the
limit C7;8 ! 0 is

 EWT
�� �

3

2

C9 � C10

C1 � C2
�T�� � C���; (16)

where we have neglected terms quadratic in C9 or C10.
The EW amplitudes are purely from electroweak pen-

guins, however there are also electroweak penguin contri-
butions in the other amplitudes as discussed further in
Sec. III D. Also, the hadronic parameters in Eqs. (13)–
(15) are a minimal basis of isospin amplitudes, not graph-
ical amplitude parameters. In the appendix we show how
these amplitude parameters are related to the graphical
amplitudes discussed in [22,47,48].

D. Additional relations in the SU(3) limit

In the limit of exact SU(3) flavor symmetry the parame-
ters in the �� system and the K� system satisfy the two
simple relations [47,50,52]

 T�� � C�� � TK� � CK�; EWT
�� � EWT

K�: (17)

Thus, the hadronic parameters in the combined K�, ��
system can be described by 8 complex parameters (15 real
parameters after removing an overall phase), if no addi-
tional assumptions are made. A choice for these parameters
is

 T��; C��; P��; AK�; EWT
K�;

EWC
K�; �C; �P;

(18)

where we have defined

 �C � CK� � C��; �P � P�� � PK�: (19)

This can also be seen by relating these amplitude parame-
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ters directly to reduced matrix elements in SU(3), which
can be done with the help of the results in Ref. [52]. As
before, if the small Wilson coefficients C7 and C8 are
neglected, we can again use the relation in Eq. (16) to
eliminate one of the 8 complex hadronic parameters.

Four additional relations exist if the amplitudes for B!
KK are included

 AKK � AK� PKK � PK�

EKK � TK� � T�� � ��C

PAKK � P�� � PK� � EW
C
K� � �P� EWC

K�:

(20)

In the limit of vanishing Wilson coefficients C7 and C8

there are two additional relations [22]

 

EWC
K��

3

4

�
C9�C10

C1�C2
�AK��T���CK��BKK�

�
C9�C10

C1�C2
�AK��T���CK��2C���BKK�

�
;

EWKK�
3

2

C9�C10

C1�C2
�BKK�AKK�EKK�: (21)

E. Sum rules in B! K�

In this section we review the derivation of two sum rules
for B! K�, the Lipkin sum rule [55–57], and CP sum
rule [58]. Higher order terms are kept and will be used later
on in assessing the size of hadronic corrections to these
sum rules using factorization. To begin we rewrite the
SU(2) parametrization of the amplitudes as

 

A�B�!�� �K0����s�c PK��1�
1
2�Ae

�i�ei�A�;

A� �B0!��K������s�c PK��1�
1
2��

ew
C e

i�ew
C

��Tei�T�i���;���
2
p
A�B�!�0K������s�c PK��1�

1
2��

ew
T e

i�ew
T ��ei��i���;���

2
p
A� �B0!�0 �K0����s�c PK��1�

1
2��ewe

i�ew��Ce
i�C�i���;

(22)

where

 

1

2
�Tei�T �

���������
�s�
u

��s�c

����������TK��PK�
;

1

2
�Cei�C�

���������
�s�
u

��s�c

����������CK��PK�
;

1

2
�Ae

i�A�

���������
�s�
u

��s�c

����������AK��PK�
;

1

2
�ei��

���������
�s�
u

��s�c

����������TK��CK��AK��PK�
; (23)

and

 

1

2
�ew
T e

i�ew
T �

EWT
K�

PK�
;

1

2
�ew
C e

i�ew
C �

EWC
K�

PK�
;

1

2
�ewe

i�ew �
EWT

K� � EW
C
K�

PK�
:

(24)

These parameters satisfy

 �ei� � �Te
i�T � �Ce

i�C � �Ae
i�A ;

�ewei�ew � �ew
T e

i�ew
T � �ew

C e
i�ew

C :
(25)

The nonelectroweak �-parameters are suppressed by the
small ratio of CKM factors j��s�u =�

�s�
c j ’ 0:024 but are then

enhanced by a factor of 	4–15 by the ratio of hadronic
amplitudes. The electroweak �-parameters are simply sup-
pressed by their small Wilson coefficients and end up being
similar in size to the nonelectroweak �’s.

Next we define deviation parameters for the branching
ratios

 R1 �
2Br�B� ! �0K��

Br�B� ! �� �K0�
� 1;

R2 �
Br� �B0 ! ��K���B�

Br�B� ! �� �K0��B0

� 1;

R3 �
2Br� �B0 ! �0 �K0��B�

Br�B� ! �� �K0��B0

� 1;

(26)

and also rescaled asymmetries
 

�1��1�R1�ACP��0K��; �2��1�R2�ACP���K��;

�3��1�R3�ACP��0 �K0�; �4�ACP��� �K0�: (27)

The division by Br��� �K0� in the �i asymmetries is not
necessary but we find it convenient for setting the normal-
ization. Expanding in �A we find that to second order in the
� parameters the Ri are

 

R1 � ��ew
T cos�ew

T � � cos� cos�� �A cos�A cos�� � �14��
2 � �ew 2

T � �2
A� �

1
2��

ew
T cos� cos����ew

T �

� ��ew
T cos�ew

T � � cos� cos���A cos�A cos�� �2
Acos2�Acos2��;

R2 � ��
ew
C cos�ew

C � �T cos�T cos�� �A cos�A cos�� � �14��
2
T � �

ew 2
C � �2

A� �
1
2�T�

ew
C cos� cos��ew

C ��T�

� ��ew
C cos�ew

C � �T cos�T cos���A cos�A cos�� �2
Acos2�Acos2��;

R3 � ���ew cos�ew � �C cos�C cos�� �A cos�A cos�� � �14��
ew 2 � �ew 2

C � �2
A� �

1
2�C�

ew cos� cos��ew ��C�

� ��ew cos�ew � �C cos�C cos���A cos�A cos�� �2
Acos2�Acos2��; (28)
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and the �i are
 

�1 � sin���� sin�� 1
2��

ew
T sin����ew

T ��

� �1� �A cos�A cos��;

�2 � sin����T sin�T �
1
2�T�

ew
C sin��T ��ew

c ��

� �1� �A cos�A cos��;

�3 � sin���C sin�C �
1
2�C�

ew sin��C ��ew��

� �1� �A cos�A cos��;

�4 � sin����A sin�A��1� �A cos�A cos��:

(29)

Note that these rescaled CP asymmetries are independent
of the electroweak penguin �’s at O���. This is not true for
the original asymmetries ACP.

Sum rules are derived by taking combinations of the Ri
and �i which cancel the O��� terms. The Lipkin sum rule
is the statement that
 

R1 � R2 � R3 � O��2� � 1
4��

2 � �2
T � �

2
C � �

2
A � �

ew 2
T

� �ew 2
C � �ew 2� � �2

Acos2��A�cos2���

� 1
2 cos�����ew

T � cos����ew
T �

� �T�ew
C cos��T ��ew

C �

� �C�ew cos��C ��ew��; (30)

where we used the real part of Eq. (25). The CP sum rule is
the statement that using the imaginary part of Eq. (25) the
O��� terms cancel in the sum
 

�1��2��3��4�O��2���1
2sin�����ew

T �sin����ew
T �

��T�ew
C sin��T��ew

C �

��C�ew sin��C��ew��: (31)

The accuracy of these sum rules can be improved if we can
determine these O��2� terms using factorization. This is
done in Sec. IV D 1.

III. AMPLITUDE PARAMETERS IN SCET

A. General LO expressions

The factorization of a generic amplitude describing the
decay of a B meson to two light mesons, B! M1M2, has

been analyzed using SCET [31]. Here M1 and M2 are light
(nonisosinglet) pseudoscalar or vector mesons. The SCET
analysis involves two stages of factorization, first between
the scales fmb or EMg2  EM�QCD, and second between
EM�QCD  �2

QCD. Here we only consider the first stage of
factorization where we integrate out the scales fmb, EMg,
and keep the most general parametrization for physics at
lower scales. It was shown in Ref. [31] that a significant
universality is already obtained after this first stage, in
particular there is only one jet function which also appears
in semileptonic decays to pseudoscalars and longitudinal
vectors. This leads to the universality of the function we
call BMJ �z�. We note that this also proves that the second
stage of matching is identical to that for the form factor, so
the SCET results for form factors in Refs. [59] can imme-
diately be applied to nonleptonic decays if desired. A
summary of the analysis of SCET operators and matrix
elements is given in Appendix A.

After factorization at the scale mb the general LO am-
plitude for any B! M1M2 process can be written
 

A �
GFm2

B���
2
p

��
fM1

Z 1

0
dudzT1J�u; z�

BM2
J �z��M1�u�

� fM1
BM2

Z 1

0
duT1 �u��M1�u�

�

� f1$ 2g � ��f�c A
M1M2
c �c

�
; (32)

where BM and BMJ are nonperturbative parameters de-
scribing B! M transition matrix elements, and AM1M2

c�c
parametrizes complex amplitudes from charm-quark con-
tractions for which factorization has not been proven.
Power counting implies BM 	 BMJ 	 ��=Q�3=2.
T1J�u; z� and T1 �u� are perturbatively calculable in an
expansion in �s�mb� and depend upon the process of
interest.

It is useful to define dimensionless hatted amplitudes

 Â �
A
N0
�GeV�1�; N0 �

GFm2
B���

2
p : (33)

Using Eq. (32) we find that the amplitude parameters in the
B! �� system are

 T̂ �� � �f��hc1u � c4u � c
ew
1t � c4ti�

B� � h�b1u � b4u � b1t � b4t�
B�
J i��;

Ĉ�� � �f��hc2u � c
ew
2t � c

ew
3t � c4t � c4ui�

B� � h�b2u � b
ew
2t � b

ew
3t � b4t � b4u�

B�
J i��;

P̂�� � �A
��
cc � f��hc

ew
1t � c4ti�

B� � h�bew
1t � b4t�

B�
J i��;dEWT

�� � f��hc
ew
1t � c

ew
2t � c

ew
3t i�

B� � h�bew
1t � b

ew
2t � b

ew
3t �

B�
J i��:

(34)

For the B! K� system we find
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 T̂ K� � �fK�hc1u � c
ew
1t � c4t � c4ui �K

B� � h�b1u � b
ew
1t � b4t � b4u�B�J i �K�;

ĈK� � �f��hc2u � c
ew
2t � c

ew
3t i�

B �K � h�b2u � b
ew
2t � b

ew
3t �

B �K
J i�� � fK�hc4t � c4ui �K

B� � h�b4t � b4u�
B�
J i �K�;

P̂K� � �A
K�
cc � fK�hc4ti �K

B� � hb4t
B�
J i �K�; ÂK� � fK�hc4t � c4ui �K

B� � h�b4t � b4u�
B�
J i �K�;

dEWT
K� � fK�hc

ew
1t i �K

B� � hbew
1t 

B�
J i �K� � f��hc

ew
2t � c

ew
3t i�

B �K � h�bew
2t � b

ew
3t �

B �K
J i��;dEWC

K� � fK�hcew
1t i �K

B� � hbew
1t 

B�
J i �K�:

(35)

Note that the dominant nonfactorizable charm electroweak
penguin contribution, is absorbed into Acc. Finally, for the
B! KK system we find
 

ÂKK � B̂KK � fK�hc4t � c4uiK
B �K � h�b4t � b4u�

B �K
J iK�;

P̂KK � �A
K �K
cc � fK�hc4tiK

B �K � hb4t
B �K
J iK�;

ÊKK � cPA �dEWKK � 0:

(36)

In Eqs. (34)–(36) we have defined
 

hciiM �
Z 1

0
duci�u��M�u�;

hbi
BM2
J iM1

�
Z 1

0
du

Z 1

0
dzbi�u; z��M1

�u�BM2
J �z�:

(37)

We have also decomposed the Wilson coefficients of SCET
operators defined in [31] as

 c�f�i � ��f�u ciu � �
�f�
t cit; b�f�i � ��f�u biu � �

�f�
t bit;

(38)

and in some equations we have split the contributions from
strong (O3–6) and electroweak penguin operators (O7–10)
to the cit and bit

 cit � cpit � c
ew
it ; bit � bpit � b

ew
it : (39)

Note that to all orders in perturbation theory one has [48]

 cp1t � cp2t � c3u � cp3t � 0;

bp1t � bp2t � b3u � bp3t � 0:
(40)

All the hadronic information are contained in the SCET
matrix elements B�, B�J , BK, BKJ , A��cc , and AK�cc , the
decay constants f� and fK, and the light cone distribution
functions of the light mesons ���x�, �K�x�, and � �K�x�.

The Wilson coefficients ci and bi are insensitive to the
long distance dynamics and can therefore be calculated
using QCD perturbation theory in terms of the coefficients
of the electroweak Hamiltonian Ci. Any physics beyond
the standard model which does not induce new operators in
HW at 
 � mW will only modify the values of these
Wilson coefficients, while keeping the expressions for
the amplitude parameters in Eqs. (34)–(36) the same.

We caution that although the amplitudes ÂK� and ÂKK
do get penguin contributions at this order, they will have
subleading power contributions from operators with large
Wilson coefficients that can compete. Therefore their lead-

ing order expressions presented here should not be used for
numerical predictions. As mentioned earlier, the penguin
amplitudes are kept to all orders in �=E. In all other
amplitudes the power corrections are expected to be genu-
inely down by �=E when the hadronic parameters are of
generic size. In the observables explored numerically be-
low it will be valid within our uncertainties to drop the
small ÂK� and ÂKK amplitudes and so this point will not
hinder us.

B. SU(3) limit in SCET

In the SU(3) limit the hadronic parameters for pions and
kaons are equal. This implies that

 B� � B �K; B�J � B �K
J ; hciiK � hcii�;

hbiB
�K

J i� � hbi
B�
J iK � hbi

B�
J i� � hbi

B �K
J iK:

(41)

Furthermore

 AK�cc � A��cc � AK �K
cc : (42)

To see this note that in SCET the light quark in the operator
with two charm quarks is collinear and can therefore not be
connected initial B meson without further power suppres-
sion. Without the use of SCET this so-called ‘‘penguin
annihilation’’ contribution would spoil the relation in
Eq. (42).

Using this we find two additional relations which are not
true in a general SU(3) analysis but are true in the com-
bined SCET� SU�3� limit
 

�C � CK� � C�� � 0;

�P� EWC
K� � P�� � PK� � EW

C
K� � 0;

(43)

where the zeroes on the right-hand side (RHS) are
O�ms=�� �O��=E�. Using the SU(3) relation in
Eq. (20) we see that these amplitudes are equal to ‘‘ex-
change’’ or ‘‘penguin annihilation’’ amplitudes that are
power suppressed in SCET.

C. Results at LO in �s�mb�

While the ci are known at order �s, the bi are currently
only known at tree level. For consistency with the power
counting, we thus keep only the tree level contributions to
the ci as well. In this case they are independent of the light
cone fraction u and thus ci�u� � ci, and there occurs a
single nontrivial moment of the light cone distribution

SOFT COLLINEAR EFFECTIVE THEORY ANALYSIS OF. . . PHYSICAL REVIEW D 74, 034010 (2006)

034010-9



function from the bi terms. Since the parameter AM1M2
cc /

�s�2mc� it would be inconsistent to drop the �s corrections
in the penguin amplitudes. However, as long as we have the
free complex parameter AM1M2

cc these corrections are simply
absorbed when we work with the full penguin amplitudes
PM1M2

using only isospin symmetry. This is also true of
chirally enhanced power corrections in PM1M2

.
Using LL values for the Wilson coefficients we find for

the nonelectroweak amplitudes at 
 � mb � 4:8 GeV
 

c1u � C1 �
C2

Nc
� 1:025; c2u � C2 �

C1

Nc
� 0:121;

cp4t � �
�
C4 �

C3

Nc

�
�O�C1�s� � 0:022�O��s�: (44)

Here O�C1�s� indicate unsuppressed �s corrections that
were computed in Ref. [24] and verified in [28]. The
contributions from the operators O7–10 give

 cew
1t � �

3

2

�
C10 �

C9

Nc

�
� 0:0021;

cew
2t � �

3

2

�
C9 �

C10

Nc

�
� 0:0138;

cew
3t � �

3

2

�
C7 �

C8

Nc

�
� �0:0010;

cew
4t �

1

2

�
C10 �

C9

Nc

�
� �0:000 68:

(45)

The coefficients bi�u; z� are independent of the variable z at
leading order and we write bi�u; z� � bi�u�. For the non-
electroweak amplitudes we have

 b1u�u� � C1 �

�
1�

1

�u

�
C2

Nc
� 1:025�

0:249

3 �u
;

b2u�u� � C2 �

�
1�

1

�u

�
C1

Nc
� 0:121�

1:107

3 �u
;

bp4t�u� � �C4 �

�
1�

1

�u

�
C3

Nc
�O�C1�s�

� 0:022�
0:011

3 �u
�O��s�;

(46)

where O�C1�s� denotes unknown unsuppressed �s correc-
tions and �u � 1� u. For the electroweak terms

 bew
1t �u� � �

3

2

�
C10 �

�
1�

1

�u

�
C9

Nc

�
� 0:0021�

0:0147

3 �u
;

bew
2t �u� � �

3

2

�
C9 �

�
1�

1

�u

�
C10

Nc

�
� 0:0138�

0:0029

3 �u
;

bew
3t �u� � �

3

2

�
C7 �

�
1�

1

�u

�
C8

Nc

�

� �0:000 10�
0:000 69

3u
;

bew
4t �u� �

1

2

�
C10 �

�
1�

1

�u

�
C9

Nc

�
� �0:000 68�

0:0049

3 �u
:

(47)

Note that only bew
3t involves u and that this coefficient only

appears convoluted with pions in Eqs. (34)–(36). For pions
one can take 1=u! 1= �u using charge conjugation and
isospin. Since the b’s then only involve factors of 1= �u it
is useful to define the nonperturbative parameters

 �M �
Z 1

0
du
�M�u�

3 �u
: (48)

Using these values for the Wilson coefficients we obtain
the amplitude parameters in terms of the nonperturbative
parameters in the �� system at 
 � mb

 

T̂�� � �0:131�B� � B�J � � 0:031��
B�
J ;

Ĉ�� � �0:017�B� � B�J � � 0:144��B�J ;

dEWT
�� � 0:0022�B� � B�J � � 0:0015��B�J ;

P̂�� � �A
��
cc � 0:0030�B� � B�J �

� 0:0002��
B�
J ��P

��;

(49)

where �P
�� is the additional perturbative correction from

a4t and b4t at O��s�mb�� which can involve larger Wilson
coefficients like C1;2. (We could also include large power
corrections in �P

�� assuming that such a subset could be
uniquely identified in a proper limit of QCD.) We do not
need knowledge of �P

�� for our analysis since there are two
unknowns in each of P̂�� and A��cc and we will simply fit
for P̂��.

In the K� system we find

 T̂ K� � �0:160�B� � B�J � � 0:040�KB�J ;

ĈK� � �0:003�B� � B�J � � 0:003�K
B�
J � 0:014�BK � BKJ � � 0:146��

BK
J ;

dEWT
K� � 0:0019�BK � BKJ � � 0:0005��

BK
J � 0:0003�B� � B�J � � 0:0023�K

B�
J ;

dEWC
K� � 0:0003�B� � B�J � � 0:0023�K

B�
J ; P̂K� � �A

K�
cc � 0:0034�B� � B�J � � 0:0026�K

B�
J � �P

K�;

ÂK� � 0:0034�B� � B�J � � 0:0026�K
B�
J ��A

K�;

(50)

where �P
K� and �A

K� are analogous corrections to �P
��. For PK� the perturbative correction competes with AK�cc . For ÂK�
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power corrections could be in excess of the leading order
value, so that any numerical value for this amplitude is
completely unreliable at the order we are working.

Finally for the B! K �K amplitudes that have a contri-
bution from the LO factorization theorem we have
 

ÂKK � 0:0034�BK � BKJ � � 0:0026�KBKJ �O��s�;

P̂KK � �AK
�K

cc � 0:0034�BK � BKJ �

� 0:0026�KBKJ � �P
KK; (51)

and B̂KK � ÂKK. Here the value of ÂKK is not reliable,
since it will have large O�C1�=mb� power corrections that
are likely to dominate.

D. SCET relations for EW penguin amplitudes

Using the SCET results in the previous two sections it is
simple to derive relations that give the electroweak pen-
guin contributions in terms of tree amplitudes

 T̂ 0
M1M2

� T̂M1M2
jC7–10�0; Ĉ0

M1M2
� ĈM1M2

jC7–10�0: (52)

Such relations are useful if one wishes to explore new
physics scenarios that modify the electroweak penguin
parameters C7–10 in HW . To separate out all electroweak
penguin contributions in B! �� and using SCET to-
gether with isospin we define dEWC

�� by

 T̂ �� � T̂0
�� �dEWC

��;

Ĉ�� � Ĉ0
�� �dEWT

�� �dEWC
��;

P̂�� � P̂0
�� �dEWC

��:

(53)

At LO in SCET we find

 

dEW C
�� � e1T̂

0
�� � e2Ĉ

0
��;

dEWT
�� � e3T̂

0
�� � e4Ĉ

0
��;

(54)

where dropping C3;4 relative to C1;2 one finds
 

e1�
C10C1�C9C2

C2
1�C

2
2

��2:9�10�4;

e2�
C9C1�C10C2

C2
1�C

2
2

��8:9�10�3;

e3�
C1�3C10�3C7�2C8�3C9��3C2�C10�C8�C9�

2�C2
1�C

2
2�

��1:5�10�2;

e4�
�C2�3C10�3C7�2C8�3C9��3C1�C10�C8�C9�

2�C2
1�C

2
2�

��1:3�10�2: (55)

The numbers quoted here are for the standard model LL
coefficients.

For B! K� we separate out the electroweak penguin
contributions by writing

 T̂ K�� T̂
0
K��

2
3
dEWC

K�; ÂK�� P̂
0
K��

1
3
dEWC

K�;

ĈK�� Ĉ
0
K��dEWT

K��
2
3
dEWC

K�; P̂K�� P̂
0
K��

1
3
dEWC

K�;

(56)

and find that SCET� isospin gives

 

dEW C
K� �

fK
f�
�e5T̂

0
�� � e6Ĉ

0
��� � e7T̂

0
K�;

where dropping C3;4 relative to C1;2

 e5 � �
3C1�C1C9 � C2C10�

2C2�C2
1 � C

2
2�

� �6:0� 10�2;

e6 � �
3�C10C2 � C9C1�

2�C2
1 � C

2
2�

� �1:3� 10�2;

e7 �
3C9

2C2
� 5:9� 10�2:

(57)

For the amplitude EWT
K� no such relation exists, if the

inverse moments �� and �K are taken as unknowns. One
can still use the SU(3) relation in Eq. (17) to equate EWT in
the K� and �� system.

E. Estimate of uncertainties

These expressions of the amplitude parameters are cor-
rect at leading order in �QCD=E�, and as we explained
above, the complete set of Wilson coefficients is currently
only available at tree level. Thus, any amplitude calculated
from these SCET predictions has corrections at order
�s�mb� and �QCD=E�. Using simple arguments based on
dimensional analysis, we therefore expect corrections to
any of these relations at the 20% level. We are working to
all orders in �s�

��������
�E
p

�, and so we avoid adding additional
uncertainty from expanding at this scale.

Note that we have allowed for a general amplitude P��,
which contributes to the reduced isospin matrix element
h1=2jj0jj1=2i in the K� system, and to the reduced isospin
matrix element h0jj1=2jj1=2i in the �� system. All power
correction contributing to the same reduced matrix element
will be absorbed into the value of the observable P��. The
following will thus fit directly for the parameters P�� and
PK�, which reduces the theoretical uncertainties signifi-
cantly. This implies that the theoretical uncertainties on the
amplitude parameters P̂��, P̂K�, and P̂K �K are 	3% from
isospin rather than 	20%. All other appreciable LO am-
plitude parameters are considered to have uncertainties at
the 20% level.

Using this information, we can now estimate the size of
corrections to the individual observables. For the decays
B! ��, contributions to the total amplitude from P̂��
and other amplitudes are comparable, such that the whole
amplitude receives O�20%� corrections. This leads to cor-
rections to the branching ratios and CP asymmetries in
B! �� of order
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 �Br�B! ��� 	O�40%�;

�ACP�B! ��� 	O�20%�:
(58)

These large uncertainties can be avoided by relying on
isospin to define most of the parameters in the fit, as was
done in Ref. [45] in the � � 0 method for � which has
significantly smaller theoretical uncertainties.

For B! K� decays, the CKM factors and sizes of
Wilson coefficients give an enhancement of the amplitude
parameter P̂K� relative to the other amplitude parameters
by a factor of order 10. Thus, the corrections to the total
decay rates are suppressed by a factor of 10, while correc-
tions to CP asymmetries, which require an interference
between P̂K� with other amplitudes, remain the same. This
gives

 �Br�B! K�� 	O�5%�; �ACP�B! K�� 	O�20%�:

(59)

One exception is the CP asymmetry in B! K0��, which
is strongly suppressed due to the smallness of the parame-
ter ÂK�. At subleading order ÂK� can receive corrections
far in excess of the leading order value, such that any
numerical value of this CP asymmetry is completely un-
reliable at the order we are working. We include these
estimates of power corrections into all our discussions
below.

IV. IMPLICATIONS OF SCET

There are several simple observations one can make
from the LO SCET expressions of the amplitude parame-
ters

(1) For BMi 	 BMi
J one finds that B! M1M2 decays

naturally have ĈM1M2
	 T̂M1M2

[31], so there is no
color suppression. If one instead takes BMi  BMi

J
as in Refs. [24,29] then the ‘‘color suppressed’’
amplitude is indeed suppressed.

(2) There is no relative phase between the amplitudes
C��, T��, TK�,CK�,EWT

K�, andEWC
K� and the sign

and magnitude of these amplitudes can be predicted
with SCET. This allows the uncertainty in the K�
sum rules to be determined, as well as predictions
for the relative signs of CP asymmetries.

(3) The contributions of electroweak penguins, C7–10,
can be computed without introducing additional
hadronic parameters as discussed in Sec. III D.

(4) The amplitude ÂK� is suppressed either by �=mb,
by small coefficients C3;4, or by �s�mb� compared
with the larger TK� and CK� amplitudes
If one treats �K and �� as known, the amplitudes
T̂K� and dEWC

K� are determined entirely through the
hadronic parameters describing the B! �� sys-
tem, implying that the branching ratios and CP
asymmetries for B! K��� and B� ! �K0��

only involve 2 new parameters beyond ��.

In the combined SCET� SU�3� limit discussed in
Sec. III B the parameters P�� ’ PK� ’ PK �K, so we
expect similar complex penguin amplitudes in B!
K�, B! ��, and B! K �K.2

Using these observations allows us to make important
predictions for the observables, with and without perform-
ing fits to the data. Some of these have already been
discussed and we elaborate on the remaining ones below.

A. The ratio C=T and EWC=EWT

We first describe in more detail the first point in the
above list. Most literature has assumed that there is a
hierarchy between the two amplitude parameters CM1M2

and TM1M2
, i.e. that ĈM1M2

� T̂M1M2
. This assumption is

based on the fact that in naive factorization (in which J �
0) one has CM1M2

=TM1M2
	 c2u=c1u 	 0:1. The smallness

of the ratio c2u=c1u is due to the fact that the dominant
Wilson coefficient C1 of the electroweak Hamiltonian is
multiplied by a factor of 1=Nc in c2u, explaining the name
‘‘color suppressed’’ amplitude, plus additional accidental
cancellations which reduce the value of this ratio below
1=3.

In SCET, however, the Wilson coefficients b1;2 contrib-
ute with equal strength to the overall physical amplitude
and can spoil the color suppression [31]. In the bi terms for
CM1M2

a factor of 1=Nc � 1=3 occurs, however the had-
ronic parameter in the numerator is the inverse moment of
a light cone distribution function and is 	3. Thus numeri-
cally ��;K ’ 1, and setting ��;K � 1 for illustration we
find
 

T̂�� � �0:131B� � 0:099B�J ;

Ĉ�� � �0:017B� � 0:160B�J ;

T̂K� � �0:160B� � 0:120B�J ;

ĈK� � �0:003B� � 0:001B�J � 0:014BK � 0:159BKJ :

(60)

Thus, if  	 J it is easy to see that their is no color
suppression. On the other hand if   J as chosen in
Refs. [24,29] then one would have significant color
suppression.

From Eqs. (54)–(57) the size of the color suppressed and
color allowed electroweak penguin amplitudes in �� and
K� are directly related to that of CM1M2

and TM1M2
. Thus if

CM1M2
	 TM1M2

then SCET predicts that EWC
M1M2

	

EWT
M1M2

.

B. B! �� with isospin and Im�C��=T��� � 0

Using only SU(2) there are a total of 5 hadronic parame-
ters describing the decays B! ��, in addition to a weak
phase. The 6 measurements allow in principle to determine

2The analysis of ‘‘chirally enhanced’’ power corrections in
Ref. [24] indicates that they will not break the equality in the
SU(3) limit.
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all of these parameters as was first advocated by Gronau
and London [7]. Unfortunately, the large uncertainties in
the direct CP asymmetry of �B0 ! �0�0 do not allow for a
definitive analysis at the present time (.ie. it currently gives
65
 <�< 200
 [10]). It was shown in Ref. [45] that one
can use SCET to eliminate one of the 5 hadronic SU(2)
parameters, since � � Im�C��=T��� ’ 0, and then di-
rectly fit for the remaining four hadronic parameters and
the weak angle �, which substantially reduces the uncer-
tainty. Using the most recent data shown in Sec. I, we find

 ��� � 83:0
�7:2

�8:8
 � 2
; (61)

where the first error is from the experimental uncertainties,
while the second uncertainty is an estimate of the theoreti-
cal uncertainties from the expansions in SCET, estimated
by varying � � �0:2 as explained in Ref. [45]. This value
is in disagreement with the results from a global fit to the
unitarity triangle

 �CKMfitter
global � 58:6
�6:8


�5:9
 ; �UTfit
global � 57:9
 � 7:4
; (62)

at the 2-� level. A more sophisticated statistical analysis
can be found in Ref. [46]. The errors in Eq. (61) are slightly
misleading because they do not remain Gaussian for larger
�. At � � 0:3 the deviation drops to 1:5-�, and at � � 0:4
it drops to 0:5-�. The result in Eq. (61) is consistent with
the direct measurement of this angle which has larger
errors [2]

 �DK � 63
�15

�12
 : (63)

It is interesting to note that the global fit for � plus the
inclusive determination of jVubj in Table III also prefers
larger values of � as shown in Fig. 1. It will be quite
interesting to see how these hints of discrepancies are
sharpened or clarified in the future. In the remainder of
this paper, we will show results for � � 83
 and � � 59


to give the reader an indication of the � dependence of our
results.

The phase of the amplitude A��cc is mostly determined
from the CP asymmetries in B! ����. In particular, as
can be seen from the general parametrization of the am-
plitudes in Eq. (13), the sign of the direct CP asymmetry
C������ is correlated with the relative sign between P̂��
and T̂�� and the sign of the asymmetry C��0�0� with that
between Ĉ�� and P̂��. Since there is no relative phase
between the amplitudes Ĉ�� and T̂�� at LO in SCET, the
sign of the direct CP asymmetry in B! �0�0 is thus
expected to be positive based on the negative experimental
value for C������ [46]. This expectation is in disagree-
ment with the direct measurement shown in Table I. Using
the values of the hadronic parameters from the previous fit
we find for � � 83


 C��0�0� � 0:49� 0:12� 0:23; (64)

while for � � 59
 we find

 C��0�0� � 0:61� 0:19� 0:19: (65)

These values are 1:7� from the measured value, if we add
the theoretical and experimental errors in quadrature.

C. The decays B! �� in SCET

For � � 83
 a fit of the four SCET parameters to the
B! �� data excluding the direct CP asymmetry in B!
�0�0 gives
 

B� � �0:088� 0:019� 0:045�
�
4:25� 10�3

jVubj

�
;

B�J � �0:085� 0:016� 0:031�
�
4:25� 10�3

jVubj

�
;

103P̂�� � �5:5� 0:8� 1:3�ei�151�8�6�
 ;

(66)

TABLE III. Summary of well measured input parameters. For
our central value for jVubj we use a weighted average of the
inclusive [2] and exclusive [60] with a slightly inflated error. Use
mt � 174:3 GeV.

Parameter Measured value

mB �5279:4� 0:5� MeV [61]
�B0 �1:528� 0:009� ps [2]
�B� �1:643� 0:010� ps [2]
� 0:379� 0:022 [2]
f� �130:7� 0:4� MeV [61]
fK �159:8� 1:5� MeV [61]
jVudj 0:9739� 0:0003 [62]
jVusj 0:2248� 0:0016 [62]
jVcdj 0:2261� 0:0010 [10]
jVcsj 0:9732� 0:0002 [10]
jVcbj �41:6� 0:5� � 10�3 [2,63]
jVubj

incl �4:39� 0:34� � 10�3 [2,64]
jVubj

excl �3:92� 0:52� � 10�3 [60,65,66]
jVubj

global
CKM �3:53� 0:22� � 10�3 [10]

jVubj
here �4:25� 0:34� � 10�3

FIG. 1 (color online). Comparison of constraints on Vub and �
from (i) the direct measurement of �, (ii) current HFAG value
for inclusive jVubj, (iii) global fit value of �, (iv) jVubj as output
from the global fit [2,10], and (v) results for � from the small �
analysis of B! �� decays [45]. All errors bands are 1-�.
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while for � � 59
 we find
 

B� � �0:093� 0:023� 0:035�
�
4:25� 10�3

jVubj

�
;

B�J � �0:10� 0:016� :022�
�

4:25� 10�3

jVubj

�
;

103P̂�� � �2:6� 0:9� 0:8�ei�103�19�16�
 :

(67)

The first error is purely from the uncertainties in the
experimental data, while the second error comes from
adding our estimate of the theory uncertainties discussed
in Sec. III E. For both values of � one finds that jP=Tj 	
0:25. Note that this ratio of P=T does not include the ratio
of the CKM factors. The ratio relevant for the decays is
j��d�c =�

�d�
u jjP=Tj 	 0:6.

It is interesting to compare the result for P̂�� extracted
from the data with that from the purely perturbative pen-
guin computed in Ref. [24] (in two scenarios for the input
parameters),
 

103P̂default
QCDF � �1:0� �0:1� 0:3i� . . .�

� �1:7� 0:0XH � :047X2
A� � f0:3� 0:1ig

� �3:1� 0:4i� 0:047X2
A;

103P̂S2
QCDF � �0:9� �0:0� 0:1i� . . .�

� �2:0� 0:0XH � :063X2
A� � f0:3� 0:3ig

� �3:2� 0:4i� 0:063X2
A: (68)

Here the terms [ . . . ] are �s�mb� corrections, the terms
( . . . ) are chirally enhanced power corrections with pa-
rameters XH and XA, and f . . . g are perturbative corrections
to these. We observe that the magnitude of the perturbative
�� penguin from QCDF is of similar size to that from the
data for � � 59
, but has a small strong phase in contrast
to the large strong phase seen in the data. Large theoretical
uncertainties do not change this qualitative point.

The correlation between B� and B�J in Eqs. (66) and
(67) is about �0:8, so that the heavy-to-light form factor,
which is given by the sum of these two parameters is
determined with much smaller uncertainties than one
would obtain by naively adding the two individual errors
in quadrature. For � � 83
 we find

 FB��0� � �0:17� 0:01� 0:03�
�
4:25� 10�3

jVubj

�
(69)

while for � � 59
 we find

 FB��0� � �0:19� 0:01� 0:03�
�
4:25� 10�3

jVubj

�
: (70)

If one were to expand in �s at the intermediate scale then
the results for B�J in Eqs. (66) and (67) could be translated
into values for a parameter ��1

B � 3�B, as discussed in
Appendix A.

D. The decays B! K�

For these decays the penguin amplitudes are enhanced
by the ratio of CKM matrix elements j��s�c =�

�s�
u j 	 40.

Thus, the relevant ratio of penguin to tree amplitudes is
j��s�c =�

�s�
u jjP=Tj 	 10 and the B! K� decays are penguin

dominated. If one were to only keep the penguin contribu-
tions to these decays the relative sizes of the branching
ratios would be determined by simple Clebsch-Gordon
coefficients

 Br ��0 �K0�’Br��0K��’
Br���K��

2
’

Br��� �K0�

2
: (71)

Deviations from this relation are determined at leading
order in the power counting by the nonperturbative pa-
rameters BM and BMJ . To see how well the current data
constrains deviations from this result we can look at the
following ratios of branching fractions
 

R1 �
2 Br�B� ! �0K��

Br�B� ! �� �K0�
� 1 � 0:004� 0:086;

R2 �
Br� �B0 ! ��K���B�

Br�B� ! �� �K0��B0

� 1 � �0:157� 0:055;

R3 �
2 Br� �B0 ! �0 �K0��B�

Br�B� ! �� �K0��B0

� 1 � 0:026� 0:105; (72)

and the rescaled asymmetries

 �1 � �1� R1�ACP��
0K�� � 0:040� 0:040; (73)

 �2 � �1� R2�ACP��
�K�� � �0:097� 0:016;

�3 � �1� R3�ACP��0 �K0� � �0:021� 0:133;

�4 � ACP��
� �K0� � �0:02� 0:04:

(74)

These ratios have been defined by normalizing each
branching ratio to the decay B� ! �0 �K0. If we drop the
small amplitude parameter AK� then this channel measures
the penguin,

 A�B� ! �� �K0� � ��s�c PK�; (75)

and the direct CP asymmetry is expected to be small.
A simple test for the consistency of the K� data is given

by the Lipkin sum rule for branching ratios [55], and a sum
rule for the CP asymmetries [58]

 R1 � R2 � R3 � 0; �1 � �2 � �3 � �4 � 0; (76)

which are both second order in the ratio of small to large
amplitudes as discussed in Sec. II E. The current data gives

 R1 � R2 � R3 � �0:19� 0:15�expt;

�1 ��2 ��3 � �4 � �0:14� 0:15�expt:
(77)

Thus, so far this global test does not show a deviation from
the expectation.

BAUER, ROTHSTEIN, AND STEWART PHYSICAL REVIEW D 74, 034010 (2006)

034010-14



SCET provides us with additional tests for the K� data.
It turns out that the current data is not precise enough to
determine the values of BK and BKJ . These two parame-
ters only contribute to the two decays B� ! �0K� and
�B0 ! �0 �K0, which have neutral pions and larger experi-

mental uncertainties. As we will explain, the data on these
decays seems to favor a negative value of BKJ , but that
would imply a negative value for �B, the first inverse
moment of the B meson wave function, contrary to any
theoretical prejudice. One can use the fact that the only
sizeable strong phase is in the value of the parameter AK�cc
to determine the predicted size of the deviations from the
above relations and also the signs and hierarchy for the CP
asymmetries.

1. Sum rules in B! K�

In SCET positive values of BM and BMJ imply that the
phase of �TK�, �CK�, EWC;T

K� , and EWT
K� � EW

C
K� are

the same. This can be seen from Eqs. (49) and (50).
Therefore this implies that these amplitudes have a com-
mon strong phase � relative to the penguin P̂K�. Using the
notation and results from Sec. II E we have

 �T � �C � � � �ew
T � �ew

C � �ew � �: (78)

At LO in SCET one can drop the AK� amplitude (�A � 0)
and write
 

A� �B0 ! �� �K0� � ��s�c PK�;

A� �B0 ! ��K�� � ���s�c PK�

�
1�

ei�

2
��ew
C � �Te

�i��

�
;

���
2
p
A�B� ! �0K�� � ���s�c PK�

�
1�

ei�

2
��ew
T � �e

�i��

�
;

���
2
p
A� �B0 ! �0 �K0� � ��s�c PK�

�
1�

ei�

2
��ew � �Ce

�i��

�
;

(79)

where the �-parameters are all positive and satisfy

 � � �T � �C; �ew � �ew
T � �

ew
C ; (80)

and

 � > �C; � > �T; �ew
T > �ew

C ; �ew
T > �ew:

(81)

From the decomposition in terms of SCET parameters
we can determine the magnitudes of the �-parameters in
terms of the ’s. The rate Br�B� ! �� �K0� determines

 10 3jP̂K�j ’ 5:5� 0:1� 0:1 (82)

and using

 

���������
�s�
u

��s�c

��������� 0:0236; (83)

we find

 

�T ’ 1:40�B� � B�J � � 0:35� �K
B�
J ;

�C ’ 0:12�BK � BKJ � � 1:27��B
�K

J

� 0:03�B� � B�J � � 0:02� �K
B�
J ;

�ew
T ’ 0:71�BK � BKJ � � 0:17��BKJ

� 0:12�B� � B�J � � 0:87�KB�J ;

�ew
C ’ 0:12�B� � B�J � � 0:87��B

�K
J :

(84)

Generically BM � BMJ 	 0:15–0:25 and BMJ 	
0:05–0:15 so that �T , �C, �ew

T , �ew
C are 	0:1–0:4 and can

be thought of as expansion parameters.
To estimate the SM deviations from the results in

Eq. (76) we take the O��2� terms in Eqs. (30) and (31)
and independently vary the parameters in the conservative
ranges B� � B�J � 0:2� 0:1, � �K

B�
J � 0:10� 0:05,

B �K � B �K
J � 0:2� 0:1, ��B

�K
J � 0:10� 0:05, �A �

0� 0:1, � � 70
 � 15
, arbitrary �A and all phase differ-
ences �� � 0
 � 30
. For the Lipkin sum rule this gives

 R1 � R2 � R3 � 0:028� 0:021; (85)

and for the CP sum rule

 �1 � �2 ��3 ��4 � 0� 0:013: (86)

Experimental deviations that are larger than these would be
a signal for new physics. The CP sum rule has significantly
smaller uncertainty than the Lipkin sum rule. This can be
understood from the expression
 

�1 � �2 ��3 ��4 � �
1
2 sin�����ew

T � sin����ew
T �

� �T�
ew
C sin��T ��

ew
C �

� �C�ew sin��C ��ew��

� �1�O��A��: (87)

All terms involve one of the smaller electroweak penguin
�-parameters, and in SCET all the phase differences are
small, both of which give a further suppression over the
Lipkin sum rule. Since the CP sum rule is always sup-
pressed by at least three small parameters it is likely to be
very accurate.

2. CP asymmetry sign correlations

For the asymmetry parameters up to smaller terms of
O��2� we have
 

�1 � �� sin��� sin���; �2 � ��T sin��� sin���;

�3 � �C sin��� sin���: (88)

Thus, we immediately have the following predictions

 �i� �1;�2;��3 have the same sign;

�ii� j�1j * j�2j; j�1j * j�3j;
(89)

where (i) depends only on the fact that positive ’s gives
positive �-parameters, and (ii) follows from including
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Eq. (81). Compared to the data in Eq. (73) we see that the
central values of �1 and �2 currently have opposite signs,
disagreeing from equality by 	2� when we take into
account the theoretical uncertainty. The experimental er-
rors are still too large to draw strong conclusions.

Note that a prediction j�1j � j�2j was made for the CP
asymmetries in Ref. [56] based on the expectation that the
color suppressed amplitudes are small. The CP sum rule
�1 � �2 � �3 � 0 was discussed in Ref. [58] (3rd refer-
ence) to take into account the possibly large color sup-
pressed contributions. Given B� 	 B�J , SCET predicts
that the phase of the color suppressed CK� amplitude is
nearly equal to that of the TK� amplitude so the hierarchy
of the asymmetries is actually reinforced by a significant
CK�. Our prediction that j�1j * j�2j with �1;2 having
equal signs can also be compared to prediction for the
analagous CP asymmetries in the QCDF approach [24]
(4th reference). Four different scenarios for the hadronic
parameters were considered S1, S2, S3, S4, and all four
sets of model parameters exhibit the sign correlation.
(However all four of the scenarios also underestimate the
size of jACP���K��j by more than a factor of 2 due mostly
to the fact that the purely perturbative penguin for K� is
somewhat small.)

For the branching ratio deviation parameters we have up
to smaller terms of O��2� that

 R1 � cos�����ew
T � � cos����;

R2 � cos�����ew
C � �T cos����;

R3 � cos�����C cos��� � �ew�:

(90)

The use of conservative errors on the  parameters leaves
too much freedom to make sign predictions for the Ri’s.
However, definite sign predictions will be possible using
Eq. (90) when the  parameters are pinned down by B! �
and B! K form factor results in the future. Alternatively
accurate measurements of the Ri plus ACP�K���� will
determine the hadronic parameters needed to predict the
magnitude of the remaining �i’s.

In the next section we turn to more direct comparisons of
the SCET predictions with the data by fixing the parame-
ters with the well measured observables and then predict-
ing the rest.

3. B� ! �� �K0 and B! �� �K�

The amplitude parameters T̂K�, ÂK�, and dEWC
K� are

determined in terms of the parameters B� and B�J ob-
tained previously from the decays B! ��. Thus, only
two new parameters are required for the decays B� !
�� �K0 and �B0 ! ��K�: the magnitude and phase of
PK�. Since the ratio of �uÂK� � �cP̂K� 	 0:001, one
predicts a negligible CP asymmetry in �B� ! �� �K0 in
agreement with the data. The best sensitivity on the two
parameters is from Br�B� ! �� �K0� and ACP�B0 !
��K��. Using these two observables we find two solutions

for AK�cc for � � 83


 10 3P̂K� �
�
�5:5� 0:1� 0:1�ei�144�8�11�


�5:5� 0:1� 0:1�ei�32�7�10�
 (91)

while for � � 59
 we find

 10 3P̂K� �
�
�5:5� 0:1� 0:1�ei�144�9�11�


�5:5� 0:1� 0:1�ei�36�8�10�
 : (92)

The confidence level plot for the magnitude and phase of
PK� is shown on the left of Fig. 2. For the � � 59
 result
the magnitude indicates a large SU(3) violating correction
at leading order in �=E� or a large �=E� correction in the
SU(3) limit (which disfavors this solution). Taking the � �
83
 we see that of the two solutions the first has a phase
which agrees well with the SU(3) relation to the phase in
��, while the second phase is quite different.

For � � 83
 the first solution, however, does not give
good agreement with the third piece of data, the branching
ratio Br�B0 ! ��K�� � �18:2� 0:8� � 10�6, while the
second agrees considerably better. We find

FIG. 2 (color online). Confidence level plots for the complex
parameter AK�cc for � � 83
 (left-hand side) and � � 59
 (right-
hand side). On the top we show the confidence levels without
using Br� �B0 ! ��K��, while the bottom plot includes this
branching ratio. We also show the value of P��, which is
identical to the PK� in the SU(3) limit.
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 Br ���K�� �
�
�24:0� 0:2� 1:2� � 10�6

�21:3� 0:2� 1:3� � 10�6 : (93)

For � � 59
 this branching ratio has much less discrimi-
nating power between these two solutions and we find

 Br ���K�� �
�
�22:5� 0:2� 1:2� � 10�6

�22:7� 0:3� 1:2� � 10�6 : (94)

This can also be clearly seen in the confidence level plot for
PK� on the right of Fig. 2, where we have included the
branching ratio measurement in the fit. Note, however that
both solutions have trouble explaining the small branching
ratio Br�B0 ! ��K��, making the large difference in the
branching ratios of B! ��K� and B! �� �K0 quite
difficult to explain at LO in the �=mb � 1 limit of QCD.

4. Predictions for other K� and K �K observables

Using the hadronic parameters extracted from the B!
�� decays (B�, B�J , and P��), the value for PK� deter-
mined from the decays B� ! �� �K0 and �B0 ! ��K�

decays and independently varying BK � BKJ �

0:2� 0:1 and ��BKJ � 0:10� 0:05, we can calculate all
the remaining currently measured K� observables. The
results are given in Table IV for � � 83
 and � � 59
,
respectively. We also show these results in Figs. 3 and 4.
The data used in the fit are shown below the dashed
dividing line while those above the line are predictions.
Note that there is one more piece of data below the line
than there are parameters.

In Fig. 3 we see that � � 83
 gives a good match to the
B! �� data except for the asymmetry C��0�0�. When
taking into account the theoretical error the most striking
disagreements are the Br�K���� at 2:3� and the CP
asymmetry ACP�K

��0� at 2:6�. All other predictions
agree within the uncertainties. Note that one could demand
that ACP�K��0� be reproduced, which would imply a
negative value of BKJ (a naive fit for � � 83
 gives BKJ 	
�0:15). Note however, that this would imply that both
perturbation theory at the intermediate scale 
 �

��������
E�
p

and SU(3) are badly broken.

TABLE IV. Comparison of LO predictions versus data as in
Figs. 3 and 4. Br’s are in units of 10�6. The theory errors
displayed for quantities used in the fit show the relative weight
for these observables from power corrections, while those for
predictions include parameter uncertainty from the fit as well as
from power corrections. CP asymmetries that are not shown in
the table are not determined at this order.

Expt. Theory
(� � 83
)

Theory
(� � 59
)

Data in Fit
S������ �0:50� 0:12 �0:50� 0:10 �0:51� 0:10
C������ �0:37� 0:10 �0:37� 0:07 �0:38� 0:07
Br������ 5:0� 0:4 5:0� 2:0 4:6� 1:8
Br����0� 5:5� 0:6 5:5� 2:2 7:3� 2:9
Br��0�0� 1:45� 0:29 1:45� 0:58 1:32� 0:53
Br� �K0��� 24:1� 1:3 24:1� 1:2 24:1� 1:2
A�K���� �0:115� 0:018�0:115� 0:023 �0:115� 0:023
Br� �K0K�� 1:2� 0:3 1:2� 0:5 1:2� 0:5

Predictions
A����0� 0:01� 0:06 & 0:05 & 0:05
A��0�0� 0:28� 0:40 �0:48� 0:19 �0:52� 0:27
S��0�0� 0:84� 0:23 �0:14� 0:22
Br��0 �K0� 11:5� 1:0 10:4� 1:1 10:9� 1:2
Br���K�� 18:9� 0:7 24:0� 2:1 22:5� 2:1
Br��0K�� 12:1� 0:8 14:3� 1:5 12:7� 1:4
S��0KS� 0:31� 0:26 0:77� 0:16 0:76� 0:16
A��0K�� 0:04� 0:04 �0:183� 0:075 �0:184� 0:076
A� �K0�0� �0:02� 0:13 0:103� 0:058 0:083� 0:047
A��� �K0� �0:02� 0:04 <0:1 <0:1
Br�K0 �K0� 0:96� 0:25 1:1� 0:3 1:1� 0:3
Br�K�K�� 0:06� 0:12 & 0:1 & 0:1
A� �K0K�� & 0:2 & 0:2
A� �K0K0� & 0:2 & 0:2f
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FIG. 3 (color online). Comparison of theory and experiment
for all available data in B! �� and B! K� decays, with � �
83
. The 8 pieces of data below the dashed line have been used
to determine the SCET hadronic parameters B�, B�J , P��,
PK�, and jPKKj, with BK and BKJ fixed as described in the text.
The data above the line are predictions. The CP asymmetry in
B� ! K0�� is expected to be small, but its numerical value is
not predicted reliably.
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The situation in Fig. 4 with � � 59
 is similar except
that the theoretical prediction for Br����0� moves some-
what. The Br�K���� deviation is reduced to 1:6� and
asymmetry A�K��0� is still 2:6�. All other predictions
agree within the uncertainties.

For B! K �K the amplitude parameters in SCET satisfy
AKK � BKK and EKK � PAKK � EWKK � 0, and we ob-
tain the prediction

 Br �B� ! K� �K0� � Br� �B0 ! K0 �K0� (95)

which agrees well with the latest data, and the expectation
that ACP�B� ! K� �K0�, ACP� �B0 ! K0 �K0�, and Br� �B0 !
K� �K�� will be suppressed.

Unfortunately, without the use of SU(3) we do not have
enough experimental information to determine the had-
ronic parameters required to predict the B! K0 �K0 abso-
lute branching ratio. It is however interesting to extract the
penguin amplitude and compare with the other channels.
We find

 10 3jP̂K �Kj � 5:3� 0:8: (96)

Comparing with the penguin amplitudes extracted in ��
and in K� we see that the combined SU(3) and SCET
prediction, P�� 	 PK� 	 PK �K, works quite well if � �
83
.

V. CONCLUSIONS

Decays of B mesons to two pseudoscalar mesons pro-
vide a rich environment to test our understanding of the
standard model and to look for physics beyond the standard
model. The underlying electroweak physics mediating
these decays are contained in the Wilson coefficients of
the electroweak Hamiltonian as well as CKM matrix ele-
ments. In order to test cleanly the standard model predic-
tions for these short distance parameters, one requires a
good understanding of the QCD matrix elements of the
effective operators, which cannot be calculated
perturbatively.

At the present time, there are 5 well measured (with
<100% uncertainty) observables in B!��, 5 in B!K�,
and 2 in B! KK. Using only isospin symmetry (with
corrections suppressed by mu;d=�), the number of had-
ronic parameters required to describe these decays is 7, 11,
and 11, respectively. The number of hadronic parameters
can be reduced by two in the �� system, if one drops the
two operators O7 and O8, which have small Wilson coef-
ficients in the standard model. If one is willing to take
SU(3) (an expansion in ms=�) as a good symmetry of
QCD, the combined B! ��=K� system is described by
15 parameters, while the B! KK system adds another 4
parameters. Neglecting O7 and O8 with SU(3) reduces the
number of parameters in the ��=K�=K �K system to 15.
Thus, at the present time there are more hadronic parame-
ters than there are well measured observables.

In this paper we have studied these decays in a model
independent way using SCET. This analysis exploits that
the hadronic scale � in QCD is much smaller than both in
the large mass of the heavy quark and the large energy of
the two light mesons. It follows that at leading order in the
power expansion in �QCD=Q, where Q	mb, E, and using
SU(2), there are four hadronic parameters describing B!
��, five additional parameters describing B!K�, and
three additional parameters describing B!KK. In the
limit of exact SU(3) the four parameters describing B!
�� are enough to describe all of these B!PP decays in
SCET.

In SCET the electroweak penguin operators O7;8 can be
included without adding additional hadronic parameters.
One can use the 5 pieces of well measured �� data to
determine the four hadronic parameters and the weak angle
� [45], and with the current data one finds � � 83
 �
8
 � 2
. This is still consistent with the direct measure-
ment of this angle from B! DK [2], but is currently in
conflict with the value of � from a global fit of the unitarity
triangle at the 2� level. It is too early to tell if this implies
larger than expected power corrections in SCET or might
be a first hint at new physics. When we proceed to analyze
the decays B! K�, we thus perform our analysis both for
� � 83
 and � � 59
. For both of these values the direct
CP asymmetry in B! �0�0 is predicted to have the
opposite sign from the measured value, but is still consis-
tent at the 2� level.
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FIG. 4 (color online). Same as Fig. 3, but with � � 59
.
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Moving on to B! K� decays, we analyzed the uncer-
tainty in the Lipkin sum rule [55] for branching fractions
and the CP sum rule [58] for rescaled CP asymmetries as
defined in Eqs. (72) and (73), giving our result in Eqs. (85)
and (86). The CP sum rule was found to be particularly
accurate due to a suppression by three small parameters in
SCET. The Lipkin sum rule is second order in small
parameters and has a theoretical precision that also makes
it an interesting observable. We conclude that both the
Lipkin and CP sum rules will provide very robust methods
for testing the K� data as the experimental errors decrease
in the future.

Using the expectation that the hadronic parameters BM

and BMJ in the factorization theorem are positive, we
showed that the rescaled asymmetry �1��

0K�� should
have the same sign and larger magnitude than the rescaled
asymmetry �2��

�K�� which is well measured. This pre-
diction is in conflict with the current data by 	2�. Other
sign and magnitude predictions are discussed in
Sec. IV D 2.

The SCET amplitude formulas predict that in addition to
the �� parameters already determined, only the complex
K� penguin amplitude is required to describe the decays
B� ! �� �K0 and B! ��K�. This happens because they
involve B� and B�J , but do not involve B �K or B �K

J . The
well known prediction of a small CP asymmetry for B� !
�� �K0 is reproduced in SCET. The large difference in
Br�B! ��K�� and Br�B� ! �� �K0� is difficult to ex-
plain in the standard model with SCET. The � � 59


solution is not preferred by the combined SU�3� � SCET
limit which predicts PK� ’ P��. These amplitudes agree
well for � � 83
.

Given the current uncertainties in the data, the remaining
two hadronic parameters BK and BKJ cannot yet be de-
termined reliably. This also means that predictions for the
remaining rates do not depend too sensitively on these
parameters. Fixing their values to be close to those pre-
ferred by SU(3), but with 50% uncertainty, we obtained
predictions for the remaining observables in Figs. 3 and 4.

Finally, the decays B! KK require two additional had-
ronic parameters, which can only be determined once
better data for both rates and CP asymmetries become
available for these decays. One prediction of SCET,
namely, that Br�B! K0 �K0� � Br�B� ! K� �K0� is well
satisfied by the current data. In the SU(3) limit one expects
that PK� 	 PK �K, and this result is in good agreement with
the data.

In conclusion, several predictions of SCET work rather
well, while for others there are discrepancies with the
current data. It is too early to tell if the disagreements
between theory and data are due to statistical fluctuations,
to larger than expected power corrections or if they reveal a
first glimpse of physics beyond the standard model. To
answer this question, the experimental uncertainties need
to be reduced and the convergence of the SCET expansion

of QCD for nonleptonic decays has to be tested further both
with nonleptonic and with semileptonic data [66,67].
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APPENDIX A: OPERATORS AND MATRIX
ELEMENTS IN SCET

At the scale 
 ’ mb the Hamiltonian in Eq. (5) is
matched onto operators in SCET. For the first two orders
in the power expansion

 HW �
2GF���

2
p

X
n; �n

�X
i

Z
�d!j�

3
j�1c

�f�
i �!j�Q

�0�
if �!j�

�
X
i

Z
�d!j�

4
j�1b

�f�
i �!j�Q

�1�
if �!j� �Qc �c � . . .

�
:

(A1)

The Wilson coefficients ci and bi are the Wilson coeffi-
cients that appear in Eqs. (34)–(36). The operators for the
�S � 0 transitions are [28,31]

 Q�0�1d � � �un;!1

�6nPLbv�� �d �n;!2
6nPLu �n;!3

�;

Q�0�2d;3d � �
�dn;!1

�6nPLbv�� �u �n;!2
6nPL;Ru �n;!3

�;

Q�0�4d � � �qn;!1

�6nPLbv�� �d �n;!2
6nPLq �n;!3

�;

Q�0�5d;6d � �
�dn;!1

�6nPLbv�� �q �n;!2
6nPL;Rq �n;!3

�;

(A2)

and

 Q�1�1d �
�2

mb
� �un;!1

ig 6B?n;!4
PLbv�� �d �n;!2

6nPLu �n;!3
�;

Q�1�2d;3d �
�2

mb
� �dn;!1

ig 6B?n;!4
PLbv�� �u �n;!2

6nPL;Ru �n;!3
�;

Q�1�4d �
�2

mb
� �qn;!1

ig 6B?n;!4
PLbv�� �d �n;!2

6nPLq �n;!3
�;

Q�1�5d;6d �
�2

mb
� �dn;!1

ig 6B?n;!4
PLbv�� �q �n;!2

6nPL;Rq �n;!3
�;

Q�1�7d �
�2

mb
� �un;!1

igB?
n;!4
PLbv�� �d �n;!2

6n�?
PRu �n;!3
�;

Q�1�8d �
�2

mb
� �qn;!1

igB?
n;!4
PLbv�� �d �n;!2

6n�?
PRq �n;!3
�:
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The �S � 1 operators Q�0�is are obtained by swapping �d!
�s. The ‘‘quark’’ fields with subscripts n and �n are products
of collinear quark fields and Wilson lines with large mo-
menta !i. We have defined
 

�un;! � � ��
�u�
n Wn��!� �n � P y��;

igB?
n;! �
1

��!�
�Wyn �i �n �Dc;n; iD



n;?�Wn��!� �P y��;

(A3)

where ���u�n creates a collinear up-quark moving along the n
direction, or annihilates an antiquark. The bv field is the
standard heavy quark effective theory (HQET) field. For a
complete basis we also need operators with octet bilinears,
TA � TA, but their matrix elements vanish at LO. The
operators Q�1�7d and Q�1�8d also do not contribute at LO [31],
see also [38].

The leading order factorization theorem in Eq. (32) is
generated by time-ordered products of both the operators
Q�0� andQ�1� with insertions of a subleading Lagrangian. T
products with Q�0� contribute to terms with BM and T
products with Q�1� contribute to those with BMJ . It is
convenient to define

 

~Q �0�i � � �q
i
n;!1

�6nPLbv�; (A4)

 

~Q �1�i �
�2

mb
� �qin;!1

ig 6B?n;!4
PLbv�;

~Q �n
i � �qi�n;!2

6nPL;Rq0i�n;!3
:

(A5)

In ~Q�0;1�i the flavor of the �qin;!1
terms matches that of the

first bilinear in Eq. (A2). In ~Q �n
i the flavor of �qi and q0i

match those in the second bilinear of Eq. (A2), and we have
PR for i � 3, 6 and PL otherwise. The contributions to
B! M1M2 at LO are all from ~Q �n

i times the time-ordered
products

 Ti1 �
Z
d4yT� ~Q�0�i �0�iL

�1�
�nq
�y��

�
Z
d4yd4y0T� ~Q�0�i �0�iL

�1�
�nq
�y�iL�1��n�n�y

0��

�
Z
d4yd4y0T� ~Q�0�i �0�iL

�1�
�nq
�y�iL�1�cg �y0�g�

�
Z
d4yT� ~Q�0�i �0�iL

�1;2�
�nq
�y��;

Ti2�z� �
Z
d4yT� ~Q�1�i �0�iL

�1�
�nq
�y��;

(A6)

where z and 1� z are the momentum fractions carried by
the collinear quark and gluon field in ~Q�1�i . Here T1 and T2

are exactly the same T products that occur in the heavy-to-
light form factors [68]. In addition we have operators/T
products whose matrix elements give Acc (see the appendix
of Ref. [33] for further discussion of these contributions).

Using the collinear gluon fields defined in Ref. [69] the
Lagrangians in Eq. (A6) are

 L �1�
�� � �

��nW�i 6D
?
us

1
�P

�
Wyi 6D?c

�6n
2
�n

�
� H:c:;

L�1��q �
��n

1

i �n �Dc
ig 6Bc?Wqus � H:c:;

L�2��q �
��n

�6n
2

1

i �n �Dc
ign �MWqus

� ��n
�6n
2
i 6Dc
?

1

�i �n �Dc�
2 ig 6B

c
?Wqus � H:c:;

L�1�cg �
2

g2 trf�iD

0 ; iD

?�
c ��iD0
;WiD?us�Wy�g;

(A7)

where iD

0 � iD
 � gA
n .

In this paper we only used this factorization at the scale
mb, so the hadronic parameters are defined by matrix
elements of T1 and T2 and the �n-collinear operator, namely

 hMnjT
i
1jBi � Ci�B;M�mB

BM;

hMnjTi2�z�jBi � Ci�B;M�mBBMJ �z�;

hM �nj ~Q
�n
i j0i � C0i�B;M�mBfM�M�u�;

(A8)

where u and 1� u are momentum fractions for the quark
and antiquark �n-collinear fields. Here Ci�B;M� and
C0i�B;M� are simple Clebsch-Gordan coefficients. Putting
the pieces together we have

 

A � hM1M2jHW j �Bi

�
2GFm2

B���
2
p

X
i

Ci�B;M1�C
0
i�B;M2�fM2

�

�Z 1

0
dudzbi�u; z�

BM1
J �z��M2

�u�

� BM1

Z 1

0
duci�u��M2

�u�
�

� �1$ 2� � AM1M2
c �c : (A9)

This result was used to obtain Eqs. (34)–(36) where the
relevant combinations of CiC0i coefficients can be read off
from Table I of Ref. [31] (and do not asssume isospin
symmetry). Here AM1M2

c �c contains Clebsch-Gordan coeffi-
cients if, for example, SU(2) is used to relate these pa-
rameters in different channels. For amplitudes with no
penguin contribution we have AM1M2

c �c � 0.
In this paper we do not investigate the phenomenologi-

cal implications of the �s expansion at the intermediate
scale, �s�
i ’

��������
E�
p

�. While this expansion introduces an
additional source of uncertainty, it is worth commenting
how it can reduce the number of hadronic parameters. For
example, at leading order the perturbative BMJ is
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BMJ jpert �
fBfM
mb

4��s�
i�

9
h �x�1i�M

h�k���1i��B �O��2
s�

�
fBfM
mb

4��s�
i��M�B �O��2
s�; (A10)

where the h� � �i� notation is the indicated moment over the
distribution function �, �M is defined in Eq. (48), and

 �B �
1

3�B
�
Z 1

0
dk�

��B �k
��

3k�
	��1; (A11)

where for dimensional analysis it is convenient to include
the factor of 3 just as we did in Eq. (48). When counting
parameters, if the �M’s are already counted, then the
perturbative expansion reduces the number of BMJ parame-
ters, by, for example, relating B�J and BKJ through the
value of �B. Expanding in �s at the intermediate scale the
fit results for B�J in Eqs. (66) and (67) can be translated
into a value for �B. Taking fB ’ 220 GeV and 
i ’
0:5–1:6 GeV gives the large range ��1

B �

200–1200 MeV with a central value ��1
B 	 370 MeV

which is 	� as expected. This can be compared with the
central value from Ref. [24], where ��1

B 	 3�350 MeV� 	
1000 MeV.

APPENDIX B: RELATIONSHIP BETWEEN OUR
AMPLITUDE PARAMETRIZATION AND

GRAPHICAL AMPLITUDES

In this appendix we show the relationship between the
amplitude parameters defined in Eqs. (13)–(15) and the
graphical amplitudes defined in [22,47]. These relations
are useful, since one can immediately read off SU(3)
relations between different amplitudes, since the graphical
amplitudes are SU(3) invariant. Note that while the ampli-
tude parameters on the right-hand side of Eqs. (B1)–(B3)
have the same name for the different processes, ��, K�,
and K �K, they are only equal in the SU(3) limit.

The relations for the amplitude parameters in B! ��
are

 T̂ �� � T � Put � E� PAut � EWC �
EWA

2
�
EWE

2
�
EWP

2
�
EWPA

2
;

Ĉ�� � C� Put � E� PAut �
3EWT

2
�
EWC

2
�
EWP

2
�
EWPA

2
�
EWE

2
�
EWA

2
;

P̂�� � Pct � PAct � EW
C �

EWA

2
�
EWE

2
�
EWP

2
�
EWPA

2
; dEWT

�� �
3

2
�EWT � EWC�:

(B1)

The amplitude parameters for B! K� decays can be written in terms of graphical amplitudes as follows:

 T̂ K� � T � Put � EWC �
EWP

2
�
EWE

2
; ĈK� � C� Put �

3EWT

2
�
EWC

2
�
EWP

2
�
EWE

2
;

P̂K� � Pct � EW
E �

EWC

2
�
EWP

2
; ÂK� � Put � A� EW

E �
EWP

2
�
EWC

2
;

dEWT
K� �

3

2
�EWT � EWC�; dEWC

K� �
3

2
�EWC � EWE�;

(B2)

Finally, for B! KK decays we find

 Â KK � Put � A�
EWC

2
� EWE �

EWP

2
; B̂KK � Put � PAut �

EWC

2
� EWA;

ÊKK � �E� PAut �
EWA

2
�
EWPA

2
; P̂KK � Pct �

EWC

2
� EWE �

EWP

2
;

cPAKK � PAct �
EWA

2
�
EWPA

2
; dEWKK � �

3EWA

2
�

3EWE

2
:

(B3)
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