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We analyze the ����� amplitude in the framework of radial Regge models in the large-Nc limit. With
the assumption of similarity of the asymptotic Regge � and ! meson spectra we find that the pion
distribution amplitude is constant in the large-Nc limit at the scale Q0 where the QCD radiative
corrections are absent—a result found earlier in a class of chiral quark models. We discuss the constraints
on the couplings from the anomaly and from the limit of large photon virtualities, and find that the
coupling of the pion to excited � and ! mesons must be asymptotically constant. We also discuss the
effects of the QCD evolution on the pion electromagnetic transition form factor. Finally, we use the Regge
model to evaluate the slope of the form factor at zero momentum and compare the value to the experiment,
finding very reasonable agreement.
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I. INTRODUCTION

The study of exclusive processes in QCD [1,2] has been
a permanent challenge both on the theoretical as well as the
experimental side. The production of neutral pions by two
virtual photons provides the simplest process where both
perturbative and nonperturbative aspects of strong interac-
tions can be tested. Indeed, the normalization of the cor-
responding from factor for real photons is dictated by the
chiral anomaly. In the opposite limit of large photon vir-
tualities the amplitude factorizes into power corrections
and a soft and scale dependent distribution amplitude (DA)
which gives direct information on the quark content of the
pion at a given scale. Actually, for large momenta the
behavior of the DA is controlled by the perturbative
QCD renormalization group evolution [1,3,4] in terms of
Gegenbauer polynomials as implied by the conformal
symmetry (for a review see, e.g., Ref. [5]) and the
high-Q2 power expansion. Then at Q2 ! 1 one has the
fixed point result, e.g., ’�2��x;Q2� ! 6x�1� x�. For low
scales genuinely nonperturbative evolution can be tackled
by transverse lattice methods [6,7] (for a review see e.g.
Ref. [8]). The first and second moments of the DA have
been computed on Euclidean lattices [9–11]. The QCD
sum rules have been applied to the leading-twist-2 DA
[12]. Measurements of the transition form factor have
been undertaken by the CELLO [13] and CLEO [14]
Collaborations. An analysis of the lowest Gegenbauer mo-
ments a2 and a4 has been carried out by [15–19]. Higher
twists have been analyzed in the context of light-cone sum
rules [20]. A direct measurement of the DA has been
presented by the E791 Collaboration [21]. For a concise

review on all these developments see, e.g., Ref. [22] and
references therein.

Most calculations dealing with the pion transition form
factor and more specifically with the DA involve quarks as
explicit degrees of freedom. This appears rather natural but
the principle of the quark-hadron duality suggests that it
should also be possible to make these calculations entirely
in terms of the complete set of hadronic states. In fact, the
largeNc-limit of QCD [23,24] makes quark-hadron duality
manifest at the expense of introducing an infinite number
of weakly interacting stable mesons and glueballs. The
large-Nc-limit may in fact be regarded as a model-
independent formulation of the quark model. Actually,
chiral quark models are particular realizations implement-
ing in a rather natural way this large-Nc behavior at the
one-quark-loop approximation and several calculations
have been made along these lines [25–34] (for a review
see, e.g., Ref. [35]). Despite the subtleties regarding the
correct implementation of chiral Ward identities [35,36],
chiral quark models by themselves cannot be ‘‘better’’ than
the large-Nc limit, as they form a particular model realiza-
tion of this limit. Surprisingly, up to now there has been
remarkable little information on the quark content of had-
rons based solely and directly on the large-Nc limit and the
quark-hadron duality ideas, without resorting to specific
low-energy quark models.

The purpose of this paper is to fill this gap and analyze
the pion transition form factor in the original spirit of the
large-Nc limit. We impose chiral constraints at low ener-
gies and QCD short distance constraints at high energies
and extract from there the DA in a Regge model with
infinitely many resonances where the radial squared mass
spectrum is assumed to be linear. This near-linearity is
supported by the experimental analysis of Ref. [37]. We
do the analysis in the absence of radiative corrections
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which must be introduced via QCD evolution, hence our
calculation corresponds to some reference scale Q0 where
the radiative QCD corrections are absent. Remarkably, we
obtain the same main result as found previously by us in
chiral quark models [33,34], namely, the leading-twist pion
DA is constant at the scale Q0. Our calculation provides an
explicit example of quark-hadron duality in an exclusive
process.

Up till now the calculations within the framework of
large-Nc Regge models have been mainly restricted to two-
point functions [38–43]. On the other hand,
large-Nc-motivated calculations of three-point functions
with short distance constraints have been carried out with
a finite number of resonances, which enabled getting
model-independent results for vector meson decays [44–
48]. In this regard there are large Nc studies of both the
pion [49] and the proton [50] electromagnetic form factors.
It should also be mentioned that, echoing some older ideas
of Radyushkin [51], the light-cone wave functions have
recently been computed within the holographic approach
to QCD based on the AdS/CFT correspondence [52,53] or
meromorphization ideas [54]. In these works the quark-
hadron duality is also exploited.

The outline of the paper is as follows. In Sec. II we
review DAs in the large-Nc context and fix our notation for
the remainder of the paper. In Sec. III we undertake the
analysis of the large-Nc Regge model and its consequences
for the pion transition form factor and pion DA. Section IV
deals with aspects of the QCD evolution, which is a crucial
ingredient of analyses of this kind. For completeness some
technical details of the LO evolution of the nonsinglet DA
are provided in the appendix.

II. PARTON DISTRIBUTION AMPLITUDE AND
LARGE Nc

Partonic distribution amplitudes (DAs) are basic prop-
erties of bound states of QCD. They are defined as matrix
elements of quark bilinears between the vacuum and the
hadronic state in question. For instance, the twist-2 DA of
�a, ’�2��x�, is given by

 

�
0

�������� � �z����5
�a

2
�z;�z� ��z�

���������a�q�
�

� if��q
2�q�

Z 1

0
dxeiuq�z’�2��x�; (1)

where u � 2x� 1, z is a coordinate along the light cone,
�z;�z� denotes the gauge link operator, and f��q2� is the
pion decay form factor, with the pion decay constant
f��0� 	 f � 86 MeV in the chiral limit. The DAs have
the support x 2 �0; 1�, normalization

R
1
0 dx’�x� � 1, and

satisfy the crossing relation ’�x� � ’�1� x�. Obviously
the definition (1) requires an identification of quark degrees
of freedom and also specification of a renormalization
scale and scheme.

On the other hand, the pion DA is related to the pion
electromagnetic transition form factor in the process
���� ! �0, or more generally, to processes with one
pion and two (virtual or real) photons on external legs.
This is a physical matrix element which does not depend
on the renormalization scale and which is more suitable for
our purposes. With the outgoing momenta and polariza-
tions of the photons denoted as q1, e1, and q2, e2 one finds
the amplitude

 ���
�0����

�q1; q2� � ����	e
�
1 e

�
2q

�
1 q

	
2F����� �Q

2; A�; (2)

where the pion transition form factor F����� depends on
the total virtuality, Q2, and the photon asymmetry, A,

 Q2 � ��q2
1 
 q

2
2�; A �

q2
1 � q

2
2

q2
1 
 q

2
2

; �1 � A � 1:

(3)

Equivalently, q2
1 � �

�1
A�
2 Q2, q2

2 � �
�1�A�

2 Q2. For large
virtualities one finds the standard twist decomposition of
the pion transition form factor [1],

 F�0���� �Q
2; A� � J�2��A�

1

Q2 
 J
�4��A�

1

Q4 
 . . . ; (4)

with

 J�2��A� �
4f
Nc

Z 1

0
dx

’�2�� �x�

1� u2A2 ; (5)

 J�4��A� �
8f�2

Nc

Z 1

0
dx
’�4�� �x��1
 u2A2�

�1� u2A2�2
; (6)

involving the subsequent DAs. The above results hold
modulo the logarithmic corrections incorporated by means
of the QCD evolution of the DAs, ’�n�� �x� ! ’�n�� �x;Q� [5].
At infinitely large momentum one reaches an ultraviolet
fixed point behavior ’�2�� �x;1� � 6x�1� x�, regardless of
the value of the DA at some finite scale. It is important to
realize that, at least in the perturbative regime, QCD evo-
lution requires an identification of the powers in a twist
expansion and the corresponding coefficients inherit a
logarithmic momentum dependence, J�n��A�!J�n��A;Q2�
provided their value is known at some reference scale Q0.
Let us recall that power corrections are a high-energy
manifestation of low-energy nonperturbative phenomena.

In the large-Nc limit the vacuum sector of QCD becomes
a theory of infinitely many noninteracting mesons and
glueballs [23,24], hence hadronic amplitudes may be cal-
culated as tree-level processes, where the propagators are
saturated by infinitely many sharp meson (glueball) states.
In our case the relevant diagram is shown in Fig. 1: the pion
first couples to a pair of vector mesons V� and V!, which
then transform into photons. From symmetry constraints,
one vector meson has even G-parity (�-type) and the other
one odd G-parity (!-type). Thus, for a massless pion we
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have
 

F�0���� �Q
2; A� �

X
V�;V!

FV��q
2
1�FV!�q

2
2�G�V�V!�q

2
1; q

2
2�

�q2
1 �M

2
V�
��q2

2 �M
2
V!
�


 �q1 !q2�; (7)

where FV� and FV! are the current-vector-meson couplings
and G�V�V! is the coupling of two vector mesons to the
pion. At the soft photon point corresponding to the neutral
pion decay �0 ! 2� the chiral anomaly matching condi-
tion imposes the normalization

 F�0���� �0; 0� �
X
V�V!

2FV��0�FV!�0�G�V�V!�0; 0�

M2
V�
M2
V!

�
1

4�2f
:

(8)

This consistency constraint, realized in nature, can be al-
ways satisfied in models by an appropriate choice of the
couplings.

The large-Q expansion of Eq. (7) would naively yield
pure power corrections, assuming a finite number of reso-
nances [44,45,48]. The situation with infinitely many reso-
nances requires some care, since the coefficients of the
twist expansion involve positive powers of the meson
masses and require regularization. We will illustrate below
the situation with an explicit model.

Another, more subtle, question regards the role of radia-
tive corrections in the large-Nc limit. This problem also
arises in chiral quark models which are specific model
realizations of the large-Nc limit with explicit quark de-
grees of freedom . We take over the viewpoint adopted in
our previous work [33–35], namely, we consider a situ-

ation where all perturbative radiative corrections are
switched off. This corresponds to an identification of the
power corrections at a given reference scale Q0. Thus, our
calculations in the large-Nc limit determine the initial
condition for the QCD evolution, of the form ’�n�� �x;Q0�.
An obvious advantage of such an approach is that after the
evolution the DAs comply to the known asymptotic QCD
behavior. We discuss this issue in detail in Sec. IV.

III. LARGE-Nc REGGE MODELS

Now we proceed to the basic analysis of this paper,
namely, a study of Eq. (7) at large Q2. The idea is as
follows: we adopt a model for the spectra and couplings,
calculate the amplitude, and compare to Eq. (5) and (6).
For the spectra we take the radial Regge model

 M2
V�
�n� � M2

V!
�n� � M2 
 an; (9)

which assumes for simplicity the same spectra in the � and
! channels. is well fulfilled [37] in the experimentally
explored region. We also assume that the M and a parame-
ters are isospin-independent, i.e. are the same for the �-
and !-type mesons. We investigate possible departures
from this assumption later on. We also take constant, i.e.
n-independent values

 FV� � F� � const; FV! � F! � const; (10)

as follows from matching of the predictions of the radial
Regge model for the vector correlator to QCD [43].
Standard vector-meson dominance yields the relation F 	
F� � NcF!. The matching yields

 a � 2�
 �
24�2

Nc
F2; (11)

where 
 is the long-distance string tension. If we use
F � 154 MeV from the �! 2� decay [55] we get����


p
� 546 MeV, while the lattice calculation of

Ref. [56] gives a similar order-of-magnitude estimate,����


p
� 420 MeV. Condition (11) originates solely from

the asymptotic spectrum and is insensitive to the low-lying
states, whose parameters (mass, couplings) may depart
form the asymptotic values.

Using the standard Feynman trick we rewrite Eq. (7) in
the form

 F�0���� �Q;A� �
X1

n;n0�0

Z 1

0
dx

�F2=Nc�Gnn0 �Q
2; A�

fM2 
 anx
 an0�1� x� 
 1
2Q

2�1
 uA�g2

 �A !� A�; (12)

where Gnn0 is the coupling of the pion to the n and n0 states belonging to the � and ! Regge towers. This coupling may
involve diagonal (n � n0) and nondiagonal (n � n0) terms, hence we introduce n0 � n
 d. The double sum may then be
transformed into

FIG. 1. The pion electromagnetic transition amplitude in the
large-Nc limit.
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X1
n;n0�0

Ann0 �
X1
d�0

X1
m�0

�
1�

�0d

2

�
�Am;m
d 
 Am
d;m�; (13)

where the factor �1� �0d=2� is introduced for the correct
counting the diagonal and nondiagonal terms. On purely
physical grounds we expect that the nondiagonal couplings
are suppressed, because in that case the radial wave func-
tions involve different number of nodes and the overlap is
reduced. Thus it is reasonable to assume that Gn;n
d is
decreasing sufficiently fast with increasing d such that
Eq. (12) makes sense. Note that reasonable as it is, this
assumption has sound consequences, as it makes the sum
over n and n0 in Eq. (12) finite. With no suppression the
sum diverges logarithmically, however, any power-law
suppression of Gn;n
d with d makes the expression well-
behaved. At asymptoticQ2 and fixed d the couplingGn;n
d
might a priori depend on n. We show, however, that this is
impossible, as it would lead to violation of the twist
expansion (4). Indeed, assume that Gn;n
d � Gn
d;n �
n��d;Q

2;A�g�d;Q2; A�. Then, using the Euler-McLaurin sum-
mation formula we can transform the sum into an integral
and get the asymptotic behavior

 

F�0���� �Q;A��
X
d

�
1�

�0d

2

�Z 1

0
dx
Z 1
n0

dn



�
n��d;Q

2;A�g�d;Q2;A�

fM2
an
adx
 1
2Q

2�1
uA�g2



n��d;Q

2;A�g�d;Q2;A�

fM2
an
ad�1�x�
 1
2Q

2�1
uA�g2

�

�
X
d

�
1�

�0d

2

�Z 1

0
dxg�d;Q2;A�


�1�uA���1
�1
uA���1

�Q2�1��
; (14)

whereas Eqs. (4) and (5) enforce the leading behavior in
the form 1=�Q2�1� u2A2��. This implies that the only
natural way to match to QCD (in the absence of radiative
corrections) is to assume that at large Q2 and n we have
� � 0 and g depending only on d. In other words, the
coupling Gn;n
d at large Q2 and n is independent of n, Q,
and A. Thus for simplicity we take Gn;n
d � Gn
d;n �
g�d� for all, even low, n. The obtained behavior is remi-
niscent of the asymptotic independence of the coupling FV
ofQ2 and n in the case of the two-point vector correlator. It
is worth stressing that each term in Eq. (12) goes as 1=Q4

and it is the summation over n which changes the power to
1=Q2, yielding the leading twist DA properly. Any finite
truncation does not do the job. In order to generate the
1=Q2 behavior one needs the proper asymptotic density of
states, such as in the Regge model.

With the formula for the polygamma function,

 

X1
n�0

1

�u
 vn�2
�

1

v2  
�1�

�
u
v

�
; (15)

we obtain from Eq. (12) the equation
 

F�0���� �Q;A� �
F2

Nca
2

X
d

�
1�

�0d

2

�
g�d�


Z 1

0
dx
�
 �1�

�
M2

a

dx


1

2a
Q2�1
uA�

�


 �1�
�
M2

a

d�1� x�


1

2a
Q2�1
uA�

��


�A !�A�: (16)

At large Q2 we use the expansion

  �1��AQ2 
 B� �
1

AQ2 


�
1

2
� B

�
1

A2Q4 
 . . . ; (17)

which yields

 F�0���� �Q;A� �
8F2

Nca

X
d

�
1�

�0d

2

�
g�d�


Z 1

0
dx
�

1

Q2�1� u2A2�

�
�2M2 
 a�d� 1���1
 u2A2�

Q4�1� u2A2�2

 . . .

�
:

(18)

Comparison to Eq. (5) and (6) gives immediately the
identification

 ’�2��x� � 1; ’�4��x� � 1; (19)

with the normalization conditions

 

X
d

�
1�

�0d

2

�
g�d� �

12�2f
Nc

;

�2 � �
Nc

24�2f

X
d

�
1�

�0d

2

�
g�d��2M2 
 a�d� 1��

�
:

(20)

Note that g�d� � N�1=2
c , as required for 3-meson cou-

plings, and �2 � N0
c . The sign of �2 is formally not con-

strained. We stress that the above results hold at the scale
Q0 at which the radiative gluon corrections are not present.

Let us consider in a greater detail the simplest case
where no nondiagonal couplings are present, g�d� �
G�d0. Then Eqs. (20) yield

 G �
24�2f
Nc

; �2 �
a
2
�M2: (21)

With M � m� � 770 MeV the parameter �2 is positive
when

����


p

> 434 MeV. At
����


p
� 500 MeV we obtain

� � 439 MeV, which agrees in the order-of-magnitude
with quark-model estimates [34,57].
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At Q2 � 0 the anomaly condition (8) enforces the rela-
tion

  �1�
� m2

�

2�


�
�

Nc
4�f2 ; (22)

which is very well satisfied for
 � �500 MeV�2, when the
above equation becomes 0:377 ’ 0:377. If we use the
relation m2

� � 24�2f2=Nc, then Eq. (22) becomes
 �1��z� � 3=z, with z � m2

�=a ’ 0:385, which gives nu-
merically the relation

����


p
’ 0:64m� � 495 MeV. This

shows that extending the assumption of constancy of the
meson coupling G all the way from the asymptotic region
down to Q2 � 0 preserves the constraints of the model.
Moreover, it leads to very reasonable results and allows to
remarkably well determine the string tension from the
meson phenomenology using the chiral anomaly matching
condition.

Let us now discuss the effects of modifying the Regge
model. Suppose the masses M and the slope parameters a
were different in the � and! channels. If a� � a! then the
expansion (5) and (6) is violated. Note, however, that in
that case we would have different asymptotic density of �
and ! states, which is not possible in a theory with strict
SU�2�F symmetry. On the other hand, it is possible to split
m� and m!. In that case still ’�2� � 1, but higher-twist
DAs become x-dependent. We know from experimental
data that the !-� mass splitting is tiny, so that dependence
should not be strong. At any case, the result of constant’�2�

in the large-Nc limit (at the scale Q0) seems very robust.
Several comments referring to the interpretation of our

results are in order. We recall that the constancy of pion
DAs has been originally obtained by the present authors in
the Nambu-Jona-Lasinio model [33] as well as in the
spectral quark model [34], which are particular realizations
of the large-Nc limit. A key ingredient of these calculation
was the correct implementation of chiral symmetry
through the Ward-Takahashi identities. On the other
hand, calculations based on nonlocal quark models origi-
nally obtained bumped distributions [28], close in shape to
the asymptotic forms. Later calculations with more careful
implementation of PCAC resulted in much flatter results
[36], with the DA remaining nonzero at the end points x �
0, 1. The trend to a flat distribution can also be seen in
transverse lattice calculations at low transverse scales
[6,7]. The present calculation is founded on more general
background, using only the facts that at large-Nc we deal
with a purely mesonic theory and that the confined meson
spectrum may be described by the radial Regge model.

Another comment refers to the absence of explicit
quarks in the present approach. Interestingly, the calcula-
tion, although referring to the partonic structure, as seen in
Eq. (1), never explicitly introduces partons of spin 1=2.
The x variable enters from the Feynman representation of
the product of two vector-meson propagators and is later
identified with the Bjorken x by matching to the QCD

expressions (5) and (6). The identification is unique, since
DAs are universal for all Q2 and A and are only functions
of x (and the model parameters).

IV. QCD EVOLUTION FOR LARGE AND FINITENc

An important point, not only for our calculation, but for
all model calculations, is the question of the energy scale
where the obtained predictions for the DAs hold.
Distribution amplitudes depend on the scale, while our
result corresponds to a fixed reference scale Q0. The
QCD evolution is crucial, eventually evolving the DAs
into their asymptotic forms ’�2�as � 6x�1� x�, ’�4�as �
30x2�1� x�2, . . .. At leading order the evolution for the
leading-twist component is very simple. One method is to
use the Gegenbauer moments (see the appendix), which

evolve with the evolution ratio ���Q2�=��Q2
0��

��0�n =2	0 .
Since 	0 � 11Nc=3� 2Nf=3, and ��0�n � �N2

c �

1�=�2Nc� the exponent reaches a finite value in the
large-Nc limit. As expected, the quark contribution (de-
pending on the number of active flavors NF) is only 1=Nc
suppressed. For instance, the second Gegenbauer moment
behaves as

 

a2�Q�
a2�Q0�

�

�
��Q�
��Q0�

�
75�N2

c�1�=12Nc�11Nc�2NF�
: (23)

From the present calculation one gets a2�Q0� � 7=18. For
NF � 3 the exponent changes from 50=81 at Nc � 3 to
25=44 atNc � 1, an effect at the 10% level only. Thus, the
(perturbative) evolution is never switched off. Obviously,
our result for the DA cannot hold at all scales. As we said, it
refers to a particular reference scale Q0. It is precisely at
that situation where the DAs are constant functions of x. In
order to pass to other scales, the evolution is necessary and
its effect is strong. In particular, the evolution changes the
end-point behavior near x � 0, 1, for instance the twist-2
component ’�2� � x near x � 0 and ’�2� � 1� x near x �
1 (see Refs. [33] for details). This effect is very important,
in particular, for the analysis of processes with one real
photon, where A � 1. Then the numerators in integrands of
Eq. (5) and (6) involve powers of x�1� x� and the tran-
sition form factor is well-behaved only when the end-point
behavior of the DA cancels the singularity. In short, the
QCD evolution is mandatory if we want to compare the
model predictions to the data.

Having said that, we note that we can compute exactly
the unevolved large-Nc pion transition form factor, which
amounts to carrying the x integration in Eq. (16). For the
diagonal model, g�d� � G�d0, we find

 F�0���� �Q;A� �
2f

NcAQ2

�
 �0�

�
M2

a


Q2�1
 A�

2a

�

�  �0�
�
M2

a


Q2�1� A�

2a

��
: (24)
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This result is plotted for different values of the asymmetry
A in Fig. 2, where the need for evolution at large Q2 is
vividly seen. The top curve (thick line) is for the unevolved
large-Nc result of Eq. (24) with A � 1. At large-Q2 we
have

 Q2F�0����Q; jAj � 1�

�
2f
Nc

�
log
Q2

a

  �0�

�
M2

a

��

O�1=Q2�:

(25)

We note the logQ2 term, whose presence can be traced
back to the singular end-point behavior in the twist expan-
sion (4)–(6). As a result, the pure twist expansion is
violated. The QCD evolution cures this problem, leading
to the asymptotic behavior in accordance to the Brodsky-
Lepage limit, indicated with the upper dashed line in Fig. 2.
Therefore the QCD evolution is necessary to comply to the
formal limit, as well as to the experimental data. More
pictorially, the evolution takes the tail of the model calcu-
lation and brings it down to the upper dashed line, compat-
ible with the data. We stress again that the data should not
be directly compared to the unevolved model results plot-
ted in the figure, yet we notice that at lower Q2, where the
effects of evolution should be smaller, the comparison is
quite reasonable. At lower values of jAj the effects of
evolution are not as strong as at jAj � 1, moreover, the
pure twist expansion (i.e. the expansion in powers of 1=Q2

without logs) holds. In the symmetric limit of A � 0 we
have

 F�0���� �Q;A � 0� �
2f
Nca

 �1�
�
2M2 
Q2

2a

�
: (26)

Finally, let us mention that the determination of the
reference scale Q0 can only be done at present using
perturbative evolution. In our previous work [33] we
used the second Gegenbauer moment a2 � 0:12� 0:03

at Q � 2:4 GeV extracted from the experiment [15] with
the assumption ak � 0 for k > 2. This allowed us to make
the LO estimate for the evolution ratio ��Q�=��Q0� �
0:15� 0:06. In Fig. 3 we show the corresponding LO
Gegenbauer evolution for Nc � 3 and Nc � 1 to the scale
Q2 � 5:8 GeV2. As we see the Nc-effect is tiny and is in
fact comparable with the uncertainties induced by the
evolution ratio [33]. Let us note that despite the perturba-
tive nature of our evolution the similarity of these evolved
results to nonperturbative transverse lattice calculations
with a transverse lattice size of about a? � 0:5–0:7 fm is
indeed striking [58]. The LO reference scale of our esti-
mate turns out to be Q0 � 0:320� 0:045 GeV (for
�QCD � 0:224 GeV)—a rather low value which suggests
the usage of higher-order evolution [4] or even nonpertur-
bative evolution [6,7]. Our constant DA evolved at LO to
the CLEO scale Q2 � 5:8 GeV2 yields the value
Q2F��;���Q�=�2f�� � 1:25� 0:10 [33], higher but com-
patible within 2 standard deviations to the experimental
CLEO value of 0:83� 0:12. This actually speaks in favor
of small NLO corrections, however work on higher-order
evolution should definitely be pursued in the future. In
addition, the higher-twist corrections should also be in-
cluded in such an analysis, which is nontrivial.

Expansion of Eq. (24) at low-Q2 yields

 F�0���� �Q;A� �
2f
3a
 �1�

�
M2

a

�


fQ2

3a2  
�2�

�
M2

a

�



f�A2 
 3�Q4

36a3  �3�
�
M2

a

�

 . . . : (27)

Note that the Q2 term is independent of the asymmetry A,
as is also apparent from Fig. 2. The corresponding slope

2 4 6 8
Q2 GeV2

0.05

0.1

0.15

0.2

0.25

Q2 Fπ0  γ ∗  γ ∗ Q2,A

FIG. 2. The pion transition form factor in the large-Nc Regge
model. Solid lines from top to bottom correspond to Eq. (24) at
jAj � 1, 0.95, 0.75, 0.5, and 0, respectively. The dashed lines
indicate the Brodsky-Lepage limit of 2f for jAj � 1 (upper
curve) and 4f=3 for jAj � 0 (lower curve). The CLEO data
points are for A � 1.
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 ϕ
π 

(x
, Q

) 

x  

 Nc=3 , Q2 = 5.8 GeV2 
Nc=οο , Q2 = 5.8 GeV2 

 6x(1-x) (Asymptotic Result)
ϕπ (x, Q0 ) = 1 (Initial condition)

FIG. 3. The pion distribution amplitude evolved to the scale
Q2 � �2:4 GeV�2 for the cases Nc � 3 and Nc � 1. The value
for the evolution ratio ��Q�=��Q0� � 0:15 is based on the
analysis of the CLEO data of Ref. [15]. We also show the
unevolved DA, ’��x;Q0� � 1, and the asymptotic DA,
’��x;1� � 6x�1� x�.
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reads

 b� � �
�

1

F�0��� �Q; 0�
d

dQ2 F�0��� �Q; 0�
���������Q2�0

� �
1

2a

 �2��M
2

a �

 �1��M
2

a �
: (28)

Numerically, taking M�m��770 MeV we get the value
b� � 1:39 GeV�2 for 
��400 MeV�2, b��1:51 GeV�2

for 
 � �500 MeV�2, and b� � 1:58 GeV�2 for

��600 MeV�2. These Regge model estimates are in
very reasonable agreement with the experimental values
quoted in the PDG [59]: b� � �1:79� 0:14� 14� GeV�2

originally reported by the CELLO Collaboration [13],
obtained from an extrapolation from high-Q2 data to low
Q2 by means of generalized vector-meson dominance,
b� � �1:4� 1:3� 2:6� GeV�2 given in [60], and
b� � �1:4� 0:8� 1:4� GeV�2 given in [61].

Finally, let us comment on the recent findings within the
holographic approach [52,53] where the light-cone wave
functions have been computed appealing to the AdS/CFT
correspondence and the meromorpization approach of
Ref. [54]. The holographic wave-functions correspond to
a spectrum which behaves linearly in the mass, M�n� � n.
Using a conformal-based mapping Brodsky and Teramond
[53] get the asymptotic DA ’�2�� �x� � 6x�1� x� while the
corresponding parton distribution function (PDF) is
f��x� � 6x�1� x�. If, instead, a twist-based mapping is
considered [52] these authors get ’�2�� �x� � �8=��������������������
x�1� x�

p
and a PDF f��x� � 1. According to the mero-

morphization approach of Radyushkin [54] one gets
’�2�� �x� � �8=��

������������������
x�1� x�

p
and f��x� � 1 for scalar quarks

and ’�2�� �x� � 6x�1� x�, the asymptotic DA, and f��x� �
6x�1� x� for spin 1=2 quarks. This latter situation is
exactly the kind of situation that was found in the NJL
quantized on the light cone [27]. An asymptotic PDA
suggests a reference scale Q0 � 1 or the lack of LO
evolution of ’�2�� , which assumes the asymptotic form at
all scales. On the other hand the corresponding PDF yields
a 100% momentum fraction carried by the quarks, while
for Q0 � 1 one expects that all momentum fraction is
carried by the gluons. This poses an interpretation diffi-
culty for these approaches which should be cleared out.

V. CONCLUSION

We summarize our main points. The radial Regge model
predictions for the �0���� amplitude can be matched to
the QCD twist expansion in the absence of radiative cor-
rections in the large-Nc limit. The matching requires that
the coupling of the pion to a pair of Regge � and!mesons,
G�VV0 , is constant for highly excited Regge states and large
momenta. The twist-2 pion distribution amplitude is then
found to be constant in the x-variable, conforming to the
earlier predictions made in a class of chiral quark models.

Thus, we provide an explicit example of quark-hadron
duality for an exclusive process. Moreover, higher-twist
DAs may or may not be constant, depending on the details
of the Regge model. If m� � m!, then the twist-4 DA is
also constant. The Regge model couplings are constrained
by matching the chiral anomaly for real photons and the
high-momentum behavior, c.f. Eqs. (20) and (21) for
highly virtual photons. If we further assume a model
with constant diagonal couplings, a consistency relation
(22) involving the string tension is found, which is well
supported by the data. As a result the string tension is found
to scale with the square of the �-meson mass. The Regge
model makes very reasonable predictions for the slope of
the pion electromagnetic transition form factor at zero
momentum. The estimates depend weakly on the string
tension, and compare quite well to the existent measure-
ments. Finally, we have noted that similarly to the case of
chiral quark models, the QCD evolution is necessary in the
present Regge model to achieve the correct large-
momentum behavior of the pion transition form factor.
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APPENDIX: LO EVOLUTION OF DA

The LO-evolved distribution amplitude reads [1,4]

 ’�2�� �x;Q� � 6x�1� x�
X10
n�0

C3=2
n �2x� 1�an�Q�; (A1)

where the prime indicates summation over even values of n
only. The matrix elements, an�Q�, are the Gegenbauer
moments given by
 

an�Q� �
2

3

2n
 3

�n
 1��n
 2�

�
��Q�
��Q0�

�
��0�n =�2	0�


Z 1

0
dxC3=2

n �2x� 1�’�2�� �x;Q0�; (A2)

with C3=2
n denoting the Gegenbauer polynomials, and the

nonsinglet anomalous dimension reads

 ��0�n � �2CF

�
3


2

�n
 1��n
 2�
� 4

Xn
1

k�1

1

k

�
;

	0 �
11

3
CA �

2

3
NF;

(A3)

with CA � Nc, CF � �N2
c � 1�=�2Nc�, and NF being the
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number of active flavors, which we take equal to three. The
LO running is then ��Q� � �4�=	0�= log�Q2=�2

QCD�.
Taking as initial condition

 ’�2�� �x;Q0� � 1; (A4)

one we gets immediately

 an�Q� �
2

3

2n
 3

�n
 1��n
 2�

�
��Q�
��Q0�

�
��0�n =�2	0�

: (A5)
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