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We evaluate threshold resummed spectra in B! Xul� decays in next-to-leading order. We present
results for the distribution in the hadronic variables EX and m2

X=E
2
X, for the distribution in EX and for the

distribution in EX and El, where EX and mX are the total energy and the invariant mass of the final
hadronic state Xu respectively and El is the energy of the charged lepton. We explicitly show that all these
spectra (where there is no integration over the hadronic energy) can be directly related to the photon
spectrum in B! Xs� via short-distance coefficient functions.
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I. INTRODUCTION AND SUMMARY OF THE
RESULTS

A long-standing problem in particle physics is the under-
standing of strong interactions at low energies. While at
very low energies, of the order of the hadronic scale � �
300 MeV, perturbative QCD is of no use and alternative
methods have been developed in decades (such as quark
models, chiral Lagrangians, lattice QCD, etc.), at inter-
mediate energies, of the order of a few GeV, perturbative
computations can be combined with nonperturbative mod-
els to predict a variety of cross sections and decay rates.
Among these moderate hard scale phenomena is beauty
physics, which is indeed characterized by a hard scale of a
few GeV. The measured decay spectra often receive large
contributions at the endpoints—in the case of the hadron
energy spectrum, in the middle of the domain—from long-
distance effects related to soft interactions between the
heavy quark and the light degrees of freedom.

The main nonperturbative effect is the well-known
Fermi motion, which classically can be described as a
small vibration of the heavy quark inside the B meson
because of the momentum exchange with the valence
quark; in the quantum theory it is also the virtuality of
the heavy quark that matters. This effect is important in the
end point region, because it produces some smearing of the
partonic spectra.

These long-distance effects manifest themselves in per-
turbation theory in the form of series of large infrared
logarithms, coming from an ‘‘incomplete’’ cancellation
of infrared divergencies in real and virtual diagrams. The
probability for instance for a light quark produced in a
process with a hard scale Q to evolve into a jet with
an invariant mass smaller thanm is written in leading order
as [1]:
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where! is the energy of a gluon emitted by the light quark
normalized to the hard scale, � is its emission angle and A1

is a positive constant (see Sec. III). The first integral on the
right-hand side is the real contribution while the second
integral is the virtual one. Both integrals are separately
divergent for ! � 0—soft singularity—as well as for
� � 0—collinear singularity, but their sum is finite.
‘‘Complete’’ real-virtual cancellation occurs only for m �
Q, i.e. in the completely inclusive evolution of the quark
line, while for m<Q there is a leftover double logarithm
because of the smaller integration region of the real dia-
grams. Multiple gluon emission occurs in higher orders of
perturbation theory; it can be described as a classical
branching process and gives rise to the double-logarithmic
series, i.e. to powers of the last term �Slog2�Q2=m2� on the
right-hand side of Eq. (1) [1,2].

We may say that perturbation theory ‘‘signals’’ long-
distance effects in a specific way—even though a quanti-
tative description of the latter has to include also some
truly nonperturbative component. A theoretical study of
the universality of these long-distance effects can therefore
be done inside perturbation theory, by comparing the loga-
rithmic structure of different distributions. In other words,
if these long-distance effects are universal, this has cer-
tainly to show up in perturbation theory: things have to
work in perturbation theory first. The aim of this work is to
study the relation of long-distance effects between differ-
ent distributions by means of resummed perturbation
theory.
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In general, let us consider the semi-inclusive decays

 B! Xq � �non-QCD partons�; (2)

where Xq is any hadronic final state coming from the
fragmentation of the light quark q � u, d, s and the non-
QCD partons are typically a photon, a lepton-neutrino pair,
a lepton-antilepton pair, etc. This system of particle(s),
with total four-momentum q�, constitutes a ‘‘probe’’ for
the hadronic process, as in the case of deep-inelastic-
scattering (DIS) of leptons off hadrons. Without any gen-
erality loss, we can work in the b rest frame, where p�b �
mbv

�, withmb being the beauty mass and v� � �1; 0; 0; 0�
being the classical 4-velocity. The hadronic subprocess in
(2) is characterized by the following three scales:

 mb; EX; and mX �mb � EX�; (3)

where mX and EX are the invariant mass and the total
energy of the final hadronic state Xq, respectively. We are
interested in the so-called threshold region, which can be
defined in all generality as the one having

 mX � EX: (4)

The region (4) is sometimes called radiation-inhibited,
because the emitted radiation naturally produces final
states with an invariant mass of the order of the hard scale:
mX 	O�EX�. It is also called semi-inclusive because ex-
perimentally, to satisfy the constraint (4), most hadronic
final states have to be discarded.

The processes we are going to consider are the well-
known radiative decay with a real photon in the final state,

 B! Xs � � (5)

and the semileptonic decay,1

 B! Xu � l� �: (7)

In perturbative QCD, the hadronic subprocess in (2)
consists of a heavy quark decaying into a light quark which
evolves later into a jet of soft and collinear partons because
of infrared divergencies. In leading order, one only con-
siders the emission of soft gluons at small angle by the light
quark (see Eq. (1)); the final state Xq consists of a jet with
the leading (i.e. most energetic) quark q originating the jet
itself. In next-to-leading order one has to take into account
two different single-logarithmic effects: (a) hard emission
at small angle by the light quark q and (b) soft emission at
large angle by the heavy quark. Because of (a), the final
state consists of a jet with many hard partons and, in
general, the leading parton is no longer the quark q which
originated the jet itself. Because of (b), the final state does
not contain only an isolated jet, but also soft partons in any

space direction. The main result of [3] is that the large
threshold logarithms appearing in (2) are conveniently
organized as a series of the form
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(8)

where ��Q� � �S�Q� is the QCD coupling and the hard
scale Q is determined by the final hadronic energy EX

2:

 Q � 2EX: (9)

These large logarithms are factorized into a universal QCD
form factor. Let us summarize the derivation of (8) and (9).
We take the infinite mass limit for the beauty quark while
keeping the hadronic energy and the hadronic mass fixed3:

 mb ! 1; with EX and mX ! const: (10)

This takes us into an effective- theory in which the beauty
quark is replaced by a static quark, as recoil effects are
neglected in the limit (10). If we write the beauty quark
momentum as pb � mbv� k, where k is a soft momen-
tum, the infinite mass limit of the propagator is easily
obtained as

 SF�p� �
�
1� v̂

2
�

k̂
2m

�
1

v � k� k2=�2m� � i�

!
1� v̂

2

1

v � k� i�
�static limit�; (11)

where â � ��a�. As discussed above, the beauty quark
contributes to the QCD form factor via large logarithms
coming from soft emissions, which are correctly described
by a static quark. Since the light quark propagator is not
touched by the limit (10), we conclude that all soft and/or
collinear emissions are correctly described by this limit.
Since the heavy-flavor mass has disappeared with the limit
(10), the only remaining scales in the hadronic subprocess
are mX and EX. Only one dimensionless quantity can be

1The results for the semileptonic decay are easily extended to
the radiative decay with the photon converting into a lepton pair,

 B! Xs � l� l: (6)

2The factor two is inserted in such a way that the hard scale
coincides with mb in the radiative decay (see later). The essential
point however is that Q is proportional to EX via a proportion-
ality constant of order one, whose precise value is irrelevant.

3This limit has not to be confused with that one relevant for the
shape function, also called structure function of the heavy
flavors, which is EX ! 1, mX ! 1 with m2

X=EX ! const (the
latter implies mb ! 1, but the converse is not true). The shape
function describes soft interactions only and therefore does not
factorize the whole logarithmic structure, missing the large
logarithms coming from hard collinear emission off the light
quark.
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constructed out of them, for example, the ratio EX=mX,
which is therefore the only possible argument for the large
logarithms, in agreement with (8). Furthermore, the hard
scaleQ is given by the greatest scale in the game, i.e. by the
hadronic energy EX, in agreement with (9).

The argument given above, however, is not rigorous: let
us refine it. The limit (10) is indeed singular in quantum
field theory: one cannot remove degrees of freedom with-
out paying some price. Let us consider for simplicity’s sake
the semileptonic decay (7), even though the conclusions
are general. The vector and axial-vector currents respon-
sible for the b! u transition are conserved or partially
conserved in QCD, implying that the O��� virtual correc-
tions are ultraviolet finite. These corrections contain how-
ever terms of the form

 �0� log
mb

EX
�ordinary QCD�; (12)

which diverge in the limit (10) (�0 is a constant). If one
takes the limit (10) ab initio, i.e. before integrating the
loop, some divergence is expected in the loop integrals, as
it is indeed the case. Technically, that occurs because the
static propagator is of the form 1=�k0 � i�� (see Eq. (11))
and, unlike the ordinary propagator, has no damping for
j ~kj ! 1. It can be shown that the b! u vector and axial-
vector currents are no more conserved or partially con-
served in the static theory. Therefore, unlike the QCD case,
the O��� virtual corrections are ultraviolet divergent in the
static theory and produce, after renormalization, terms
corresponding to (12) of the form

 �0� log
�
EX
�effective theory�; (13)

in which basically the heavy-flavor mass mb is replaced by
the renormalization point �—the coefficient �0 being the
same. The hadronic subprocess in the static theory there-
fore has amplitudes depending on the physical scales EX
and mX as well as on the renormalization scale �. If we
neglect terms suppressed by inverse powers of the beauty
mass 	1=mn

b, we have that the physical scale mb is re-
placed by the renormalization point � in the effective
theory: mb ! �. The effective currents ~J� and the cou-
pling constant � are renormalized at the scale �: ~J� �
~J���� and � � ����. The effective amplitudes contain
terms of the form �nlogk�=EX (k  n), which are large
logarithms for �� EX or �� EX. To have convergence
of the perturbative series, the large logarithms above must
be resummed by taking � � O�EX�, i.e. � � kEX with
k � O�1�. This implies that the effective currents and the
coupling are evaluated at a scale of the order of the
hadronic energy: ~J� � ~J��kEX� and � � ��kEX�. We
have therefore proved that the hard scale Q is fixed by
the final hadronic energyEX and not by the beauty massmb

 Q � � � kEX with k � O�1�: (14)

Let us go back to the general process (2). Kinematics
gives

 2EX � mb

�
1�

q2

m2
b

�
m2
X

m2
b

�
: (15)

The simplest processes are those with a lightlike probe, i.e.
with q2 � 0, where

 2EX � mb

�
1�

m2
X

m2
b

�
’ mb: (16)

This case corresponds to the radiative decay (5). In this
case, the final hadronic energy is always large and of the
order of the heavy-flavor mass

 Q � mb�radiative decay�: (17)

On the other hand, in the semileptonic decay (7),4 the
lepton pair can have a large invariant mass,

 q2 	O�m2
b�; (18)

implying a substantial reduction of the hard scale:

 Q� mb: (19)

This fact is one of the complications in the threshold
resummation of the semileptonic decay spectra: while in
the radiative decay (5), the hard scale Q is always large in
the threshold region, and of the order of mb, this is no
longer true in the semileptonic decay. The hadronic sub-
processes have in general different hard scales in the two
decays. If one integrates over q2, for example, because of
undetected neutrino momentum, there is a mixing of had-
ronic contributions with different hard scales in the semi-
leptonic case. However, it turns out by explicit com-
putation that the contributions from a large q2, i.e. with a
small hard scale in the hadronic subprocess, are rather
suppressed (see Sec. IV).

At fixed Q, the large logarithms in (2) can be factorized
into a QCD form factor, which is universal in the sense that
it depends only on the hadronic subprocess. The differ-
ences between, let us say, the radiative decay (5) and the
semileptonic decay (7) only enter in the specific form of a
short-distance coefficient function multiplying the QCD
form factor (and in the form of a remainder function
collecting non factorized, small contributions, see next
section).

The discussion above can be summarized as follows.
The hard scale Q � 2EX in (2) appears in the argument in
the infrared logarithms as well as in the argument of the
running coupling. In the radiative decay, because of kine-
matics, the hard scale is always large and of the order of the
beauty mass: Q � mb, while in the semileptonic case
kinematical configurations are possible with Q � mb as

4The same is also true for the radiative decay with the photon
converting into a lepton pair (6).
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well as with Q� mb. The main complication in semi-
leptonic decays is that by performing kinematical integra-
tions (for example over the neutrino energy), one may
integrate over the hard scale of the hadronic subprocess.
While in radiative decays the hard scale is fixed, in the
semileptonic decays there can be a mixing of different
hadronic subprocesses. A nontrivial picture of some semi-
leptonic decay spectra emerges: there are long-distance
effects which cannot be extracted by the radiative decay,
related to a small final hadronic energy, but their effect
turns out to be small at the end because of a kinematical
suppression of the states with a small hard scale. The decay
spectra in (7) can therefore be divided into two classes:

(1) distributions in which the hadronic energy EX is not
integrated over. These distributions can be related
via short-distance coefficients to the photon spec-
trum in the radiative decay (5). In particular, the
structure of the threshold logarithms is the same as
in decay (5). In this paper we restrict ourselves to
these simpler distributions;

(2) distributions in which the hadronic energy is inte-
grated over and therefore all the hadronic energies
contribute. These are for instance the hadron mass
distribution or the charged lepton energy distribu-
tion. In all these cases, the structure of the threshold
logarithms is different from that one in (5) and by far
more complicated. The analysis of some of these
distributions, which present novel features with re-
spect to B! Xs�, is given in [4].

Let us make a simple analogy with e�e� annihilation
into hadrons. In the center-of-mass (c.o.m.) frame, the final
state consists of a q �q pair, which are emitted back to back
with a high virtuality and evolve later into two jets:

 e� � e� ! q� q! Jq � Jq: (20)

Roughly speaking, the final state Xq in (2), consisting in a
single jet, is ‘‘half’’ of that in (20), consisting of the two
jets Jq and Jq. Deviations from this independent fragmen-
tation picture arise in next-to-leading order because of
large-angle soft emission by the heavy quark in (2), which
has no analogue in (20). The structure of e�e� hadronic
final states is conveniently analyzed by means of so-called
shape variables, one of the most studied being the heavy jet
mass m2

H, defined as

 m2
H � maxfm2

R;m
2
Lg; (21)

where mR and mL are the invariant masses of the particles
in the right and left hemispheres of the event, respectively.
The hemispheres are defined cutting the space with a plane
orthogonal to the thrust axis ~n, the latter defined as the
direction maximizing

 

X
i

j ~pi � n̂j; (22)

i.e. basically the sum of length of longitudinal momenta.

The sum extends overall hadrons—partons in the pertur-
bative computation. For mH � Q, where Q is the hard
scale to be identified here with the c.o.m. energy, hard
emission at large angle by the q �q pair cannot occur and
the final state consists of two narrow jets around the
original q �q direction, which can be identified with ~n. The
O��� computation gives large logarithms of similar form to
those in (8) [5]

 ��Q�log2 Q
2

m2
H

and ��Q� log
Q2

m2
H

: (23)

There is not a simple relation between, let us say, the heavy
jet mass distribution at the Z0 peak,

 

d�

dm2
H
�Q � mZ� (24)

and the integral of this quantity overQ from a small energy
�	mH up to mZ with some weight function ��Q�

 

d�̂

dm2
H
�
Z mZ

�
dQ��Q�

d�

dm2
H

�Q�: (25)

Radiative B decays (5) and semileptonic spectra (7) in
class 1. are the analog of the former distribution (24), while
semileptonic spectra in class 2. are the analog of the latter
case (25). The analog of the suppression in the semilep-
tonic spectra 2. of the contributions from large q2 is the
suppression of the weight function ��Q� for Q� mZ.

Many properties of the distributions we are going to
derive in this work can be understood with a qualitative
discussion on the hadron energy spectrum,

 

d�

dEX
; (26)

which exhibits a remarkable phenomenon related to the
occurrence of infrared singularities inside the physical
domain, instead than at the boundary as it is usually the
case. This phenomenon has been studied in the framework
of jet physics and is known as the ‘‘Sudakov shoulder’’
[3,6–8]. Let us discuss it in the present case in physical
terms. In lowest order, the semileptonic decay (7) involves
three massless partons in the final state:

 b! u� l� �: (27)

According to kinematics, any final state parton can take at
most half of the initial energy, implying that

 E�0�X � Eu 
mb

2
: (28)

In lowest order, the final hadronic state consists indeed of
the up quark only: Xu � u. To order �, a real gluon is
radiated and the final hadronic state is a two-particle
system: Xu � u� g. The final hadronic energy is not
restricted anymore to half the beauty mass but can go up
to the whole beauty mass:
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 E�1�X � Eu � Eg  mb: (29)

For example, just consider an energetic up quark recoiling
against the gluon, with a soft electron and a soft neutrino.
The relevant case for us is a final state with the up quark of
energy � mb=2 and a soft and/or a collinear gluon. Such a
state has a total energy slightly above mb=2 and the matrix
element is logarithmically-enhanced because of the well-
known infrared singularities. Such logarithmic enhance-
ment cannot be cancelled by the O��� virtual corrections,
because of their tree-level kinematical limitation (28). We
are left therefore with large infrared logarithms, of the form

 �log2

�
EX �

mb

2

�
; � log

�
EX �

mb

2

��
EX �

mb

2

�
;

(30)

which are final and produce an infrared divergence for
EX ! �mb=2. On the other hand, for EX <mb=2 there
are no large logarithms of the form �logk�mb=2� EX�
�k � 1; 2�, because in this case real-virtual cancellation
may occur, and it actually does. Let us summarize: the
O��� spectrum has an infrared singularity right in the
middle of the domain, for �EX � mb=2, because the
lowest-order spectrum has a discontinuity in this point,
above which it vanishes identically because of kinematics.

This infrared singularity is integrable, as

 

Z mb=2�	

mb=2
dEX�logk

�
EX �

mb

2

�
<1; (31)

where 	 > 0 is some energy-resolution parameter. The
infrared divergence is therefore eliminated with some
smearing over the hadronic energy, which experimentally
is always the case. Furthermore, hadronization corrections
certainly produce some smearing on the partonic final
states because of parton recombination. In other words,
nonperturbative mechanisms wash out this infrared diver-
gence, which therefore does not present any problem of
principle. As we are going to show, however, perturbation
theory ‘‘saves itself’’ and no mechanism outside perturba-
tion theory is needed to have a consistent prediction:
resummation of the infrared logarithms in (30) to all orders
completely eliminates the singularity, as in the cases of the
usual infrared divergencies [6]. Since large logarithms
occur for EX 	mb=2, we have that the hard scale is given
for this spectrum by the beauty mass,

 Q � mb�hadron energy spectrum�; (32)

just like in radiative decays. This equality is noticeable, as
it comes from completely independent kinematics with
respect to the one in (5). There is therefore a pure short-
distance relation between the hadron mass distribution in
(5) and the hadron energy distribution in (7). This property
remains true when we consider nonperturbative Fermi
motion effects, which are factorized by the well-known

structure function of the heavy flavors, also called the
shape function.

This paper is organized as follows:
In Sec. II we present the results for the resummed triple-

differential distribution, which is the most general distri-
bution and the starting point of our analysis;

In Sec. III we review the theory of threshold resumma-
tion in heavy-flavor decays, giving explicit formulas for the
QCD form factor in next-to-next-to-leading order (NNLO).
The transformation to Mellin space in order to solve the
kinematical constraints for multiple soft emission is dis-
cussed, together with the inverse transform to the original
momentum space;

In Sec. IV we derive the double distribution in the
hadronic energy and in the ratio (hadronic mass)/(hadronic
energy), which are the most convenient variables for
threshold resummation (these are the variables w and u
defined there). The distribution in any hadronic variable
can be obtained from this distribution by integration;

In Sec. V we present the results for the resummed
hadron energy spectrum in next-to-leading order, whose
main physical properties have already been anticipated
here. We also compute the average hadronic energy to first
order and compare with the radiative decay. The hadron
energy spectrum with an upper cutoff on the hadron mass,
which is the easiest thing to measure in experiments, is
derived in leading order;

In Sec. VI we derive the double distribution in the
hadron and electron energies, i.e. in the two independent
energies. A peculiarity of this spectrum is that it is char-
acterized by the presence of two different series of large
logarithms, which are factorized by two different QCD
form factors. Another peculiarity is that this double differ-
ential distribution contains partially-integrated QCD form
factors instead of differential ones. That implies that the
infrared singularities occurring in this distribution are in-
tegrable, as in the case of the Sudakov shoulder which we
have discussed before;

Finally, in Sec. VII we present our conclusions together
with a discussion about natural developments.

II. TRIPLE-DIFFERENTIAL DISTRIBUTION

The triple-differential distribution in the decay (7) is the
starting point of our analysis. It has a resummed expression
of the form [3]:5

5We have normalized the distribution to the radiatively-
corrected total semileptonic width

 � � �0�1� �CF=
�25=8� 
2=2� �O��2��

and not to the Born width �0, as originally done in [3]. We
consider it to be a better choice because �, unlike �0, is a
physical quantity, directly measurable in the experiments, and
we are not interested in the prediction of total rates, but only in
how a given rate distributes among different hadronic channels.
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1

�

d3�

dxdudw
� C�x;w;��wmb����u;��wmb��

� d�x; u; w;��wmb��; (33)

where we have defined the following kinematical varia-
bles:

 w �
2EX
mb
�0  w  2�; x �

2El
mb
�0  x  1� (34)

and6

 u �
EX �

��������������������
E2
X �m

2
X

q
EX �

��������������������
E2
X �m

2
X

q �0  u  1�: (35)

It is convenient to express u as

 u �
1�

��������������
1� 4y
p

1�
��������������
1� 4y
p ; (36)

with

 y �
m2
X

4E2
X

�0  y  1=4�: (37)

The inverse formula of (36) reads

 y �
u

�1� u�2
: (38)

The functions entering the right-hand side of Eq. (33) are:
(i) C�x;w;��wmb��, a short-distance, process-

dependent coefficient function, whose explicit ex-
pression will be given later. It depends on two inde-
pendent energies x and w and on the QCD coupling
�;

(ii) ��u;��wmb��, a process-independent, long-
distance dominated, QCD form factor. It factorizes
the threshold logarithms appearing in the perturba-
tive expansion. At order �:
 

��u;�� � 	�u� �
CF�



�
logu
u

�
�
�

7CF�
4


�
1

u

�
�

�O��2�; (39)

where CF is the Casimir of the fundamental repre-
sentation of SU�3�c, CF � �N2

c � 1�=�2Nc� with
Nc � 3 (the number of colors) and the plus distri-
butions are defined as usual as:

 P�u�� � P�u� � 	�u�
Z 1

0
du0P�u0�: (40)

The action on a test function f�u� is therefore:

 

Z 1

0
duP�u��f�u� �

Z 1

0
duP�u��f�u� � f�0��:

(41)

The plus distributions are sometimes called star-
distributions and can also be defined as limits of
ordinary functions as:

 P�u�� � lim
�!0�

�
��u� ��P�u� � 	�u�

Z 1

�
du0P�u0�

�

� lim
�!0�

�
��u� ��P�u� � 	�u� ��



Z 1

�
du0P�u0�

�

� lim
�!0�

�
d
du

�
��u� ��

Z 1

u
du0P�u0�

�
:

(42)

An important property of the plus distributions is
that their integral on the unit interval vanishes:

 

Z 1

0
P�u��du � 0: (43)

We have assumed a minimal factorization scheme in
Eq. (39), in which only terms containing plus dis-
tributions are included in the form factor. The re-
summation of the logarithmically-enhanced terms
in � to all orders in perturbation theory will be
discussed in the next section;

(iii) d�x; u; w;�� is a short-distance, process-dependent,
remainder function, not containing large loga-
rithms. Formally, it can have at most an integrable
singularity for u! �0, i.e. we require that:

 lim
u!�0

Z u

0
du0d�x;w; u0;�� � 0: (44)

This term is added to C � � in order to correctly
describe the region u	O�1� and to reproduce the
total rate.
It depends on all the kinematical variables x, w and
u and the explicit expression will be given later.

Equation (33) is a generalization of the threshold resum-
mation formula for the radiative decay in (5) [3,10]:

 

1

�R

d�R
dts
� CR���wmb����ts;��wmb�� � dR�ts;��wmb��;

(45)

where7

 ts �
m2
Xs

m2
b

: (46)

6Note that a similar variable simplifies two-loop computations
with heavy quarks [9].

7The relation with the photon energy x� � 2E�=mb is ts �
1� x�.
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In this simpler case, the coefficient function CR��� does
not depend on any kinematical variable but only on the
QCD coupling � and has an expansion of the form8

 CR��� � 1� �C�1�R � �
2C�2�R �O��

3�; (47)

where C�i�R are numerical coefficients. Basically, going
from the 2-body decay (5) to the 3-body decay (7), the
coefficient function acquires a dependence on the addi-
tional kinematical variables, namely, two energies. The
remainder function in Eq. (45) depends on the (unique)
variable ts and has an expansion of the form

 dR�ts;�� � �d�1�R �ts� � �
2d�2�R �ts� �O��

3�: (48)

The main point is that the QCD form factor � in the same
in both distributions (33) and (45), explicitly showing
universality of long-distance effects in the two different
decays. By universality we mean that we have the same
function, evaluated at the argument u in the semileptonic
case and at ts in the radiative decay. This property is not
explicit in the original formulation [11], in which the form
factors differ in subleading order (see next section).

Since, as shown in the introduction, w	 1 in the radia-
tive decay, we can make everywhere in Eq. (45) the re-
placement

 ��wmb� ! ��mb� �radiative case only�; (49)

to obtain:

 

1

�R

d�R
dts
� CR���mb����ts;��mb�� � dR�ts;��mb��:

(50)

The distribution contains now a constant coupling, inde-
pendent on the kinematics ��mb� ’ 0:22. The replacement
(49) cannot be done in the semileptonic case.

In [3] the triple-differential distribution was originally
given in terms of the variable y instead of u, with the latter
u � 1� � being introduced in [10]. The variables u and y
coincide in the threshold region in leading twist, i.e. at
leading order in u in the expansion for u! 0, as y � u�
O�u2�. Going from the variable y to the variable u only
modifies the remainder function. The advantages of u over

y are both technical and physical:
(i) u has, unlike y, unitary range;
(ii) when we impose the kinematical relation between

hadronic energy EXs and hadronic mass mXs of the
radiative decay (5), u exactly equals ts:

 ujEXs�mb=2�1�m2
Xs
=m2

b�
� ts: (51)

This property suggests that some higher-twist ef-
fects may cancel in taking proper ratios of radiative
and semileptonic spectra.

Let us now give the explicit expression of the coefficient
function in the semileptonic case:

 

C� �x;w;�� � C�0�� �x;w� � �C�1�� �x;w� � �2C�2�� �x;w�

�O��3�; (52)

where

 C�0�� �x;w� � 12�w� �x��1� �x� w�; (53)

 

C�1�� �x;w� � 12
CF


�w� �x�

�
�1� �x� w�




�
Li2�w� � logw log�1� w� �

3

2
logw

�
w logw

2�1� w�
�

35

8

�
�

�x logw
2�1� w�

�
(54)

with �x � 1� x.9 Note that the coefficient function con-
tains the overall factor w� �x � �x�, which vanishes line-
arly at the end point of the neutrino spectrum. We have
defined �x� � 1� x� and x� � 2E�=mb.

Unlike the coefficient function, the remainder function
d�x; u; w;�� has an expansion starting at O���:

 d�x;w; u;�� � �d�1��x; w; u� � �2d�2��x;w; u� �O��3�:

(55)

Omitting the overall factor CF=
, we obtain10:

9To avoid spurious imaginary parts for w> 1 one can use the
relation Li2�w� � �Li2�1� w� � logw log�1� w� � 
2=6.

10The O��� function is obtained from that one given in [3]
d�1�old�x;w; y� in terms of the variables z � 1� y and � � 1� 4y,
by using a relation extending eq. (23) of [10]:

 d�1��x; w; u� � d�1�old�x;w; y�u��
dy
du
�u� � C�0��x;w�

CF






�
logu� 7=4

u
�

logy�u� � 7=4

y�u�
dy
du
�u�

�
: (56)

This function can also be obtained with a direct matching with
the O��� triple-differential distribution computed in [8] after a
change of variable (see the end of this section for a discussion
about matching).

8We perform expansions in powers of �, while the traditional
expansion is in powers of �=�2
�.
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d�1�� �x;w; u� �
�3w4�24� 3w� 8�x�

4�1� u�5
�

9w4�24� 3w� 8�x�

8�1� u�4
�

9��12� w���2� w�2�w� 2�x�2

16�1� u�3

�
9��12� w���2� w�2�w� 2�x�2

32�1� u�2
�

3w2�32� 47w� 8w2 � 16�x� 20w �x� w2 �x� 8�x2 � 3w �x2�

8�1� u�2

�
3w2��64� 94w� 40w2 � 3w3 � 32�x� 40w �x� 10w2 �x� 16�x2 � 6w �x2�

8�1� u�3

�
3

64�1� u�
�640w� 368w2 � 200w3 � 16w4 � 3w5 � 384�x� 320w �x� 528w2 �x� 112w3 �x� 16w4 �x

� 256 �x2 � 48w �x2 � 224w2 �x2 � 24w3 �x2� �
3

64�1� u�
��256w� 528w2 � 200w3 � 16w4 � 3w5

� 512 �x� 1472w �x� 528w2 �x� 112w3 �x� 16w4 �x� 640�x2 � 48w �x2 � 224w2 �x2 � 24w3 �x2�

�
9w5 logu

4�1� u�6
�

9w5 logu

2�1� u�5
�

9��12� w���2� w�2�w� 2�x�2 logu

16�1� u�4

�
9��12� w���2� w�2�w� 2�x�2 logu

16�1� u�3
�

3w3��10� 16w� w2 � 8�x� 2w �x� 2 �x2� logu

8�1� u�3

�
3w3��10� 16w� 7w2 � 8�x� 2w �x� 2�x2� logu

8�1� u�4
�

3 logu

64�1� u�2
w��144w� 208w2 � 16w3 � w4

� 64 �x� 80w �x� 16w2 �x� 8w3 �x� 48�x2 � 96w �x2 � 16w2 �x2�

�
3 logu

64�1� u�2
��256w� 624w2 � 304w3 � 16w4 � w5 � 512 �x� 1856w �x� 944w2 �x� 16w3 �x

� 8w4 �x� 1024�x2 � 464w �x2 � 96w2 �x2 � 16w3 �x2�: (57)

The remainder function is a combination of rational func-
tions of u multiplied in some cases by logu, with coeffi-
cients given by polynomials in w and �x.

The main point about the semileptonic decay (7) is that it
has—unlike the radiative decay (5)—q2 � 0 and conse-
quently the form factor depends not only on u but also on
the hadronic energy w through the running coupling:

 � � ��u;��wmb��: (58)

The form factor is therefore a function of two variables.
We work in next-to-leading order (NLO), in which only

the O��� corrections to the coefficient function and re-
mainder function are retained (see next section). Since the
difference between ��wmb� and ��mb� is O��2�, we can
set w � 1 in the argument of the coupling entering the
coefficient function and the remainder function. We then
obtain the simpler expression:

 

1

�

d3�

dxdudw
� C�x;w;��mb����u;��wmb��

� d�x; u; w;��mb���NLO�: (59)

Note that we cannot set w � 1 in the coupling entering the
form factor, because in the latter case � is multiplied by
large logarithms, which ‘‘amplify’’ O��2� differences in
the couplings (see next section).

Let us make a few remarks about the final result of this
section, Eq. (59):

(i) It describes semi-inclusive decays, in which the
internal structure of the hadronic final states is not
observed, but only the total mass and energy are
measured. Less inclusive quantities, such as for in-
stance the energy distribution of the final up quark
(i.e. the fragmentation function of the up quark),
cannot be computed in this framework;

(ii) It constitutes an improvement of the fixed-order
O��� result in all the cases in which there are large
threshold logarithms. In all the other cases, where
there are no threshold logarithms, such as for ex-
ample the dilepton mass distribution [12], there is
not any advantage of the resummed formula over
the fixed-order one.

In the next sections we integrate the resummed triple-
differential distribution to obtain double and single (re-
summed) spectra. There are two methods to accomplish
this task which are completely equivalent:

(1) The first method involves the direct integration of
the complete triple-differential distribution.
Schematically:

 �spectrum� �
Z
C � ��

Z
d: (60)

Large logarithms come only from the first term on
the right-hand side of (60), while nonlogarithmic,
‘‘small’’ terms come both from the first and the
second term. To obtain a factorized form for the
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spectrum analogous to the one for the triple-
distribution, in which the remainder function col-
lects all the small terms, one rearranges the right-
hand side of (60): the small terms coming from the
integration of C � � are put in the remainder
function;

(2) In the second method, one integrates the block C � �
only and drops the small terms coming from the
integration. The remainder function is obtained by
expanding the resummed expression in powers of �
and comparing with the fixed-order spectrum.

III. THRESHOLD RESUMMATION

It is convenient to define the partially-integrated or
cumulative form factor ��u; ��

 ��u;�� �
Z u

0
du0��u0;��: (61)

Performing the integrations, one obtains for the O��� form
factor

 ��u;�� � 1�
CF�
2


L2 �
7CF�

4

L�O��2�; (62)

where

 L � log
1

u
: (63)

� contains a double logarithm coming from the overlap of
the soft and the collinear region and a single logarithm of
soft or collinear origin. The normalization condition reads

 ��1;�� �
Z 1

0
du��u;�� � 1: (64)

As already noted, we have assumed a minimal factoriza-
tion scheme, in which only logarithms and not constants or
other functions are contained in the form factor. The ex-
pression of the partially-integrated form factor � is tech-
nically simpler than the one for the differential form factor
�, as it involves ordinary functions instead of generalized
ones. Furthermore, in experiments one always measures
some integral of � around a central u value because of the
binning.

In the limit u! 0�, no final states are included in the
distribution and therefore one expects, on physical
grounds, that

 lim
u!0�

��u;�� � 0: (65)

The O��� expression (62) does not have this limit and it is
actually divergent to �1—a completely unphysical re-
sult. In general, a truncated expansion in powers of � is
divergent for u! 0�, because the coefficients diverge in
this limit. Therefore, one has to resum the infrared loga-
rithms, i.e. the terms of the form �nLk, to all orders in
perturbation theory. In higher orders, � contains at most
two logarithms for each power of �, one of soft origin and

another one of collinear origin. Its general expression is
then

 ��L;�� � 1�
X1
n�1

X2n
k�1

�nk�
nLk; (66)

where �nk are numerical coefficients. At present, a com-
plete resummation of all the logarithmically-enhanced
terms on the right-hand side of Eq. (66) is not feasible in
QCD: one has to resort to approximate schemes. The most
crude approximation consists of picking up the most sin-
gular term for u! 0� for each power of �, i.e. all the
terms of the form

 �nL2n�double logarithmic approximation�: (67)

In this approximation, we can neglect running coupling
effects and effects related to the kinematical constraints:
higher orders simply exponentiate the O��� double loga-
rithm and one obtains

 ��u;�� � e�CF�=�2
�L
2
�double log. approx.�: (68)

Let us note that the resummed expression (68), unlike the
fixed-order one (62), does satisfy the condition (65). The
exponent in the resummed form factor involves a single
term, �CF�=�2
�L2, and has therefore a simpler form
than the form factor itself. This remains true when more
accurate resummation schemes are constructed, so it is
convenient to define G as

 � � eG: (69)

It can be shown that the expansion for the function G is of
the form [13]

 G�L;�� �
X1
n�1

Xn�1

k�1

Gnk�nLk; (70)

where Gnk are numerical coefficients. Let us note that the
sum over k extends up to n� 1 in (70), while it extends up
to 2n in the form factor in Eq. (66). This property is a
generalization of the simple exponentiation of the O���
logarithms which holds in QED and is called generalized
exponentiation. In general, this property holds for quanti-
ties analogous to the semi-inclusive form factors, in which
the gluon radiation is not directly observed. One sums
therefore overall possible final states coming from the
evolution of the emitted gluons (inclusive gluon decay
quantities). The property expressed by Eq. (70) does not
hold for quantities in which gluon radiation is observed
directly, as, for example, in parton multiplicities, where
different evolutions of gluon jets give rise to different
multiplicities.

A. N-space

A systematic resummation is consistently done in
N-moment space or Mellin space, in which kinematical
constraints are factorized in the soft limit and are easily
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integrated over [14]. One considers the Mellin transform of
the form factor ��u;��

 �N��� �
Z 1

0
du�1� u�N�1��u;��: (71)

The threshold region is studied in moment space by taking
the limit N ! 1, because for large N the integral above
takes contributions mainly from the region u� 1. For
example, the Mellin transform of the spectrum in
Eq. (50) is of the form

 

Z 1

0
�1� ts�N�1 1

�R

d�R
dts

dts � CR����N��� � dR;N���;

(72)

where

 dR;N��� ! 0 for N ! 1: (73)

The total rate in Mellin space is obtained by taking N � 1.
It can be shown [1,15,16] that the form factor inN-space

has the following exponential structure:

 �N��� � eGN���; (74)

where
 

GN��� �
Z 1

0
dz
zN�1 � 1

1� z

�Z Q2�1�z�

Q2�1�z�2

dk2
t

k2
t
A���k2

t ��

� B���Q2�1� z��� �D���Q2�1� z�2��
�
: (75)

Let us note that a prescription has to be assigned to this
formula since it involves integrations over the Landau pole
[17]. The functions entering the resummation formula have
a standard fixed-order expansion, with numerical coeffi-
cients

 A��� �
X1
n�1

An�n � A1�� A2�2 � A3�3 � � � � (76)

 B��� �
X1
n�1

Bn�
n � B1�� B2�

2 � B3�
3 � � � � (77)

 D��� �
X1
n�1

Dn�
n � D1��D2�

2 �D3�
3 � � � � (78)

The known values for the resummation constants read

 A1 �
CF



; (79)

 A2 �
CF

2

�
CA

�
67

36
�
z�2�

2

�
�

5

18
nf

�
; (80)

 

A3 �
CF

3

�
C2
A

�
245

96
�

11

24
z�3� �

67

36
z�2� �

11

8
z�4�

�

� CAnf

�
209

432
�

7

12
z�3� �

5

18
z�2�

�

� CFnf

�
55

96
�
z�3�

2

�
�
n2
f

108

�
; (81)

 B1 � �
3

4

CF



; (82)

 

B2 �
CF

2

�
CA

�
�

3155

864
�

11

12
z�2� �

5

2
z�3�

�

� CF

�
3

32
�

3

2
z�3� �

3

4
z�2�

�
� nf

�
247

432
�
z�2�

6

��
; (83)

 D1 � �
CF



; (84)

 D2 �
CF

2

�
CA

�
55

108
�

9

4
z�3� �

z�2�
2

�
�
nf
54

�
; (85)

where CA � Nc � 3 is the Casimir of the adjoint repre-
sentation. The coefficients A1, B1 and D1 are
renormalization-scheme independent, as they can be ob-
tained from tree-level amplitudes with one-gluon emission
(see later). The higher-order coefficients are instead
renormalization-scheme dependent and are given in the
MS scheme for the coupling constant.11

To this approximation, the first three orders of the
-function are also needed [19,20]

 0 �
1

4


�
11

3
CA �

2

3
nf

�
; (86)

 1 �
1

24
2 �17C2
A � �5CA � 3CF�nf�; (87)

 

2 �
1

64
3

�
2857

54
C3
A �

�
1415

54
C2
A �

205

18
CACF � C

2
F

�
nf

�

�
79

54
CA �

11

9
CF

�
n2
f

�
: (88)

As is well-known, 0 and 1 are renormalization-scheme
independent, while 2 is not and has been given in the MS
scheme. We define the -function with an overall minus
sign:

 

d�

d log�2 � ��� � �0�
2 � 1�

3 � 2�
4 � � � � :

(89)

The running coupling reads:

11A discussion about the scheme dependence of the higher-
order coefficients A2, B2, etc. on the coupling constant can be
found in [18].
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���� �
1

0 log�2=�2 �
1

3
0

log�log�2=�2�

log2�2=�2

�
2

1

5
0

log2�log�2=�2� � log�log�2=�2� � 1

log3�2=�2

�
2

4
0

1

log3�2=�2 : (90)

The functions A���, B��� and D��� have the following
physical interpretation (see for example [21,22]):

(i) The function A��� involves a double integration over
the transverse momentum kt and the energy ! of the
emitted gluon and represents emissions at small
angle and at small energy from the light quark. The
leading term A1 is the coefficient of that piece of the
matrix element squared for one real gluon emission,
which is singular in the small angle and small energy
limit:

 A1�
d!
!

d�2

�2 � A1�
d!
!

dk2
t

k2
t
; (91)

where kt ’ !� is the transverse momentum of the
gluon. In (91) we have given the representation of the
integral both in the angle � and in the transverse
momentum kt. The subleading coefficients A2, A3,
etc. represent corrections to the basic double-
logarithmic emission. The function A��� ‘‘counts’’
the number of light quark jets in different processes,
i.e. we can write

 A�P���� � nqA���; (92)

where nq is the number of primary light quarks in the
process P. For example, in e�e� annihilation into
hadrons nq � 2, while in the heavy-flavor decays (2)
nq � 1. Since soft gluons only couple to the four-
momentum of their emitters and not to their spin, the
function Ag��� for gluon jets is obtained from the
quark one A��� simply taking into account the
change in the color charge, i.e. multiplying by
CA=CF [23];

(ii) the function B��� represents emissions at small
angle with a large energy from the light quark. B1

is the coefficient of that piece of the matrix element
squared which is singular in the small angle limit:

 B1�d!
d�2

�2 � B1�d!
dk2

t

k2
t
: (93)

The nonlogarithmic integration over the gluon en-
ergy! has been done and does not appear explicitly
in Eq. (75); the integration over the angle � or the
transverse momentum kt is rewritten as an integral
over z. The function B��� counts the number of
final-quark jets, i.e.

 B�P���� � nlB���; (94)

where nl is the number of primary final quarks in the

process P. For example in e�e� annihilation into
hadrons nl � 2, while in DIS or in the heavy-flavor
decays (2) nl � 1. Since hard collinear emissions
are sensitive to the spin of the emitting particles, the
gluon function Bg��� is not simply related to the
quark one B��� [23];

(iii) the function D��� represents emissions at large
angle and small energy from the heavy quark. D1

is the coefficient of that piece of the matrix element
squared which is singular in the small energy limit:

 D1�
d!
!
d�2: (95)

The nonlogarithmic integration over the angle � or
the transverse momentum kt has been done and
does not appear explicitly in Eq. (75); the integra-
tion over the energy ! is rewritten as an integral
over z. D1 � 0 in all the processes involving light
partons only, as for instance DIS, Drell-Yan (DY)
or e�e� annihilation into hadrons, while it is not
zero in all the processes containing at least one
heavy quark, such as, for example, the heavy-flavor
decays (2). Note that the effective coupling appear-
ing in theD terms is ��Q2�1� z�2� and is therefore
substantially larger for 1� z� 1 than the cou-
pling entering the hard collinear terms, namely
��Q2�1� z��.

Equation (75) is therefore a generalization of the O���
result, possessing a double logarithm coming from the
overlap of the soft and the collinear region and a single
logarithm of soft or collinear origin (see Eqs. (91), (93),
and (95)).12 The functions A��� and B��� are believed to
by universal, i.e. process-independent to any order in per-
turbation theory, as they represent the development of a
parton into a jet, i.e. one-particle properties. The function
D��� on the contrary is process-dependent, as it describes
soft emission at large angle, with interference contributions
from all the hard partons in the process, i.e. it describes
global properties of the hadronic final states. Let us observe
that A2 and D2, unlike B2, do not have a C2

F contribution.
That is a consequence of the eikonal identity, which holds
in the soft limit [2]. According to this identity, the Abelian
contributions simply exponentiate the lowest-order
O��CF� term, just like in QED. That means that there
are no higher-order terms in the exponent GN . Because
of similar reasonings, A3 does not have a C3

F contribution.
Despite its supposed asymptotic nature, the numerical

values of the coefficients show a rather good convergence
of the perturbative series. Note that all the double-
logarithmic coefficients Ai are positive, implying an in-
creasing suppression with the order of the expansion (up to
the third one) of the rate in the threshold region. On the
contrary, the single-logarithmic coefficients Bi and Di—

12Let us remember however that only two of the three functions
appearing in Eq. (75) are independent [16].
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with the exception of B2 —are all negative and therefore
tend to enhance the rate in the threshold region [24]. We
have

 A1 � �0:424413; (96)

 A2 � �0:420 947� 0:037 526 4nf � 0:308 367; (97)

 

A3 � �0:592 067� 0:092 313 7nf � 0:000 398 167n2
f

� 0:311 542; (98)

 B1 � �0:318 310; (99)

 B2 � �0:229 655� 0:040 20nf � 0:350 269; (100)

 D1 � �0:424 413; (101)

 D2 � �0:556 416� 0:002 502nf � �0:548 911: (102)

With our definition, the -function coefficients are, as
well-known, all positive.

 0 � �0:875 35� 0:053 05nf � �0:716 20; (103)

 1 � �0:645 92� 0:080 21nf � �0:405 29; (104)

 2 � �0:719 86� 0:140 904nf � 0:003 032n2
f

� �0:324 436: (105)

In the last member we have assumed 3 active flavors (nf �
3).

Let us now discuss the computation of the coefficients
entering the resummation formula. The occurrence of a
Sudakov form factor in semileptonic B decays was ac-
knowledged originally in [25], where a simple exponentia-
tion involving A1 and B1 �D1 was performed. The
coefficient A2 was computed for the first time, as far as
we know, in [26]. It was denoted A1K since it was consid-
ered a kind of renormalization of the lowest-order contri-
bution

 A1�! A1��1� K��: (106)

The coefficient A2 was obtained from the soft-singular part
of the q! q two-loop splitting function [27], that is as the
coefficient of the 1=�1� z� term.13 A2 was subsequently
recomputed in [29] in the framework of Wilson line theory,
where the function A��� has a geometrical meaning: it is

the anomalous dimension of a cusp operator, representing
the radiation emitted because of a sudden change of ve-
locity of a heavy quark,

 �cusp��� �
X1
n�1

��n�cusp�n � ��1�cusp�� ��2�cusp�2 � � � � (107)

Indeed, it has been explicitly checked up to second order
that these two functions coincide

 A��� � �cusp���: (108)

Let us note that:
(i) the theory of Wilson lines and Wilson loops;
(ii) the eikonal or soft approximation in perturbative

QCD;
(iii) the heavy quark effective theory (HQET) and the

large energy effective theory (LEET),
all involve basically the same structure, i.e. the same
propagators and vertices and the same amplitudes. Since
the same structure has been studied in different frame-
works, there is multiple notation and terminology for the
same objects. Let us stress however that in ordinary QCD
the function A��� is not an anomalous dimension, since it
is not obtained from ultraviolet 1=� poles in renormaliza-
tion constants but from infrared poles or from finite parts of
scattering amplitudes. A��� becomes an anomalous dimen-
sion in the effective theory because the latter has additional
ultraviolet divergencies with respect to QCD. While in
QCD one has to subtract only ultraviolet divergencies
related to coupling constant renormalization, in the effec-
tive theory one has also to subtract additional ultraviolet
divergencies related to the cusp operators. A scheme de-
pendence is therefore introduced in the effective theory,
which is not present in full QCD. It seems to us therefore
that the equality (108) is not guaranteed a priori in higher
orders and may require a specific scheme for the subtrac-
tions in the effective theory. At present, A3 has only been
derived in full QCD and not in the effective theory.

The coefficient B2 has been computed by means of the
second order correction to the inclusive DIS cross section,
which contains the combination B2 �DDIS

2 (the DIS ana-
logue of Eq. (137), see later) and by means of the third-
order correction, which contains the different combination
B2 � 2DDIS

2 (the DIS analogue of Eq. (140), see later). The
knowledge of the fermionic contribution to the O��3� DIS
cross section was sufficient for a complete determination
of B2 [30], with later checks offered by the complete
computation [28,31].

An incorrect value for the coefficient D2 for heavy favor
decays has been obtained in the original computation in
[32], where the technique to compute real and virtual
diagrams in the effective-theory in configuration space
has also been developed. In [33] the coefficient of the
single logarithm in the radiative decay (5) to order �2

has been presented, from which the correct value of D2

can be extracted (let us note however that numerically the

13This is exactly the same procedure which has been followed
to derive the third-order coefficient A3 from the three-loop
splitting function [28].
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two values are not very different). A second order compu-
tation of heavy-flavor fragmentation in ordinary QCD was
presented in [34], which allows the determination of the
sum B2 �D

frag
2 (the analogue of Eq. (137), see later).

Using an identity relating the coefficient for heavy-flavor
fragmentation with that one for heavy-flavor decays, and
subtracting the known value for the universal coefficient
B2, the correct value for D2 was explicitly derived in [35]
(see also [36]). Still in [35], by repeating the Wilson line
computation of [32], errors were found and the same value
of D2 extracted from heavy-flavor fragmentation was re-
obtained. Recently, the second order contribution of the
chromomagnetic operatorO7 to the photon spectrum in the
radiative decay (5) has been calculated [37], confirming
these results (see also [38]).

According to the previous remarks concerning the rela-
tion between A��� and �cusp���, we believe it is a nontrivial
fact that the same value of D2 is obtained with two com-
pletely different methods:

(i) a direct computation in the effective theory, which
describes the soft region only;

(ii) an extraction from an ordinary QCD computation,
which gives the sum of the soft and the collinear
contributions B2 �D2, by subtracting the collinear
contribution B2 obtained from second order and
third-order DIS computations.
The following expansion holds true for the expo-
nent:

 GN��� �
X1
n�1

Xn�1

k�1

Gnk�
nlk �O

�
1

N

�
; (109)

where

 l � logN: (110)

The expansion of the logarithm of the form factor
has a similar structure in physical space and in
N-space; roughly speaking, going to N-space,
log1=u! logN.

As already discussed, we are interested in the large-N
limit; the O�1=N� terms can be neglected in our leading-
twist analysis. A resummation of all the logarithmically-
enhanced terms in (109) is at present unfeasible in QCD
even in N-space, so one has to rely on approximate
schemes. Let us discuss the fixed-logarithmic accuracy
scheme:

(i) Leading order (LO). One keeps in the exponent
GN��� only the leading power of the logarithm for
each power of �, i.e. k � n� 1:

 GLO
N �

X1
n�1

Gnn�1�
nln�1

� G12�l2 �G23�2l3 �O��3�: (111)

The coefficient function is kept in lowest order, i.e.
CLO � 1 and the remainder function is completely

neglected, i.e. dLO � 0;
(ii) Next-to-leading order (NLO). One keeps in GN���

also the terms with n � k, i.e.:
 

GNLO
N �

X1
n�1

�Gnn�1�
nln�1 �Gnn�

nln�

� G12�l2 �G11�l�G23�2l3

�G22�2l2 �O��3�: (112)

To O��� one retains both the double and the single
logarithm. In general for each order in � one keeps
the principal two logarithms. One also keeps the
O��� terms both in the coefficient function and in
the remainder function:

 CNLO � 1� �C�1�; dNLO � �d�1�: (113)

The one-loop coefficient function is needed because
of the factorized form of the QCD form factor. One
has indeed a resummed expression of the form

 �1� �C�1��eG12�l2���� (114)

By expanding the exponent in powers of �, a term
coupling the coefficient function and the double
logarithm is obtained

 �2C�1�G12l2; (115)

which must be included in the NLO approximation;
(iii) Next-to-next-to-leading order (NNLO). One keeps

in GN also the terms with n � k� 1, i.e.:
 

GNNLO
N �

X1
n�1

�Gnn�1�
nln�1 �Gnn�

nln

�Gnn�1�nln�1�

� G12�l2 �G11�l�G23�2l3 �G22�2l2

�G21�2l�G34�3l4 �G33�3l3

�G32�3l2 �O��4�: (116)

To O��2�, all the infrared logarithms are included.
In general, for each order in �, one keeps the
principal three logarithms. The first omitted term
is the single logarithm to order �3. One has also to
keep the O��2� terms both in the coefficient func-
tion and in the remainder function

 CNNLO � 1� �C�1� � �2C�2�; (117)

 dNNLO � �d�1� � �2d�2�: (118)

The classes of logarithms discussed above can be
explicitly resummed by means of a function series
expansion of GN��� [1]
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GN��� � lg1��� �
X1
n�0

�ng2�n���

� lg1��� � g2��� � �g3��� � �2g4���

� � � � ; (119)

where

 � � 0�l: (120)

The gi��� are homogeneous functions of � and have a
series expansion around � � 0:

 gi��� �
X1
n�1

gin�n: (121)

In LO one needs only the function g1, in NLO one need
also g2, in NNLO also g3 is needed and so on. The explicit
expressions read
 

g1��� � �
A1

20�
��1� 2�� log�1� 2�� � 2�1� ��


 log�1� ���; (122)

 

g2��� �
D1

20
log�1� 2�� �

B1

0
log�1� �� �

A2

22
0

�log�1� 2�� � 2 log�1� ���

�
A11

43
0

�2 log�1� 2�� � log2�1� 2�� � 4 log�1� �� � 2log2�1� ��� �
A1�E
0
�log�1� 2�� � log�1� ���

�
A1

20
�log�1� 2�� � 2 log�1� ��� log

�2

Q2 : (123)

The function g1��� in [3] is in agreement with that one obtained originally in [11]. g2��� in [3] differs instead from the
corresponding gsl2 ��� obtained in [11] and it is equal to the corresponding function entering the B! Xs� spectrum; the
formalism we use makes explicit the universality of soft-gluon dynamics in semileptonic and radiative decays. The NNLO
function g3 has the rather lengthy expression:
 

g3��� � �
D2�

0�1� 2��
�

2D1�E�
1� 2�

�
D11

22
0

�
2�

1� 2�
�

log�1� 2��
1� 2�

�
�

B2�
0�1� ��

�
B1�E�
1� �

�
B1

2
0

1

�
�

1� �
�

log�1� ��
1� �

�
�

A3

22
0

�
�

1� 2�
�

�
1� �

�
�
A2�E
0

�
1

1� 2�
�

1

1� �

�

�
A21

23
0

�
3�

1� 2�
�

3�
1� �

�
log�1� 2��

1� 2�
�

2 log�1� ��
1� �

�
�
A1�2

E

2

�
4�

1� 2�
�

�
1� �

�

�
A1


2

12

�
4�

1� 2�
�

�
1� �

�
�
A12

43
0

�
2�

1� 2�
�

2�
1� �

� 2 log�1� 2�� � 4 log�1� ��
�

�
A11�E
2

0

�
1

1� 2�
�

1

1� �
�

log�1� 2��
1� 2�

�
log�1� ��

1� �

�
�
A12

1

24
0

�
�

1� 2�
�

�
1� �

� log�1� 2��

�
log�1� 2��

1� 2�
�

log�1� 2��2

2�1� 2��
� 2 log�1� �� �

2 log�1� ��
1� �

�
log�1� ��2

1� �

�
�

D1�
0�1� 2��

log
�2

Q2

�
B1�

0�1� ��
log
�2

Q2 �
A2

2
0

�
�

1� 2�
�

�
1� �

�
log
�2

Q2 �
A1�E
0

�
2�

1� 2�
�

�
1� �

�
log
�2

Q2

�
A1

20

�
2�2

1� 2�
�

�2

1� �

�
log2 �

2

Q2 �
A11

3
0

�
�

1� 2�
�

�
1� �

�
log�1� 2��

2
�
� log�1� 2��

1� 2�
� log�1� ��

�
� log�1� ��

1� �

�
log
�2

Q2 : (124)

The function g3��� was originally computed in [39], where
the first NNLO resummation in heavy-flavor decays was
presented. At the time of that work, not all the fixed-order
computations were available from which to extract the
coefficients entering the resummation formula, namely
A3, B2 and D2. A numerical estimate of the three-loop

coefficient A3 was used, which was obtained in [40] by
fitting the known moments of the 3-loop splitting kernels
and which has been later confirmed by the exact analytic
evaluation [28]. As far as B2 is concerned, an approxima-
tion based on the q! q splitting function at two loops has
been assumed, which was shown to be rather poor by the
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subsequent exact computation in [30]. The coefficient D2

was taken from its original computation in [32]. There is a
misprint in g3��� in [39] in two terms proportional to A12:
log�1� �� � 1=2 log�1� 2�� has to be multiplied by a
factor 2, as found indeed in the recent recomputation of
the �-independent terms [38]. With the misprint, the terms
proportional to A12 would indeed appear at �3, while
they have to appear only at order �4, as shown correctly in
the � expansion of the g3 in eq. (42) of [39].

Let us note that the soft terms, i.e. the terms proportional
to the coefficients Ai andDi, have the singularity closest to
the origin in � � 1=2 while the collinear terms, propor-
tional to Bi, have only a singularity in � � 1.

B. Inverse transform to physical space

The original form factor in u space is recovered by an
inverse Mellin transform:

 ��u;�� �
Z c�i1

c�i1

dN
2
i
�1� u��N�N���; (125)

where c is a real constant chosen in such a way that all the
singularities of �N lie to the left of the integration contour.
The inverse transform can be done to any given logarithmic
accuracy in closed analytic form, where now the logarith-
mic accuracy is defined as before but in terms of powers of
� and L � log1=u instead of l � logN. To NNLO accu-
racy, one can write [39]14

 ��u;�� �
eLg1����g2���

��1� h1����
	�; (126)

where

 � � 0�L (127)

and we have defined

 h1��� �
d
d�
��g1���� � g1��� � �g01���: (128)

	� is a NNLO correction factor which can be set equal to
one in NLO

 	�NLO � 1: (129)

Its NNLO expression reads

 	� � S=SjL!0; (130)

with
 

S � e�g3���f1� 0�g
0
2��� �1� h1����

� 1
20�h

0
1���f 

2�1� h1���� �  
0�1� h1����gg: (131)

In [39] inhomogeneous terms were included in 	�, which
have been subtracted here. ��x� is the Euler Gamma func-
tion and

  �x� �
d
dx

log��x� (132)

is the digamma function.
Expanding the right-hand side of Eq. up to third order,

one obtains the following relations:

 G12 � �
1
2A1; (133)

 G11 � ��B1 �D1�; (134)

 G23 � �
1
2A10; (135)

 G22 � �
1
2A2 �

1
20�B1 � 2D1� �

1
2A

2
1z�2�; (136)

 G21 � ��B2 �D2� � A1�B1 �D1�z�2� � A2
1z�3�; (137)

 G34 � �
7
12A1

2
0; (138)

 

G33 � �A20 �
1
2A11 �

1
3

2
0�B1 � 4D1�

� 3
2A

2
10z�2� �

1
3A

3
1z�3�; (139)

 

G32 � �
1

2
A3 � 0�B2 � 2D2� �

1

2
�B1 � 2D1�

� A1A2z�2� �
A10

2
�5B1 � 7D1�z�2�

�
A3

1

4
z�4� �

9A2
10z�3�

2
� A2

1�B1 �D1�z�3�; (140)

where z�a� �
P
1
n�1 1=na is Riemann Zeta function with

z�2� � 
2=6 � 1:644 93 � � � , z�3� � 1:20206 � � � and
z�4� � 
4=90 � 1:082 32 � � � . Note that the leading coef-
ficients G23 and G34 involve products of the one-loop
coefficients A1 and 0 only. The explicit expressions of
the Gij read

 G12 � �
CF
2


; (141)

 G11 �
7CF
4


; (142)

 G23 � �
CF
8
2

�
11CA

3
�

2nf
3

�
; (143)

 G22 �
CF
4
2

�
CA

�
95

72
� z�2�

�
�

13nf
36
� 2CFz�2�

�
; (144)

 

G21 �
CF
6
2

�
nf

�
�

85

24
� z�2�

�

� CA

�
905

48
�

17

2
z�2� �

3z�3�
2

�

� CF

�
9

16
� 6z�2� � 3z�3�

��
; (145)14A factor 1� u � 1 has been neglected in our leading-twist

accuracy.
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 G34 �
CF

48
3

�
�

847C2
A

36
�

77CAnf
9

�
7n2

f

9

�
; (146)

 

G33 �
CF
4
3

�
�
n2
f

108
� CAnf

�
20

27
�
z�2�

3

�

� C2
A

�
�

1261

432
�

11z�2�
6

�
�

11z�2�
2

CACF

� CFnf

�
1

4
� z�2�

�
�

4C2
Fz�3�
3

�
; (147)

 

G32 �
CF
4
3

�
n2
f

�
275

648
�
z�2�

9

�
� C2

F�7z�3� � z�4��

� CAnf

�
�

5399

1296
�

4z�2�
3
�
z�3�

6

�

� C2
A

�
21893

2592
�

119z�2�
36

�
77z�3�

12
�

11z�4�
4

�

� CFnf

�
19

48
�

71z�2�
36

� z�3�
�

� CACF

�
11

32
�

685z�2�
72

� 11z�3� � 5z�4�
��
: (148)

The numerical values of the coefficients show a good
convergence of the perturbative series also in configuration
space

 G12 � �0:212 207; (149)

 G11 � 0:742 723; (150)

 G23 � �0:185 756� 0:011 258nf � �0:151 982; (151)

 G22 � 0:152 206� 0:012 196nf � 0:115 618; (152)

 G21 � 0:628 757� 0:042 706 5nf � 0:500 638; (153)

 

G34 � �0:189 702� 0:022 994nf � 0:000 696 8n2
f

� �0:126 990; (154)

 

G33 � �0:349 055� 0:033 368nf � 0:000 099 5n2
f

� �0:249 846; (155)

 G32 � 0:961 17� 0:093 68nf � 0:002 597 4n2
f

� 0:703 506; (156)

where on the last member of the right-hand side we have
set nf � 3.

IV. DISTRIBUTION IN THE HADRONIC
VARIABLES

The distribution in the hadronic variables u and w is
obtained integrating the triple-differential distribution (59)
over the electron energy �x � 1� x. The integration range
is

 �x 1�w; u�  �x  �x2�w; u�; (157)

where

 �x 1�w; u� �
wu

1� u
and �x2�w; u� �

w
1� u

: (158)

Let us use the second method of integration of the triple-
differential distribution discussed at the end of Sec. II, i.e.
let us neglect at first the remainder function. Since the
QCD form factor ��u;��wmb�� does not depend on the
electron energy �x, the integration only involves the coeffi-
cient function

 

Z �x2

�x1

d �xC� �x;w;��: (159)

We eliminate small terms O�u� from the integral above by
integrating over the range which is the limit u! 0 of
(157)15

 �x 1�w; 0�  �x  �x2�w; 0�: (160)

In fact, these terms O�u�, when multiplied with the plus
distributions of u contained in the QCD form factor
��u;��, give at worse terms of the form logu, which
miss the 1=u enhancement and therefore are to be consid-
ered as small. Let us define therefore the coefficient func-
tion of the double hadronic distribution as

 CH�w;�� �
Z w

0
d �xC�w; �x1;��; (161)

having the usual � expansion

 CH�w;�� � C�0�H �w� � �C
�1�
H �w� � �

2C�2�H �w� �O��
3�:

(162)

One easily obtains
 

C�0�H �w� � 2w2�3� 2w�;

C�1�H �w� �
CF


w2

�
��9� 4w� logw� 2�3� 2w�




�
Li2�w� � logw log�1� w� �

35

8

��
: (163)

The first two orders of the coefficient function vanish as w2

for w! 0, implying a suppression of the states with a
small hadronic energy (i.e. with a small hard scale), as
anticipated in the introduction.

15The latter are actually the integration regions for e�e� !
q� �q� g with massless quarks.
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The resummed distribution in the hadronic variables u
and w then reads

 

1

�

d2�

dudw
� CH�w;��mb����u;��wmb��

� dH�u; w;��mb��; (164)

where the remainder function has an expansion analogous
to the one in the triple-differential distribution

 dH�u; w;�� � �d�1�H �u; w� � �
2d�2�H �u;w� �O��

3�:

(165)

Expanding to first order the above distribution and compar-
ing (matching) with the known O��� distribution, the
following remainder function is obtained—an overall fac-
tor CF=
 is omitted:

 

d�1�H �w; u� � �
4w6 logu

�1� u�7
�

4w2�3� 2w� logu
1� u

�
32w5 � 10w6 logu

�1� u�6
�

3w2�14� 6w� 5w2� � 2w3�3� 4w� logu

�1� u�2

�
20w3�2� w��1� 2w� � w4�9� 18w� 2w2� logu

�1� u�4
�

64w5 � 2w4�3� 6w� 4w2� logu

�1� u�5

�
4w3�10� 15w� 2w2� � w3�12� 13w� 6w2� logu

�1� u�3
: (166)

Equation (164) provides a complete NLO resummation of
the distribution in the two hadronic variables u andw, from
which the distribution in any other pair of hadronic varia-
bles can be obtained by a change of variables. One can
insert in Eq. (164) the NNLO form factor �, whose prop-
erties have been discussed in Sec. III, allowing an approxi-
mate NNLO resummation. In fact, for a complete NNLO
resummation, one also needs the second order corrections
to the coefficient function C�2�H �w� and the remainder func-
tion d�2�H �u;w�, which are unknown at present.

V. HADRON ENERGY SPECTRUM

The distribution in the total hadron energy w is obtained
by integrating the distribution in the hadronic variables
(164). The integration range in u is

 max�0; w� 1�  u  1: (167)

Since the coefficient functionCH�w;�� does not depend on
u, the integration only involves the QCD form factor and
the remainder function
 

1

�

d�

dw
� CH�w;��f1� ��w� 1���w� 1;��wmb��g

�
Z 1

max�0;w�1�
dwdH�u; w;��; (168)

where ��u;�� is the partially-integrated form factor de-
fined in Sec. III.

Because of the ��w� 1�multiplying ��w� 1;��, there
are large logarithms only for w> 1, as anticipated in the
qualitative discussion in the introduction. We may there-
fore consider the parts of the spectrum for w< 1 and
w> 1 as two different spectra, merging in the point w �
1. Let us consider the simpler case w< 1 first. Since, as
already noted, there are no large logarithms, no resumma-
tion is required and the O��� fixed-order result coincides
with the NLO one. There is no QCD form factor and

therefore there is no way to distinguish between the coef-
ficient function and the remainder function. The spectrum
for w< 1 can then be written as an ordinary � expansion

 

1

2�

d�

dw
� L�w;�� �w< 1�; (169)

where

 L�w;�� � L�0��w� � �L�1��w� � �2L�2��w� �O��3�:

(170)

The first two orders read [7,8]:

 L�0��w� � w2�3� 2w�; (171)

 

L�1��w� �
CF



�
�w2�3� 2w�

�
25

8
� Li2�1� w�

�

�
1

720
w2�4w4 � 42w3 � 585w2 � 3720w

� 4860� 1440w logw� 3240 logw�
�
: (172)

Let us now consider the more interesting case w> 1,
where resummation is effective and one has to keep the
resummed form of the distribution in (168). In a minimal
scheme we have to subtract small terms from the first term
on the right-hand side of Eq. (168), since the form factor
must contain large logarithms only. This is done setting
w � 1 in the argument of the coupling entering the form
factor � as well as in the coefficient function CH, obtaining
the simpler expression

 

1

�

d�

dw
� CH�1;��f1� ��w� 1;��mb��g � � � � ; (173)

where the dots denote terms not containing large logs of
w� 1. Let us prove the legitimacy of the transformation
from (168) to (173). As far as the argument of the coupling
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is concerned, we expand the QCD form factor � in powers
of ��wmb�. One obtains terms of the form
 

��wmb�log2�w� 1� � ��mb�log2�w� 1�

� 20��mb�
2 logwlog2�w� 1�

� 42
0��mb�

3log2wlog2�w� 1�

� � � � ; (174)

where on the right-hand side an expansion of ��wmb�
around the point w � 1 has been performed. All the terms
on the right-hand side except the first one vanish for w!
1�, therefore they are not large logarithms and can be
dropped. The only large logarithm is the first term on the
right-hand side, which is obtained by setting w � 1 in the
coupling in the original expression on the left-hand side All
this implies that the coupling can be evaluated in the
infrared-singular point w � 1. As far as the coefficient
function is concerned, one just notices that the neglected
terms,

 �CH�w;�� � CH�1;���f1� ��w� 1;��mb��g; (175)

are again vanishing for w! 1�, because CH�w;�� �
CH�1;�� � O�w� 1� and therefore can be neglected in
this limit.

In NLO one has also to add a remainder function to be
determined via a matching procedure. That, as already

discussed in other cases, is in order to take into account
also the region w� 1	O�1�. One then has the resummed
expression
 

1

2�

d�

dw
�CW���f1���w� 1;��mb��g�H�w;���w> 1�;

(176)

where we have defined

 CW��� �
1
2CH�1;�s�: (177)

The coefficient function and the remainder function have a
standard � expansion

 CW��� � 1� �C�1�W � �
2C�2�W �O��

3�; (178)

 H�w;�� � �H�1��w� � �2H�2��w� �O��3�: (179)

The first-order correction to the coefficient function reads

 C�1�W �
CF



�

2

6
�

35

8

�
� �1:15868: (180)

Note that C�1�W is negative and has a rather large size; for
��mb� � 0:22 it gives a negative correction of � �25%.
By using the matching procedure described at the end of
Sec. III, we obtain:

 

H�1��w� �
CF



�
�

1

2
�2w� 1��w� 1�2log2�w� 1� �

1

3
�w� 1��2w2 � w� 4� log�w� 1�

� w2�3� 2w�
�

2Li2�1� w� � 2 log�w� 1� logw�

2

6

�

�
1

720
�2� w��4w5 � 34w4 � 517w3 � 2946w2 � 3798w� 1248�

�
: (181)

The above function is positive in all the kinematical range
1<w< 2 and goes to zero for w! 2, as expected on the
basis of the vanishing of the phase space in this point.

Let us make a few remarks about Eq. (176). If we expand
the right-hand side of Eq. (176) in powers of�, we find that
C�1�W only appears in order �2 —this occurs because the
form factor multiplying the coefficient function is in this
case 1�� � O��� and not � � O�1�. At present, only a
full O��� computation is available, implying that C�1�W
cannot be determined by the matching: only the remainder
function can be fixed by this procedure. The value of C�1�W
came out ‘‘automatically’’ as a consequence of our resum-
mation formula (see Eq. (177)). There is however another
method to fix C�1�W : we require that the resummed spectrum
is continuous in w � 1. Since ��w� 1� ! 0 for w! 1�,
we obtain the equation

 1� �L�1��1� � 1� ��C�1�W �H
�1��1��; (182)

to be solved in C�1�W

 C�1�W � L�1��1� �H�1��1� (183)

and giving again the value (180). The condition of con-
tinuity of the resummed spectrum in w � 1 is very reason-
able from the physical viewpoint and it is remarkable that
the two methods give the same value for the coefficient
function.

Even though we are considering a differential spectrum,
its resummation involves, as we have explicitly seen, the
partially-integrated form factor. � usually enters event
fractions in expressions of the form

 R�y;�� � C�����y;�� �D�y;��; (184)

with a remainder function vanishing for y! 0, where y is a
general kinematical variable entering the large logarithms
log1=y. In the case of the hadron energy spectrum, its
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resummation is different from (184) because it involves the
combination 1� � instead of �: there is an additive
constant, namely, one, which makes the spectrum non
vanishing for w! 1�, as it should. It seem however
reasonable to impose the vanishing of the remainder func-
tion H�w;�� for w! 1� also in this case. The previous
factorization scheme does not satisfy this condition, be-
cause:

 H�1��1� �
CF



�
2587

720
�

2

6

�
: (185)

We can construct an improved scheme satisfying this con-
dition by introducing two coefficient functions instead of
one

 

1

2�

d�

dw
� CW1���f1� CW2�����w� 1;��mb��

� ~H�w;��g�improved scheme; w > 1�; (186)

where the new remainder function, vanishing in w � 1,
reads

 

~H�w;�� � H�w;�� �H�1;��: (187)

The coefficient functions have the usual fixed-order ex-
pansions

 CW1��� � 1� �C�1�W1 � �
2C�2�W1 �O��

3�; (188)

 CW2��� � 1� �C�1�W2 � �
2C�2�W2 �O��

3�: (189)

By imposing the continuity in w � 1 as in the previous
scheme, we obtain for the first coefficient function at first
order in �

 C�1�W1 � L�1��1� � �
CF



563

720
� �0:331 868: (190)

The second coefficient function is obtained by imposing
the usual matching with the first-order computation

 C�1�W2 � �H
�1��1� � �

CF



�
2587

720
�

2

6

�
� �0:826 808:

(191)

The improved resummed expression (186) is positive in all
the kinematical range 1<w< 2 and vanishes for w! 2.

We can compare the hadron energy spectrum for w> 1
given in Eq. (176) or in Eq. (186) with the hadron mass
distribution in the radiative decay (5) given in Eq. (50). The
hadron energy distribution contains �, i.e. just the integral

of the form factor � entering the radiative decay spectrum.
The hadron energy spectrum is therefore a very good
quantity on the theoretical side—it is exceptional in this
respect—being directly connected, via integration, to the
radiative decay. By that we mean that the connection
between the two spectra only involves short-distance co-
efficients. As show in [4], this is to be contrasted with the
case of other single-differential spectra.

A. Average energy

As discussed in the introduction, the infrared singularity
in w � 1 of the O��� spectrum is integrable, so one can
calculate directly the average hadronic energy as a trun-
cated expansion in �

 hwi �
7

10

�
1�

�CF



137

840

�
� 0:71: (192)

The O��� correction is very small, of the order of 1%, due
to a large cancellation between the contribution for w< 1,
which is negative, and the one for w> 1, which is positive.
Setting for instance mb � mB one obtains in leading order

 hEXi �
7

10

mB

2
� 1:843 GeV (193)

with a tiny first-order correction of �26 MeV. This quan-
tity can be directly compared with the experimental value.
In the radiative decay (5) there is a larger final hadronic
energy: in lowest order

 hEXiB!Xs� �
mB

2
� 2:634 GeV: (194)

The average hadronic energy is 	30% larger in the radia-
tive decay than in the semileptonic decay, in line with the
qualitative discussion about the differences of the two
decays given in the introduction.

B. Upper cut on hadron masses

In experimental analysis an upper cut on invariant
masses

 mX < �mX (195)

is imposed in order to kill the large background from
semileptonic b! c transitions. Let us define:

 k � 2
�mX

mb
: (196)

In practice, �mX � 1:6� 1:8 GeV, so we can assume k <
1. A leading order evaluation of the spectrum with the
above cut gives
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1

2�

d�

dw
�

8<
:w

2�3� 2w�f��k� w� � ��w� k���1�
���������������
1��k=w�2
p

1�
���������������
1��k=w�2
p ;��wmb�� � ��w� 1���w� 1;��mb��g w< wM

0 w> wM
(197)

where

 wM � 1�
k2

4
(198)

is the maximal hadronic energy above which the spectrum
vanishes; as expected on physical ground, cutting large
hadron masses also acts as an upper cut on hadron energies.
The spectrum is continuous in w � wM and it develops
large logarithms for k! 0. Let us observe that the argu-
ment of the first QCD form factor � has a similar form to
the variable u defined in Eq. (36). In fact,

 

�
k
w

�
2
�

�
�mX

EX

�
2

(199)

is the analogue of the variable 4ywith y defined in Eq. (37).

VI. DISTRIBUTION IN HADRON AND ELECTRON
ENERGIES

In this section we derive the distribution in the hadron
and electron energies w and �x by integrating the triple-
differential distribution (59) over u. In general, there are
two independent energies in the semileptonic decay (7).
That is because the hadronic final state Xu is basically a
pseudoparticle, i.e. a single entity possessing an energy EX
and a (variable) mass mX. We have therefore 3 particles/
pseudoparticles in the final state and 3 energies, related by
energy conservation:

 xe � x� � w � 2; (200)

where

 x� �
2E�
mb

; (201)

and we have written xe instead of x for aesthetic reasons.
Since the neutrino energy is not usually measured, let us
take as independent energies the electron and the hadron
energies. We have to integrate over u in the range

 max�0; w� 1�  u  min
�
w� x
x

;
x

w� x

�
: (202)

As in the previous section, let us use the second method of
integration, i.e. let us omit at first the remainder function.
Since the coefficient function C�x;w;�� does not depend
on u, the integration only involves the form factor �—a
complementary situation with respect to the one in the
previous section—and we obtain
 

1

�

d2�

dxdw
� C� �x;w;��mb��

�
��2�x� w��

�
w� x
x

;��wmb�

�

� ��w� 2�x��
�

�x
w� �x

;��wmb�

�

� ��w� 1���w� 1;��mb��

�
� � � � ; (203)

where the dots denote nonlogarithmic terms to be included
later. The decay (7) involves an hadronic subprocess with a
heavy quark decaying into a light quark evolving later into
a jet. Hadron dynamics is therefore symmetric under the
exchange of the electron and the neutrino momenta, since
it is ‘‘blind’’ toW decay. That is clearly seen by expressing
w through x� by means of Eq. (200)

 

1

�

d2�

dxedx�
� C�xe; x�;��mb��

�
��x� � xe��

�
1� x�
1� xe

;���2� xe � x��mb�

�
� ��xe � x���

�
1� xe
1� x�

;���2� xe � x��mb�

�

� ��1� xe � x����1� xe � x�;��mb��

�
� � � � : (204)

Soft-gluon dynamics—i.e. the expression above in curly
brackets—is symmetric under exchange of xe with x�. The
coefficient function C�xe; x�;��mb�� however is not sym-
metric under the exchange of the lepton energies because it
does depend on the whole process, involving the decay of
the W boson into the lepton pair, and not only on the
hadronic subprocess.

To proceed with resummation, however, let us go back to
the more familiar variable w, i.e. to Eq. (203). Large
logarithms can in principle be obtained by sending to
zero the argument of any of the QCD form factors �’s

entering (203), i.e. in the following three cases

 1:w� �x! 0; 2: �x! 0; 3:w! 1�: (205)

The coefficient function C� �x;w;��mb�� vanishes in the
first limit as O�w� �x�, implying that in this case there
are actually no large logarithms. This limit corresponds to
E� ! mb=2, a point where the tree-level spectrum van-
ishes suppressing soft-gluon effects. The only relevant
limits are therefore the second and the third ones. It is
therefore natural to write a factorization formula dropping
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the form factor not associated to large logarithms
 

1

�

d2�

dxdw
� C� �x;w;��mb��f�� �x=w;��wmb��

� ��w� 1���w� 1;��mb��g � � � � : (206)

We have taken the limit �x! 0 in the theta functions
containing �x in the argument.

Let us consider separately the casesw  1 andw> 1. In
the simpler case w  116 there is a single form factor and
one can write a factorized expression of the form
 

1

�

d2�

dxdw
� CL� �x;w;���� �x=w;��wmb�� � d<�w; �x;��

�w< 1�: (207)

We require that the remainder function vanishes for
�x! 0

 lim
�x!0
d<�w; �x;�� � 0: (208)

The coefficient function CL� �x;w;�� can be taken as

 C�0�L �w; �x� � 12�w� �x��1� �x� w�; (209)

 

C�1�L �w; �x� �
CF



12�w� �x��1� �x� w�




�
Li2�w� � logw log�1� w�

�
3

2
logw�

w logw
2�1� w�

�
35

8

�
: (210)

In C�0�L �w; �x� we have put the factor 12�w� �x��1� �x� w�,
equal to the spectrum in lowest order, in order to have a
vanishing remainder function in O��0�: this is a non mini-
mal choice, since the minimal choice would imply to set
�x � 0 in the coefficient function. We have inserted a
similar factor also in C�1�L �w; �x�, in order to have a simple
multiplicative form of the correction.17 As in previous
cases, by matching with the full O��� result [8], we deter-
mine the remainder function

 d<�w; �x;�� � �d�1�< �w; �x� � �2d�2�< �w; �x� �O��3�:

(211)

Omitting the overall factor CF=
, we obtain for the
leading contribution

 

d�1�< �w; �x� � �
1

10
�w� �x� �x��210� 280w� 10w2 � 2w3 � 60�x� 125w �x� 7w2 �x� 15�x2 � 32w �x2 � 15�x3�

�
1

5��1� w�
��45w� 60w2 � 20w3 � 10w4 � 6w5 � w6 � 15�x� 135w �x� 255w2 �x� 85w3 �x

� 25w4 �x� 5w5 �x� 15�x2 � 45w �x2 � 75w2 �x2 � 85w3 �x2 � 10w4 �x2� logw� 6��1� w� �x��w� �x�


 log2w� 6��1� w� �x��w� �x�log2�w� �x� �
1

5
�w� �x��45� 15w� 5w2 � 5w3 � w4 � 15�x

� 10w �x� 15w2 �x� 4w3 �x� 5x2 � 15w �x2 � 6w2 �x2 � 5 �x3 � 4w �x3 � �x4� log�w� �x�

�
1

5
�x�60� 180w� 120w2 � 60�x� 15w �x� 45w2 �x� 5 �x2 � 20w �x2 � 10w2 �x2 � 5�x3 � 5w �x3 � �x4�


 log �x� 12��1� w� �x��w� �x� logw log �x� 12��1� w� �x��w� �x� log�w� �x� log �x: (212)

Let us now consider the case w> 1

 

1

�

d2�

dxdw
� C� �x;w;��f�� �x=w;��wmb��

����w;��mb��g � � � � �w> 1�; (213)

where we have defined

 �w � w� 1> 0: (214)

There are two form factors and large logarithms can be
obtained in the following three kinematical configurations:

(1) �x� �w	 1: large logarithms of the form �nlogk �x
have to be resummed;

(2) �w	 �x� 1: large logarithms of the form
log�w	 log �x have to be resummed;

(3) �w� �x	 1: large logarithms of the form log�w
have to be resummed.

The first case is kinematically forbidden because

 �w  �x: (215)

The second case does not give large logarithms because
the coefficient function C� �x;w;�� vanishes linearly in this

17We could have taken as coefficient function the original one
C� �x;w;�� as well, which however does not always contain the
factor 12�w� �x��1� �x� w�.

16Note that this case is a ‘‘complication’’ of the analogous case
for the single distribution in w, where the integration over �x has
been made and therefore there are no large logarithms of �x.
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limit:

 C�� �x; 1� ��w;�� � O��� for �! 0: (216)

The only relevant limit is therefore the third one, imply-
ing that one can drop the form factor �� �x=w;��. We
propose then a resummed form for this distribution which
is a generalization of that one for the hadron energy
spectrum:

 

1

�

d2�

dxdw
� CXW1� �x;��f1� CXW2� �x;�����w;��mb��g

� d>��w; �x;�� �w> 1�: (217)

We require that the remainder function vanishes for �w!
0�:

 lim
�w!0�

d>��w; �x;�� � 0: (218)

The first coefficient function is obtained by imposing the

continuity of the spectrum for w! 1 from both sides w<
1 and w> 1 and for any �x.18 We obtain:

 CXW1� �x;�� � CL� �x; 1;���� �x;�� � d<�1; �x;��: (219)

We can expand in the above equation �� �x;�� in powers of
� (up to first order) because the coefficient function for
w � 1, CL� �x; 1;��, vanishes linearly for �x! 0, killing the
large logarithms in the form factor. We then obtain:

 

CXW1� �x;�� � C�0�XW1� �x� � �C
�1�
XW1� �x� � �

2C�2�XW2� �x�

�O��3� (220)

where

 C�0�XW1� �x� � 12�1� �x� �x; (221)

 

C�1�XW1� �x� �
CF



�
1

10
�1� �x� �x��587� 192 �x� 47�x2 � 15�x3� �

1

5
�x�105� 105�x� 5�x2 � �x4� log �x

�
1

5
�1� �x��31� 16�x� 4�x2 � �x3 � �x4� log�1� �x� � 6�1� �x� �xlog2�1� �x� � 12�1� �x� �x log�1� �x�


 log �x� 6�1� �x� �xlog2 �x� 12�1� �x� �xz�2�
�
: (222)

The second coefficient function CXW2� �x;�� is obtained by matching with the fixed-order distribution in the limit �w!
0�:

 CXW2� �x;�� � C�0�XW2� �x� � �C
�1�
XW2� �x� � �

2C�2�XW2� �x� �O��
3� (223)

with

 C�0�XW2� �x� � 1; (224)

 C�1�XW2� �x� �
CF



�
1

120
�62� 192 �x� 47�x2 � 15�x3� �

1

60x
�31� 16�x� 4�x2 � �x3 � �x4� log�1� �x� �

1

2
log2�1� �x�

�
1

60�1� x�
�105� 105 �x� 5�x2 � �x4� log �x� log�1� �x� log �x�

1

2
log2 �x

�
: (225)

The remainder function d>�w; �x;�� is obtained by matching with the fixed-order distribution for �w	O�1�:

 d>�w; �x;�� � �d�1�> �w; �x� � �2d�2�> �w; �x� �O��3�; (226)

where, omitting the overall factor CF=
:

18This continuity condition, which involves a single point w � 1 for the hadron energy spectrum, involves in this more complicated
case the line �w � 1; �x�.
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d�1�> �w; �x� �
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��1� w��1� �x���75� 142w� 7w2 � 2w3 � 212 �x� 105w �x� 9w2 �x� 132 �x2 � 39w �x2 � 47�x3�
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1

5
��1� w���4� 99w� w2 � 4w3 � w4 � 140�x� 120w �x� 15w2 �x� 5w3 �x� 65�x2 � 65w �x2

� 10w2 �x2� log��1� w� � 6��1� w��w� 2�x�log2��1� w� �
1

5
�1� �x��31� 16 �x� 4 �x2 � �x3 � �x4�


 log�1� �x� � 6�1� �x� �xlog2�1� �x� � 6��1� w� �x��w� �x�log2�w� �x� � ��1� w���21w� 30�x

� 24w �x� 12 �x2 � 9w �x2 � 2�x3 � 2w �x3 � �x4� log �x� 12�1� �x� �x log�1� �x� log �x� 6��1� w��w� 2�x�


 log2 �x�
1

5
�w� �x��45� 15w� 5w2 � 5w3 � w4 � 15 �x� 10w �x� 15w2 �x� 4w3 �x� 5�x2 � 15w �x2

� 6w2 �x2 � 5�x3 � 4w �x3 � �x4� log�w� �x� � 12��1� w� �x��w� �x� log �x log�w� �x�: (227)

To summarize, we have presented a complete NLO resum-
mation of the distribution in the hadron and electron en-
ergies w and x, which is a generalization of the
resummation of the hadron energy spectrum of the pre-
vious section. Resummation takes a different form in the
cases w  1 and w> 1. In the first case there is a series of
threshold logarithms of the form

 �nlogk
�x
w

�w< 1�; (228)

while in the second case the infrared logarithms are of the
form

 �nlogk�w� 1� �w> 1�: (229)

Unlike the distribution in Sec. IV, we have here a differ-
ential distribution involving the partially-integrated form
factor �.

VII. CONCLUSIONS

It is a rather old idea that semi-inclusive B decays can be
related to each other because of some universal long-
distance component [25]. We have presented in this paper
a critical analysis of this idea, based on a resummation
formula for the triple-differential distribution in the semi-
leptonic decay (7). Long-distance effects manifest them-
selves in perturbation theory in the form of series of large
infrared logarithms, coming from the multiple emission of
soft and/or collinear gluons. The universality of long-
distance effects has therefore to show up in perturbation
theory in the form of identical series of large logarithms in
different distributions. Semi-inclusive B decays have been
defined in all generality as decays of the form

 B! Xq � �non-QCD partons�; (230)

in the kinematical region close to the threshold mX � 0,
i.e. for

 mX � EX: (231)

We have shown that semileptonic distributions are natu-
rally divided into two classes.

The first class contains distributions which are not inte-
grated over the hadronic energy EX and consequently have
a long-distance structure similar to the one in radiative
decays (5). These are the (simpler) distributions to attack
and have been treated in this paper. We have resummed to
next-to-leading order:

(1) the distribution in the hadronic energy EX and in the
variable u defined in Sec. III, which is basically the
ratio m2

X=�4E
2
X�, i.e. the hadron invariant mass

squared in unit of the hard scale;
(2) the hadron energy distribution, which is a case of the

so-called Sudakov shoulder. This is the only single
distribution which can be related to the radiative
decay via short-distance factors only. The large
logarithms which appear in this distribution are in-
deed equal to the ones which appear in the radiative
decay (5). We have studied in detail the relation
between the hadron energy spectrum and the photon
spectrum in the radiative decay. It is remarkable that
the large logarithms in the hadron energy spectrum
occur at EX � mb=2, i.e. when the hard scale Q �
2EX equals mb, as in the radiative decays;

(3) the distribution in the hadron and in the charged
lepton energies, which contains two different classes
of large logarithms according to the cases w  1 or
w> 1. The resummation of this distribution is the
most complicated and is a generalization of the
resummation of the hadron energy spectrum.

The second class contains semileptonic distributions in
which the hadronic energy is integrated over, such as, for
example, the hadronic mass distribution or the charged
lepton energy distribution. These distributions have a com-
plicated logarithmic structure, which is not simply related
to the one in the radiative decay and there is not a pure
short-distance relation with the radiative decay spectrum.
The resummation of these distributions to NLO is pre-
sented in [4].
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