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It is shown that one can in principle constrain the CP-violating parameter � from measurements of four
independent jVijj2’s, or three jVijj2’s and a ratio of two of them, in the leptonic sector. To quantify our
approach, using unitarity, we derive simple expressions in terms of four independent jVijj2’s for cos�, and
an expression for sin2� from J2. Thus, depending on the values for jVijj and their accuracy, we can set
meaningful limits on j�j. To illustrate numerically, if jV�1j

2 is close to 0.1 with a 10% precision, and if
jVe3j

2 is larger than 0.005 and for values of jVe2j
2 and jV�3j

2 that stay within �0:1 of the current
experimental data leads to a bound: �=2 � j�j � �. Alternatively, a certain combination of parameters
with values of jVe3j

2 larger than 0.01 leads to a closed bound of 73 � j�j � 103. In general, we find that it
is better to use jV�1j

2 or jV�1j
2 as the fourth independent jVijj2 and that, over most of the parameter space,

� is least sensitive to jVe3j
2. With just three independent measurements (solar, atmospheric, and reactor),

it is impossible to set limits on the CP phase. In this respect, we study the use of ultrahigh energy cosmic
ray neutrino fluxes as the additional fourth information. We find that within the SM, neutrino fluxes of all
three flavors will be very similar but that pushing current neutrino data to their extreme values still
allowed, ratios of cosmic neutrino fluxes can differ by up to 20%; such large discrepancies could imply
negligibly small CP violation. We also study a nonradiative neutrino decay model and find that the
neutrino fluxes can differ by a factor of up to 3 within this model and that an accuracy of 10% on the
neutrino fluxes is sufficient to set interesting limits on �.
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I. INTRODUCTION

One of the significant achievements of particle physics
has been our better understanding of the leptonic flavor
mixings. Following some very detailed and painstaking
measurements, the neutrino anomaly has now been con-
firmed; both in the solar and atmospheric sector [1]. An
immediate conclusion is the existence of new physics
beyond standard model and to introduce a small neutrino
mass. Such an extension leads to the notion of neutrino
oscillation [2] similar in spirit to quark sector. A genuine
three flavor analysis allows for a solution space consisting
of two mass-squared differences and three angles. The
solution amounts to finding the allowed parameter space
for the solar mixing angle, and the atmospheric mixing
angle along with a strongly constrained reactor angle.
Phenomenologically, best fit values and the allowed range
for these three mixing parameters dictate a pattern that is
almost being negligible (reactor) to moderate (solar) to
maximal (atmospheric). For a review on the analysis, we
refer to [3].

Similar to the quark sector, one can have CP violation in
the leptonic sector due to massive neutrinos. Unlike the
quark sector, however, the CP violation in the leptonic
sector can come due to both Dirac and Majorana phases

in the mixing matrix, depending on the nature of the
neutrinos [4] Clearly, assessing the Dirac or Majorana
nature of the neutrinos will be an important goal in the
future. In this paper, we consider only CP violation à la
Dirac and do not address at all Majorana phases. As a
pertinent question, how to measure CP violation in neu-
trino oscillations has attracted a lot of attention in the past
[5,6], and no doubt the search for leptonic CP violation
will be one of the main goals of experimental particle
physics in the years to come. Given the strong reactor
constraints [7], it is very difficult for current neutrino oscil-
lation experiments to measure CP violation. Nonetheless,
as a proposal, a measurement is possible by one searching
for differences between neutrino and antineutrino survival
in a long-baseline experiment and measuring the spectrum
[8].

In the present analysis, we want to explore the possibil-
ity of extracting information on CP violation in the lep-
tonic sector without performing a direct CP violation
experiment. Clearly, such an experiment will have to be
done eventually, but in the near future it might be easier to
measure individual lepton mixing matrix elements (Vij).
Thus, it becomes interesting to see how information about
these can be translated into information about CP violation
in the leptonic sector and what level of precision will be
required on the jVijj2’s to set interesting constraints on �.

In the next section, we will contrast two parametriza-
tions that represent leptonic mixing; the usual parametri-
zation in terms of mixing angles and phases [9] and another
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one constructed purely as moduli elements, where CP
violation is not explicit but still present. Following this,
we will derive expressions that allow one to extract infor-
mation on CP violation from measurements of four jVijj’s
or combinations of them. These relations are used to
calculate the precision on the measurements of the
jVijj2’s required in order to set constraints on �. We will
then consider the use of ultrahigh energy cosmic ray
(UHCR) neutrino fluxes to obtain the fourth jVijj2 needed
to set constraints on � [10]. We also derive general rela-
tions about their fluxes and estimate the precision required
in order to set interesting limits on �. To conclude, we will
also consider a specific model that digresses from the SM
and will strongly affect the neutrino fluxes that reach the
Earth and see how useful this can be in our extraction of the
phase �.

II. LINKING FOUR jVijj2 AND �

A. Rephasing invariant parametrization

We assume that we have three neutrino flavors and
consider only CP violation à la Dirac. We also assume
unitarity in the mixing matrix even though some popular
models of neutrino mass generation lead to violation of
unitarity.

The elements of the lepton mixing matrix are defined as
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It has been shown before [11] that all the information about
mixing and CP violation in the quark sector can be pa-
rametrized in terms of four independent moduli of (2.1).
These moduli are rephasing invariant and basis indepen-
dent. A set of four independent parameters is not unique
and any set of four parameters where we do not have three
on the same row or column is acceptable. Thus, there are
nine such ensembles which are allowed. For the present
analysis, our choice is jVe2j, jVe3j, jV�1j, and jV�3j. This
choice seems appropriate since we have experimental in-
formation on three of the four parameters.

The exact expressions between the moduli of the ele-
ments of the mixing matrix and the mixing angles are
obtained to be

 jVe3j
2 � sin2�13; (2.2)

 jVe2j
2 � sin2�12cos2�13; (2.3)

 jV�3j
2 � sin2�23cos2�13: (2.4)

Our current knowledge on the magnitude of the elements
of the leptonic mixing matrix comes from experiments on
neutrino oscillation and can be summarized as follows [3]:

 sin 2�12 � 0:3� 0:08 sin2�23 � 0:5� 0:18

sin2�13 � 0:05 at 3�
(2.5)

B. Unitarity and cos���

At the present time, there is no experimental information
about jV�1j and one can only limit its modulus through
unitarity. In the notation of (2.1), we can write
 

V�1 � �
1

1� jVe3j
2 �jVe2jjV�3j � jVe1jjV�3jjVe3jei��;

jVe1j �
����������������������������������������
1� jVe2j

2 � jVe3j
2

q
;

jV�3j �
�����������������������������������������
1� jV�3j

2 � jVe3j
2

q
: (2.6)

Expanding up to order jVe3j
2, we calculate jV�1j

2 to be

 jV�1j
2 � jVe2j

2�1� jV�3j
2� � jVe3j

2�jVe2j
2

� 3jVe2j
2jV�3j

2 � jV�3j
2�

� 2jVe3jjVe2jjV�3j cos���

�
����������������������
1� jV�3j

2
q ���������������������

1� jVe2j
2

q
(2.7)

With current experimental data (2.5) and adding the
errors in quadrature, the limits on jV�1j

2 translate to
 

jV�1j
2 � 0:15� 0:07� �0:35� 0:15�jVe3j

2

� �0:46� 0:03�jVe3j: (2.8)

If we use the 3� limit of 0.05 on jVe3j
2, we obtain a lower

limit of 0 and an upper limit of 0.35 on jV�1j
2 while the 1�

limit of 0.012 on jVe3j
2 leads to 0:029 � jV�1j

2 � 0:28.
Therefore, we can arrive at closed bound

 0:17 � jV�1j � 0:52 at 1�: (2.9)

We can use this expression to set a bound on jV�1j
2 or we

can invert it to get information on cos��� once we have
information on all four jVijj2, the exact relation being
 

cos� �
jV�1j

2 � jVe2j
2�1� jV�3j

2� � BjVe3j
2 � CjVe3j

4

X
;

X � 2jVe2jjVe3jjV�3j
����������������������������������������
1� jVe2j

2 � jVe3j
2

q

�
�����������������������������������������
1� jVe3j

2 � jV�3j
2

q
;

B � jVe2j
2 � jV�3j

2 � 2jV�1j
2 � jVe2j

2jV�3j
2;

C � jV�1j
2 � jV�3j

2: (2.10)

Clearly, without information on jV�1j
2, we cannot say

anything on �.

C. CP violation and the jVijj’s

The measure of CP violation is expressed, in general,
through the Jarlskog parameter defined as [12]
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 J � Im�Ve2V�3V	e3V
	
�2�: (2.11)

Once we have chosen our four independent parameters
of the mixing matrix, J2 is not independent but an explicit
function of these four parameters, namely [11]
 

J2 � �1� jVe3j
2 � jVe2j

2�jVe3j
2jV�1j

2jV�3j
2

� 1
4�jVe2j

2 � jV�1j
2 � jV�1j

2jVe3j
2 � jV�3j

2jVe3j
2

� jV�3j
2jVe2j

2�2: (2.12)

This is a general expression based on rephasing invari-
ants and we can use it to set limits on jV�1j

2: requiring
positivity of J2 leads to (2.7) with cos� replaced by�1. We
can also calculate what value of jV�1j

2 will maximize J2

such that jV�1j
2
J2�J2

max
. Differentiating J2 with respect to

jV�1j
2 and retaining only first order in jVe3j

2, one then
recovers the first two terms of (2.7). This is consistent since
maximizing J2 requires sin2� � 1. One observes here that
a value of jV�1j

2 larger than jV�1j
2
J2�J2

max
requires � to be in

the first or in the fourth quadrant. This simple point does
not require particularly precise data and could already be
useful information for model builders.

In the standard basis, J2 is given by [13]
 

J2 � sin2��12�cos2��12�sin2��23�cos2��23�sin2��13�

� cos2��13�cos2��13�sin2��� (2.13)

Clearly, whether in the VPMNS or in our current basis, J2

is the same physical observable and we can compare the
two expressions for this parameter. Using the relations
between the Vij and sin��ij�, we express J2 in terms of
sin2��� and three of our jVijj2:

 

J2 �
1

�1� jVe3j
2�2
jVe2j

2jV�3j
2jVe3j

2�1� jVe3j
2 � jVe2j

2�

� �1� jVe3j
2 � jV�3j

2�sin2�: (2.14)

Using (2.12) and (2.14) we now have a relation between
sin2� and our four jVijj2. Therefore, we can relate � to our
set of four jVijj2 through either cos� or sin2�. Since we
want ultimately information on � itself and there is more
information through cos� than through sin2���, in what
follows, we will concentrate on cos�. We will be left with
a twofold degeneracy as we will not be able to get the sign
of �.

In Fig. 1, we plot J2 as a function of jV�1j
2 and jVe3j

2 for
central values of jV�3j

2 (0.5) and jVe2j
2 (0.3). We see

clearly that the vanishing of jVe3j
2 leads to the vanishing

of J2, as it must be. We also see that J2 is a fairly linear
function of jVe3j

2; this is expected since the maximum
value jVe3j

2 can have is rather small compared to the other
parameters and an expansion to first order in jVe3j

2 would
be adequate. For numerical purposes, we note that the
largest value taken by J2 on this figure is 2:42� 10�3; it
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FIG. 1. J2 as a function of jVe3j
2 and jV�1j

2 for the current
central values of jVe2j

2 (0.3) and jV�3j
2 (0.5).
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FIG. 2. Different values of sin2��� in the jVe3j
2 � jV�1j

2 plane.
From the outside, inward, we plot sin2��� � 0, 0.1, 0.25, 0.5,
0.75, 0.95, 1. The line in the middle corresponds to sin2��� � 1
and is given by Eq. (2.7) with cos��� � 0; the most outward
curves correspond to cos��� � �1.
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is clearly at the largest possible value of jVe3j
2 and at

jV�1j
2 ’ 0:167.

In Fig. 2, we plot curves of constant sin2���. When we
fix jVe2j

2, jV�3j
2, and jVe3j

2, if we ask what value of jV�1j
2

will give 25% of the maximum value that J2 can have, we
are in fact setting sin2��� � 0:25. The straight line in the
middle is the curve jV�1j

2
J2�J2

max
and is given by (2.7) with

cos��� � 0.

III. CONSTRAINING� FROM THE jVijj2 OR THEIR
RATIOS

In order to be able to set some bounds on �, we need at
least lower limits on jVe3j

2 and jV�1j
2 besides the data that

we have on jVe2j
2 and jV�3j

2; as we can see in Fig. 2, just
an upper limit cannot constrain �. In what follows, we
explore the full 4-dimensional parameter space: we allow
jV�1j

2 to cover the whole range allowed by unitarity, and
jVe3j

2 varies from 0.001 to 0.03, since 0.03 is close to the
current 3-� limit and 0.001 makes CP violation extremely
small at planned CP-violating experiments [14]. As for
jVe2j

2 and jV�3j
2, we will work with values that can differ

by �0:1 from their current central values of 0.3 and 0.5,
respectively.

We assume that we have four jVijj2’s with their experi-
mental uncertainties. The experimental central values of
the jVijj2’s (jVijj2c) lead to the central value of cos�. In
order to estimate the error, or range that we should
associate to this central value, we use a Monte Carlo
technique and we cover, for each jVijj2, the space �jVijj2c�
experimental error���jVijj

2
c�experimental error�. Within

this 4-dimensional space, we are interested only in the
largest and smallest values that cos� can have; these
become the range that cos� covers with this particular
combination of jVijj2 and their associated errors.

As our fourth jVijj2, we picked jV�1j
2. This choice is not

unique and we could have chosen jV�2j
2, or jV�1j

2, or
jV�2j

2. It is straightforward to rewrite all our equations in
terms of these parameters through the following relations:
 

jV�2j
2 � 1� jV�1j

2 � jV�3j
2

jV�1j
2 � jVe2j

2 � jVe3j
2 � jV�1j

2

jV�2j
2 � jV�3j

2 � jV�1j
2 � jVe2j

2:

(3.1)

TABLE I. Values of cos��� for different combinations of parameters: cos���c is obtained from
the central values of the parameters while cos���� and cos���� are the extremum values allowed
by the uncertainties (shown in percent, in parentheses next to each parameter).

jVe2j
2 jV�3j

2 jVe3j
2 �1, �2, jV�1j

2 cos���� cos���c cos����

0.30 (10) 0.50 (10) 0.03 (10) �1 � 1:0�10� �0:257 0.056 0.387
�2 � 2:3�10� �0:300 0.111 0.457
jV�1j

2 � 0:15�10� �0:708 �0:132 0.442

0.30 (5) 0.50 (5) 0.01 (5) �1 � 1:0�5� �0:224 0.033 0.294
�2 � 2:3�5� �0:285 0.042 0.329
jV�1j

2 � 0:15�5� �0:569 �0:076 0.414

0.30 (5) 0.50 (5) 0.01 (20) �1 � 1:0�5� �0:247 0.033 0.310
�2 � 2:3�5� �0:303 0.042 0.343
jV�1j

2 � 0:15�5� �0:607 �0:076 0.457

0.30 (5) 0.50 (5) 0.01 (5) �1 � 1:0�10� �0:306 0.033 0.391
�2 � 2:3�10� �0:404 0.042 0.440
jV�1j

2 � 0:15�10� �0:747 �0:076 0.599

0.30 (5) 0.50 (5) 0.015 (5) �1 � 1:0�5� �0:170 0.040 0.255
�2 � 2:3�5� �0:190 0.065 0.300
jV�1j

2 � 0:15�5� �0:493 �0:093 0.306

0.30 (5) 0.50 (5) 0.005 (5) �1 � 1:0�5� �0:339 0.023 0.392
�2 � 2:3�5� �0:429 0.007 0.412
jV�1j

2 � 0:15�5� �0:756 �0:054 0.642

0.30 (5) 0.50 (2) 0.001 (25) �1 � 1:0�5� �0:529 0.010 0.555
�2 � 2:3�5� �1:0 �0:081 0.885
jV�1j

2 � 0:15�5� �1:0 �0:024 1.0

0.30 (2) 0.50 (5) 0.001 (25) �1 � 1:0�5� �0:879 0.010 0.901
�2 � 2:3�5� �0:796 �0:081 0.552
jV�1j

2 � 0:15�5� �1:0 �0:024 1.0
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We studied all four parameters and we can say that,
when they (i.e. jV�1j

2, jV�2j
2, jV�1j

2, jV�2j
2) have the

same experimental error (e.g. 5%) then:
(i) if the known parameters stay close to their current

central values, in general, jV�1j
2 leads to slightly

better bounds than jV�1j
2

(ii) if the known parameters digress substantially from
their current experimental values, then jV�1j

2 leads
to slightly better bounds than jV�1j

2

(iii) jV�2j
2 and jV�2j

2 are not as good as the previous
two: the limits obtained from these parameters are
degraded by about a factor of 2 when compared to
those obtained from the previous two parameters;
jV�2j

2 is, in general, a little bit better than jV�2j
2

(iv) things improve a bit for the last two parameters if
we give all four parameters the same absolute
uncertainty instead of the same relative uncertainty
(e.g. we compare jV�1j

2 � 0:150� 0:005 and
jV�2j

2 � 0:350� 0:005 instead of �5% for all pa-
rameters). Even then, jV�1j

2 and jV�1j
2 remain

better than the other two parameters, but by a factor
of 1.5 instead of a factor of 2.

We also take into consideration some ratios of jVijj2 as
the potential fourth parameter. The first one is �1 �

jV�1j
2=jV�1j

2 and has very similar properties to
jV�2j

2=jV�2j
2; the second one is �2 � jV�2j

2=jV�1j
2 and

has very similar properties to jV�2j
2=jV�1j

2. We also
studied jV�2j

2=jV�1j
2 but it turned out to be too sensitive

to both jVe3j
2 and jV�3j

2 to be of any use; and similarly for

jV�1j
2=jV�2j

2. The same can be said of any ratio that
involves jVe1j

2. So, we present in Tables I and II the limits
that we can set on cos� from measurements on jV�1j

2, �1,
and �2. These are representative of what can be achieved.
After studying the parameter space described above, we
can say that:

(i) uncertainties of 10% on the four parameters can
lead to very tight bounds on �; the uncertainty on
jVe3j

2 can be much larger than this without affect-
ing the bounds very much.

(ii) an interesting constraint already occurs for the
combination �0:3; 0:5; P; jVe3j

2� with a 10% uncer-
tainty on the parameters: the first two parameters
(jVe2j

2 and jV�3j
2) are at their current central

values while the third one (either jV�1j
2 � 0:15,

�1 � 1:0, or �2 � 2:3) is close to the value that
maximizes J2. We find that if jVe3j

2 turns out to be
large (0.03), then j�j has a range of 40–70 deg
centered at about 90 deg, depending what P one
uses; this range decreases as jVe3j

2 increases. If the
uncertainties are reduced to 5%, the range be-
comes 30–60 deg and jVe3j

2 can be reduced to
0.01.

(iii) for most combinations of jVe2j
2 and jV�3j

2, if
jV�1j

2 turns out to be relatively small, about 0.1,
then j�j has to be between �=2 and � for any
jVe3j

2 larger than 0.005.
(iv) the limits are not very sensitive to the uncertainty

on jVe3j
2; going from 5% to 20% does not change

TABLE II. Values of cos��� for different combinations of parameters: cos���c is obtained from
the central values of the parameters while cos���� and cos���� are the extremum values allowed
by the uncertainties (shown in percent, in parentheses next to each parameter).

jVe2j
2 jV�3j

2 jVe3j
2 �1, �2, jV�1j

2 cos���� cos���c cos����

0.30 (5) 0.40 (5) 0.01 (5) �1 � 0:68�5� �0:204 0.025 0.247
�2 � 2:2�5� �0:294 �0:034 0.195
jV�1j

2 � 0:18�5� �0:615 �0:076 0.458

0.30 (10) 0.40 (5) 0.01 (5) �1 � 0:68�5� �0:213 0.025 0.330
�2 � 2:2�5� �0:446 �0:034 0.330
jV�1j

2 � 0:18�5� �0:813 �0:076 0.665

0.30 (5) 0.40 (10) 0.01 (5) �1 � 0:68�5� �0:349 0.025 0.383
�2 � 2:2�5� �0:310 �0:034 0.199
jV�1j

2 � 0:18�5� �0:765 �0:076 0.582

0.30 (5) 0.40 (5) 0.01 (10) �1 � 0:68�5� �0:212 0.025 0.250
�2 � 2:2�5� �0:306 �0:034 0.196
jV�1j

2 � 0:18�5� �0:628 �0:076 0.471

0.25 (2) 0.55 (2) 0.01 (2) �1 � 0:8�2� 0.551 0.650 0.760
�2 � 3:85�2� 0.541 0.652 0.770
jV�1j

2 � 0:145�2� 0.481 0.663 0.856

0.25 (2) 0.55 (2) 0.01 (25) �1 � 0:8�2� 0.553 0.650 0.854
�2 � 3:85�2� 0.543 0.652 0.852
jV�1j

2 � 0:145�2� 0.482 0.663 0.993
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the limits by much. If the other uncertainties are
small (2%), the uncertainty on jVe3j

2 can go up to
50% and it is still possible to get interesting bounds
on �

(v) the limits are not very sensitive to jVe3j
2 itself and

going from 0.01 to 0.005 will not change the limits
very much. When jVe3j

2 becomes 0.001, however,
the limits are somewhat degraded but still useful.

(vi) as the value of jVe3j
2 becomes smaller, the uncer-

tainties on the other parameters must decrease in
order to keep interesting bounds on �; note that the
uncertainty on jVe3j

2 can be rather large without
affecting the bounds much

(vii) in general, we find that the best parameter is �1, the
second best is �2, and the third best is jV�1j

2.
The previous analysis is very general and describes which
parameters must be measured and with what accuracy in
order to set limits on �. We now turn to some potential
processes that could give us the fourth information that we
need in order to be able to set limits on �.

IV. ULTRAHIGH ENERGY COSMIC RAYS

Ultrahigh energy cosmic rays and their detectors have
attracted a fair amount of attention in recent years [15–18].
In particular, the use of UHCRs with the aim of observing
leptonic CP violation has been considered in [19] An
interesting consequence for the UHCR neutrino spectra is
due to maximal atmospheric mixings. Following maximal
mixing, or tan�A 
 1, leads to a unique prediction for
UHCR neutrino fluxes. It was shown that UHCR neutrinos
(which are expected to be sourced by cosmic objects such
as AGNs) when measured by ground based detectors, the
expected flavor ratio	e:	�:	� � 1:1:1 [20]. This value is
also known as the standard flavor ratio and by itself con-
stitutes an independent confirmation of the neutrino mixing
data from atmospheric sources. Since we propose to extract
the Dirac CP phase present in the conventional PMNS
mixing matrix, our discussion will be restricted to Dirac
neutrinos. Before proceeding with the analysis, let us
briefly allude to the significance of this proposal. It is
well known that CP violation (due to oscillation) in the
leptonic mixings (even if larger than the quark sector) will
nonetheless remain a hard problem to resolve [14]. This
arises from the strong constraints which reactor neutrinos
set on the mixing element Ve3 [7]. As a consequence of
this, even if the CP phase is large, the smallness of Ve3

leads to phase being insensitive to any CP violating
measurements.

A. The basic formalism

In the same fashion as quarks mix, massive neutrinos
mix (and also oscillate) between two eigenbases, the flavor
(�
) and mass eigenbasis (�i). The two bases are related by
a unitary matrix V such that �
 � V
i�i. Here we assume
the summation over the mass eigenstates. Corresponding to

a particular mass eigenstates is a mass value, mi, which in
the limit of small mixings determines the mixing angles.
Thus, in the limit of small mixings, �S mixes eigenstates �1

and �2, while �A mixes eigenstates �2 and �3 and �R mixes
the eigenstates �1 and �3.

In the context of UHCR neutrinos which travel astro-
nomical distances, the coherence between the various mass
eigenstates is averaged out. In other words, after produc-
tion these neutrinos essentially travel as individual mass
eigenstates. At the point of detection, they are in the flavor
states. Therefore, the detection probability in a given flavor
eigenstate is
 

	e � 1� 2x�2c2
A � 1�;

x � �sScS�2;

	� � 2xc2
A � 2�c4

A�1� 2x� � s4
A�;

	� � s2
A � 2xs2

A�1� c
2
A�;

(4.1)

where s and c denote sine and cosine, respectively. From
the above expressions and the experimental fact �A ’ �=4,
it follows that all neutrino flavors must be detected with the
same weight factor. In deriving this result, we have dis-
regarded the mixing corresponding to reactor experiments,
which is consistent with zero [7]. This result is also inde-
pendent of the solar angle �S.

B. Neutrino fluxes and jVijj2

Let us revise in more detail the arguments from the
previous section. Consider the probability of oscillating
from flavor 
 to �

 P
� � �
� � 4
X3

i>j�1

Re�K
�;ij�sin2��ij�

� 4
X3

i>j�1

Im�K
�;ij� sin��ij� cos��ij�;

K
�;ij � V
iV	�iV
	

jV�j; �ij �

m2
i �m

2
j

L=4E
:

(4.2)

We can express the real and imaginary parts of K
�;ij in
terms of moduli as follows:

 2 Re�K
�;ij� � jV
ij2jV�jj2 � jV�ij2jV
jj2

�
X
�;k

c
��cijkjV�kj
2 (4.3)

and

 Im �K
�;ij� � J"
�"ij; (4.4)

where we have defined
 

cijk � 1 if i � j; j � k; k � i

� 0 otherwise (4.5)
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and " as the antisymmetric tensor

 " �
0 �1 1
1 0 �1
�1 1 0

0
@

1
A: (4.6)

We are interested here only in the probabilities for �� !
��, �� ! �e, and �� ! �e. After combining two terms
(�13 � �23 to high accuracy), expressing the third term as
a combination of jVijj2 and averaging over the oscillating
terms, we obtain

 

P�� � 2jV�3j
2jV�3j

2 � �jVe1j
2jVe2j

2 � jV�1j
2jV�2j

2

� jV�1j
2jV�2j

2�;

Pe� � 2jVe3j
2jV�3j

2 � �jV�1j
2jV�2j

2 � jVe1j
2jVe2j

2

� jV�1j
2jV�2j

2�;

Pe� � 2jV�3j
2jVe3j

2 � �jV�1j
2jV�2j

2 � jV�1j
2jV�2j

2

� jVe1j
2jVe2j

2�: (4.7)

One then uses the relations

 

jVe1j
2 � 1� jVe2j

2 � jVe3j
2;

jV�2j
2 � 1� jV�1j

2 � jV�3j
2;

jV�1j
2 � jVe2j

2 � jVe3j
2 � jV�1j

2;

jV�2j
2 � jV�1j

2 � jV�3j
2 � jVe2j

2;

(4.8)

to express these probabilities in terms of our four jVijj2.
Note that when averaging over the oscillating terms, the

third term of (4.2) vanishes; therefore, one will not be able
to observe directly CP violation with UHCR’s.

If we assume that the main production mode of these
UHCR’s is [21]

 p� �! �� � X; (4.9)

with subsequent decay of the �� into muons, electrons,
and neutrinos, we conclude that there will be two �� (or
���) for every �e (or ��e) and virtually no �� (or ���). The
initial fluxes are then	0

e,	0
� � 2	0

e, and	0
� � 0. In order

to calculate a given neutrino flux that reaches the Earth, we
take into account the probability that this neutrino will
oscillate into other types of neutrinos and the probabilities
that other neutrinos will oscillate into this type of neutrino.
Up to a common geometrical factor, the observed terres-
trial fluxes are

 	t
e � 	0

e�1� Pe� � Pe��;

	t
� � 	0

e�2� Pe� � 2P���; 	t
� � 	0

e�2P�� � Pe��:

(4.10)

In terms of matrix elements, we get

 

	t
e � 	0

e�1� 2jVe2j
2�jV�3j

2 � jVe2j
2�

� 2jV�1j
2�1� 2jVe2j

2� � 2jVe3j
2�1� jV�1j

2

� jVe2j
2 � jV�3j

2� � 2jVe3j
4�;

	t
� � 	0

e�2� �1� jV�3j
2��jVe2j

2 � 4jV�3j
2�

� jV�1j
2�3� 2jVe2j

2 � 4jV�3j
2 � 4jV�1j

2�

� jVe3j
2�jV�3j

2 � jV�1j
2��;

	t
� � 	0

e�4jV�3j
2�1� jV�3j

2� � jVe2j
2�1� jVe2j

2�

� 3jVe2j
2�jV�3j

2� � jVe2j
2� � jVe3j

2�2� 3jV�1j
2

� 3jV�3j
2 � 2jVe2j

2 � 2jVe3j
2�

� jV�1j
2�1� 4jV�1j

2 � 4jV�3j
2 � 6jVe2j

2��:

(4.11)

Clearly, we do not know the original neutrino fluxes at
the source. Therefore, it is more meaningful to try to
measure ratios of neutrino fluxes. We will consider the
ratios Re� � 	t

e=	t
� and Re� � 	t

e=	t
� and calculate

how they vary when we cover the parameter space avail-
able. Our results are summarized in Table III. One can see
that:

(i) by numerical accident, jV�3j
2 close to 0.5 has a

very strong influence on Re� and Re� and tends to
keep them close to 1

(ii) if jV�3j
2 stays close 0.5 to within 10%, Re� and Re�

remain close to 1, for any value of jVe2j
2 and jV2

e3j
that are within the experimentally allowed ranges

TABLE III. Different values of Re� and Re� for different
combinations of 4 independent jVijj2. jV�1j

2
�, and jV�1j

2
� span

the range allowed by unitarity and positivity of jJj2; these
extremum values of jV�1j

2 correspond to vanishingly small
CP violation.

jVe2j
2 jV�3j

2 jVe3j
2 jV�1j

2
�

jV�1j
2
�

Re� Re�

0.3 0.5 0.01 0.11 0.94 0.95
0.20 1.04 1.06

0.3 0.5 0.005 0.12 0.96 0.96
0.18 1.03 1.03

0.35 0.5 0.01 0.13 0.94 0.96
0.23 1.03 1.05

0.35 0.55 0.01 0.12 0.88 0.91
0.21 0.95 0.99

0.35 0.4 0.01 0.17 1.05 1.14
0.26 1.14 1.22

0.35 0.6 0.01 0.10 0.80 0.86
0.19 0.86 0.95

0.25 0.6 0.01 0.063 0.81 0.86

0.145 0.90 1.00

0.3 0.6 0.01 0.081 0.81 0.86
0.17 0.88 0.98
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(iii) when one varies jV�3j
2 by 20%, either up or down,

it is possible for Re� and Re� to differ from 1 by as
much as 20%. Unfortunately, these large discrep-
ancies require values of jV�1j

2 such that � ’ 0 or
�, which means very little CP violation

(iv) jVe3j
2 has very little impact and varying it from

0.01 to 0.005 will change Re� and Re�, typically by
1% or so.

Therefore, we can say that, even within the standard pro-
duction mechanism for the UHCR, deviations of Re� and
Re� by 20% from their expectation value of 1 are possible
with the current experimental data but require in general
pushing these data to their limits and CP violation to be
vanishingly small.

C. Neutrino fluxes and �

In order to study the bounds one could set on � if one
were to measure Re� with a given accuracy, we express
jV�1j

2 in terms of Re� and use that result directly into our
expression of cos��� (2.10). Again, we use a Monte Carlo
technique to scan the allowed parameter space. As a tech-
nical detail, we note that we have a quadratic equation to
solve with two possible values for jV�1j

2 but only one
value respects unitarity and leads to a positive value of
J2; events that do not respect unitarity are excluded from

our Monte Carlo. In Table IV, we summarize our results.
We see that:

(i) the most important parameters are jV�3j
2 and Re�,

where the uncertainties must be rather small, while
jVe2j

2 and jVe3j
2 can tolerate much larger errors

without degrading the limits much
(ii) in general, a precision of 2% on all 4 parameters

leads to tight constraints on �; this can be relaxed to
10% for jVe2j

2 and up to 25% for jVe3j
2 without

loosing much on the bounds on �
(iii) large or small values of Re� (1.13 or 0.84, for

example) require higher precision in the four pa-
rameters in order to keep cos��� away from �1 or
�1; the precision required on jVe2j

2 and jVe3j
2 is

still lower than that on the other two parameters.
Recall that cos��� � �1 means no CP violation.

(iv) as jVe3j
2 gets smaller, a higher precision on the

parameters is necessary in order to keep the same
tight range on �

(v) with some combinations of parameters, it is pos-
sible to exclude � � � or 0 with a precision of a
few percent on the parameters

(vi) an uncertainty of 5% on Re� can limit � to a 90-
degree range or smaller with certain combination of
parameters

TABLE IV. Values of cos��� for different combinations of parameters: cos���c is obtained
from the central values of the parameters while cos���� and cos���� are the extremum values
allowed by the uncertainties (shown in percent, in parentheses next to each parameter).

jVe2j
2 jV�3j

2 jVe3j
2 Re� cos���� cos���c cos����

0.30 (1) 0.50 (1) 0.01 (1) 1.00 (1) �0:183 0.118 0.463
0.30 (10) 0.5 (1) 0.01 (25) 1.00 (1) �0:265 0.118 0.567
0.30 (2) 0.50 (2) 0.01 (2) 1.00 (2) �0:463 0.118 0.891
0.30 (1) 0.50 (1) 0.005 (1) 1.00 (1) �0:332 0.882 1.0
0.30 (2) 0.50 (2) 0.005 (2) 1.00 (2) �0:718 0.082 1.0
0.30 (5) 0.50 (1) 0.005 (10) 1.00 (1) �0:373 0.082 0.600

0.30 (1) 0.60 (1) 0.01 (1) 0.84 (1) �0:605 �0:211 0.257
0.30 (2) 0.60 (2) 0.01 (2) 0.84 (2) �0:949 �0:211 0.867
0.30 (5) 0.60 (1) 0.01 (10) 0.84 (1) �0:653 �0:211 0.348

0.35 (1) 0.45 (1) 0.01 (1) 1.03 (1) �0:769 �0:485 �0:186
0.35 (2) 0.45 (1) 0.01 (2) 1.03 (1) �0:792 �0:485 �0:181
0.35 (10) 0.45 (1) 0.01 (10) 1.03 (1) �0:931 �0:485 �0:121
0.35 (10) 0.45 (2) 0.01 (10) 1.03 (2) �0:936 �0:485 �0:160

0.24 (2) 0.40 (2) 0.01 (2) 1.06 (2) �0:476 �0:141 0.205
0.24 (10) 0.40 (2) 0.01 (25) 1.06 (2) �0:679 �0:141 0.290
0.24 (2) 0.40 (2) 0.01 (2) 1.13 (2) 0.446 0.845 1.0
0.24 (10) 0.40 (1) 0.01 (25) 1.13 (1) 0.579 0.845 1.0
0.24 (2) 0.40 (2) 0.01 (2) 1.13 (5) �0:076 0.845 1.0

0.25 (1) 0.55 (1) 0.01 (1) 0.94 (1) �0:165 0.135 0.475
0.25 (10) 0.55 (1) 0.01 (25) 0.94 (1) �0:244 0.135 0.627
0.25 (2) 0.55 (2) 0.01 (2) 0.94 (2) �0:440 0.135 0.874
0.25 (5) 0.55 (2) 0.01 (10) 0.94 (2) �0:46 0.135 0.950
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The precision required in order to get interesting con-
straints on � is daunting but this was expected since we
saw that jV�1j

2 was the least sensitive of our three parame-
ters to set limits on �.

V. NEW PHYSICS AND �

This general behavior of cosmic neutrinos fluxes has
been noted before [20] and comes directly from the fact
that jV�3j

2 is close to 0.5. As jV�3j
2 goes away from 0.5

(current data allow a deviation of up to 20%), the ratios can
differ substantially from 1:1:1, as we just saw. This brings
the question of how one would interpret ratios that would
differ much more than 8%, say 30% or more. It would be
difficult to explain these anomalies within the SM and such
discrepancies might suggest some new physics. This new
physics could bring its own CP violation, which could be à
la Dirac; we would then deal with an effective CP phase
such that �effective � �� �new.

We will consider new physics beyond massive neutrinos
and for illustration purposes, we choose nonradiative neu-
trino decays.

A. Nonradiative neutrino decays and � eff

The notion of nonradiative neutrino decay as a source of
deviations from the standard ratio was first discussed in
[22] and we refer to this paper for details. Essentially, in
this model, the observable flavor ratio is modified to be

 	e:	�:	� � jVe1j
2:jV�1j

2:jV�1j
2; (5.1)

where we assume normal mass hierarchy.
Contrary to the SM flux ratios, the ratio R�� � 	�=	�

is a direct measure of

 �1 �
jV�1j

2

jV�1j
2 ; (5.2)

which proved to be the best variable to set constraints on �.

Table V shows what kind of limits one could obtain with
such a scenario. We note that:

(i) uncertainties in the 5%–10% range can lead to
interesting constraints on �eff

(ii) the limits are insensitive to the uncertainty on
jVe3j

2

(iii) in this model, flux ratios of up to 3 are allowed with
current data. This limit depends on jVe3j

2 and as
jVe3j

2 decreases, so does the upper limit of the
ratio.

As we just saw, if Re� or Re� is close to 1, there is no
need for new physics and a precision of 1%–2% is required
to set bounds on �. Such a precision appears extremely
difficult at planned detectors such as IceCube, Antares,
Nestor, Anita, or Baikal [23]. An optimistic view would
be the detection of a few tens of events per year at IceCube,
for example. If we assume that all these detectors will have
comparable performance after a few years of running, then
we could hope for about 100 events per year. This will not
be sufficient to reach a precision of 1% in a reasonable time
frame but a 10% precision appears within reach. Therefore,
the better scenario, when considering the experimental
precision, is to have very different neutrino flux ratios; in
that case, a 10% precision leads to interesting constraints
on �effective.

VI. CONCLUSIONS

In this paper we have shown how it is possible to get
information about CP violation in the leptonic sector
without performing any direct experiment on CP violation.
In the usual parametrization of the leptonic mixing, the
mixings are described by three mixing angles and the
fourth parameter is the CP-violating phase, �. All the
information about mixing and CP violation can also be
described completely by four mixing elements, four jVijj2.
We have shown how one can extract information on sin2���
and cos��� from four jVijj2 or three jVijj2’s and a ratio of

TABLE V. Values of cos��eff� for different combinations of parameters in a nonradiative decay
scenario: cos��eff�c is obtained from the central values of the parameters while cos��eff�� and
cos��eff�� are the extremum values allowed by the uncertainties (shown in percent, in
parentheses next to each parameter).

jVe2j
2 jV�3j

2 jVe3j
2 �1 � 	t

�=	t
� cos��eff�� cos��eff�c cos��eff��

0.30 (5) 0.50 (5) 0.01 (5) 0.7 (5) 0.377 0.628 0.920
0.30 (5) 0.50 (5) 0.01 (10) 0.7 (5) 0.378 0.628 0.940
0.30 (5) 0.50 (5) 0.01 (5) 0.7 (10) 0.303 0.628 1.0
0.30 (5) 0.50 (5) 0.01 (25) 0.7 (5) 0.380 0.628 1.0

0.30 (5) 0.50 (5) 0.01 (5) 1.3 (5) �0:685 �0:407 �0:161
0.30 (5) 0.50 (5) 0.01 (5) 1.3 (10) �0:765 �0:407 �0:072
0.30 (5) 0.50 (5) 0.01 (5) 1.8 (10) �1:0 �0:931 �0:598

0.25 (5) 0.60 (5) 0.01 (5) 1.8 (5) �0:522 �0:263 �0:013
0.25 (5) 0.60 (5) 0.01 (5) 3.0 (10) �1:0 �0:920 �0:624
0.25 (5) 0.60 (5) 0.005 (5) 2.5 (10) �1:0 �0:971 �0:544
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two jVijj2’s. We used two such ratios: �1 � jV�1j
2=jV�1j

2

and �2 � jV�2j
2=jV�1j

2.
We find that if one uses jVe2j

2, jV�3j
2, and jVe3j

2, then it
is better to use jV�1j

2 or jV�1j
2 as the fourth independent

jVijj
2. When the first two parameters remain close to their

current central experimental values, jV�1j
2 is slightly bet-

ter than jV�1j
2 while jV�1j

2 is slightly better when the first
two parameters digress from their current central experi-
mental values.

As a first constraint that does not require particularly
precise data, we find that if jV�1j

2 were larger than
jV�1j

2
J2�J2

max
, then � would have to be in the first or fourth

quadrant.
In general, when the four parameters have uncertainties

of 10%, it is possible to get interesting constraints on � on
some of the parameter space. For example, assuming 10%
errors, if jVe2j

2 and jV�3j
2 keep their current experimental

central values and jV�1j
2 turns out to be about 0.15, then

j�j has a 70 deg range centered at about 90 deg if jVe3j
2

turns out to be 0.03; this range decreases to about 40 deg if
one measures �1 and it decreases as jV2

e3 increases. If the
uncertainties are reduced to 5%, then the ranges on �
become 30–60 deg and can tolerate a value of 0.01 for
jVe3j

2. We also found that, for most combinations of jVe2j
2

and jV�3j
2, a small value of jV�1j

2 (0.1) implies that j�j is
between �=2 and �. It turns out that cos��� is not particu-
larly sensitive to jVe3j

2 over most of the parameter space.
This implies that, once the errors are reduced to the 2%
level, even if the error on jVe3j

2 stayed at 10%, it would not
degrade the constraints on � by much. Of the three varia-
bles investigated here, the best one turned out to be �1.

In order to get the fourth piece of information needed to
set bounds on �, we explored the use of ultrahigh energy
cosmic neutrinos. Generally, due to a numerical accident

stemming mostly from jV�3j
2 ’ 0:5, the cosmic neutrino

fluxes are very similar once they reach the Earth. However,
current data allow cosmic neutrino fluxes to differ from
their central, expected value of 1 by up to 20%: this
requires pushing the parameters to the acceptable limits
and implies that CP violation in the leptonic sector is
vanishingly small. Unfortunately, the uncertainties on the
data would have to be at the few percent level on the
cosmic neutrino fluxes and on jVe2j

2 in order to set inter-
esting limits on �. Finally, we studied a nonradiative decay
model of neutrinos that could lead to flux ratios very
different from 1. Indeed, in this model, the current data
allow for neutrino fluxes to differ by a factor of up to three.
Fortunately, in this model, one ratio of neutrino fluxes is �1

and leads to rather interesting constraints on �eff with
experimental uncertainties of 10% on ratios of cosmic
neutrino fluxes.

It appears that 1%–2% precision on extremely high
energy neutrino fluxes will be out of reach for the planned
detectors but that 10% precision will be within reach. It
would then be difficult to constrain � within the SM
context using these cosmic rays and one would have to
rely on other means to measure jV�1j

2 or jV�1j
2 or �1 or �2.

On the other hand, if the neutrino fluxes are very different,
then one is likely outside the SM and a 10% precision on
the neutrino flux ratios is sufficient in some models to set
interesting bounds on �effective.
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