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The idea of quark-lepton universality at high energies has recently been explored in unified theories
based upon the quartification gauge group SU�3�4. These schemes encompass a quark-lepton exchange
symmetry that results upon the introduction of leptonic color. It has been demonstrated that, in models in
which the quartification gauge symmetry is broken down to the standard model gauge group, gauge
coupling constant unification can be achieved, and there is no unique scenario. The same is also true when
the leptonic color gauge group is only partially broken, leaving a remnant SU�2�‘ symmetry at the
standard model level. Here we perform an analysis of the neutrino mass spectrum of such models. We
show that these models do not naturally generate small Majorana neutrino masses, thus correcting an error
in our earlier quartification paper, but with the addition of one singlet neutral fermion per family there is a
realization of seesaw suppressed masses for the neutrinos. We also show that these schemes are consistent
with proton decay.
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I. INTRODUCTION

Quark-lepton universality at high energies has been
advocated as one of the possible extensions to the standard
model (SM). Within this class of extensions, a quark-
lepton discrete symmetry is imposed after endowing the
leptons with new leptonic color degrees of freedom de-
scribed by the separate gauge symmetry SU�3�‘. This idea
was first explored by Foot and Lew [1] with quarks and
leptons being indistinguishable above an energy scale that
could be as low as a few TeV. Within this context, the
quark-lepton discrete symmetry does not require the uni-
fication of the gauge coupling constants. It is interesting
that quark-lepton quantum number unification can be di-
vorced from coupling constant unification; however, it is
desirable to achieve the latter. To accommodate such uni-
fication, the gauge symmetry may be enhanced to the
‘‘quartification’’ group SU�3�q � SU�3�L � SU�3�‘ �
SU�3�R [2,3], augmented by a discrete symmetry relating
the SU�3� factors.

This gauge group was independently explored by Volkas
and Joshi [2] and Babu, Ma, and Willenbrock [3]. The
former model achieved only the partial unification of the
gauge coupling constants with two independent gauge
coupling constants at the unification scale. The latter found
a way to achieve full unification through enforcing addi-
tional discrete symmetries and introducing nonrenormaliz-
able terms. This model also achieved suppressed nonzero
neutrino masses with the addition of a heavy singlet per
fermionic family. Both of these models had a residual
SU�2�‘ symmetry at the SM level, a result of the leptonic
color symmetry being only partially broken. The motiva-
tion for our recent paper [4] was to see if full coupling

constant quartification could be achieved without the in-
troduction of additional symmetries and higher-dimension
operators. The basic change from Ref. [3] was to admit the
possibility of intermediate symmetry breaking scales.

We performed a systematic analysis of the
renormalization-group equations (RGEs) for all possible
symmetry breaking routes from the quartification gauge
group down to the standard model gauge group GSM. We
demonstrated that full unification could be achieved using
a number of these routes without the need for the additional
discrete symmetry or the higher-dimension operators of
[3]. This was true both for models that break the symmetry
down to GSM [5,6] or only to GSM � SU�2�‘ [1–3]. In the
case where there was no residual SU�2�‘ symmetry, there
were four independent choices that gave rise to unification
of the gauge couplings, all of which predicted interesting,
though distinct, phenomenology.

The purpose of the present paper is to examine the
neutrino sector of quartification models in more detail,
and, in the process, to correct an error in our previous
paper [4].

The mass analysis of the leptonic sector for the models
where SU�2�‘ was broken indicated that there were ten
neutral leptonic components (per family) which, it was
claimed, gained Majorana masses [4]. Nine of the resulting
mass eigenvalues were of order of the grand unified theory
(GUT) scale, and the tenth was of order M2

EW=MGUT for a
generic MGUT and a single symmetry breaking event. This
was the mass scale that would result from a regular seesaw
mechanism [7] and this particle also displayed the correct
weak coupling with the electron, suggesting that it was
indeed a neutrino. It was claimed in this case that, for a
general model, seesaw suppressed masses for the neutrinos
arose naturally; however, it was anticipated that the intro-
duction of intermediate scales, which would separate the
values of theMGUT entries, would increase the value of this
small eigenvalue.
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A more precise analysis of this neutral lepton sector was
performed which sought to confirm seesaw suppressed
masses for the neutrinos in the individual symmetry break-
ing cascades that achieved unification of the gauge cou-
pling constants. In the course of this analysis, we
discovered that two entries were incorrectly omitted from
the Majorana mass matrix in the model with no residual
SU�2�‘ symmetry of Sec. III B of Ref. [4]. The inclusion of
these terms alters the general conclusion of Ref. [4] with
regards to the neutrino masses. The results of the RGE
analysis, however, remain unaffected with unification still
possible.

Here we present a detailed analysis of the mass spectrum
of the leptonic sector of these quartification models. For
the general case where there is only one symmetry break-
ing event and no residual SU�2�‘ symmetry, the mass
eigenvalues reveal that there are two light (though not
ultralight) eigenvalues, disagreeing with our previous
claim. Here we propose a simple extension to ensure that
only one ultralight (i.e., seesaw suppressed) active
Majorana neutrino per family is generated [7]. It turns
out that the introduction of a singlet fermion S with bare
mass MS per family works well. Although the addition of
these singlets slightly complicates the models, they are one
way by which to generate seesaw suppression [8]. In this
paper we show that this is all that is required to generate the
desired neutrino mass spectrum in the unified schemes of
[4], with the additional discrete symmetries and higher-
dimensional operators of [3] still absent.

A summary of the neutral sector of the quartification
model with the gauge symmetry fully broken down to the
standard model gauge group is given in Sec. II. This
contains details of the Yukawa sector and lists the four
schemes which allow for the unification of the gauge
coupling constants. In Sec. III we outline the mass analysis
of the leptonic sector with and without the singlet present,
and extend the analysis to consider the details of the four
unified models. This analysis is repeated in the following
section for the case where there is a residual SU�2�‘
symmetry. In Sec. V we estimate the lifetime of the proton,
and we conclude in Sec. VI.

II. THE QUARTIFICATION MODEL

The quartification gauge group is

 G4 � SU�3�q � SU�3�L � SU�3�‘ � SU�3�R: (2.1)

A Z4 symmetry which cyclicly permutes the gauge groups
in the order q! L! ‘! R! q is imposed, ensuring a
single gauge coupling constant. The multiplets which
house the fermions are represented by 3� 3 matrices:

 q� �3; �3; 1; 1� �
d u h
d u h
d u h

0
@

1
A;

qc � ��3; 1; 1; 3� �
dc dc dc

uc uc uc

hc hc hc

0
@

1
A;

‘� �1; 3; �3; 1� �
x1 x2 �
y1 y2 e
z1 z2 N

0
@

1
A;

‘c � �1; 1; 3; �3� �
xc1 yc1 zc1
xc2 yc2 zc2
�c ec Nc

0
@

1
A;

(2.2)

where q�‘� contain the left-handed quarks (leptons) and
qc�‘c� the left-handed antiquarks (antileptons). Both elec-
trically neutral and charged exotic particles are needed to
fill the representations. Of particular note, the exotic fer-
mions xi, yi were required to be at the TeV scale in Ref. [3]
to facilitate gauge coupling constant unification.

The Higgs fields are contained in two different 36’s of
G4, and are labeled as per

 �a � �1; �3; 1; 3�; �b � �3; 1; �3; 1�;

�c � �1; 3; 1; �3�; �d � ��3; 1; 3; 1�;

�‘ � �1; 3; �3; 1�; �‘c � �1; 1; 3; �3�;

�qc � ��3; 1; 1; 3�; �q � �3; �3; 1; 1�:

(2.3)

These fields are closed under the Z4 symmetry and gen-
erate realistic fermion masses and mixings, with the cou-
pling to the fermions described by the Z4-invariant
Lagrangian1

 

LYuk � Y1 Tr�‘‘c�a � ‘cqc�b � qcq�c � q‘�d�

� Y2 Tr�‘‘c�yc � ‘cqc�
y
d � q

cq�ya � q‘�yb �

� YL�
jkm�npr�‘jn‘kp��‘�

mr � �‘c�jn�‘c�kp��‘c�
mr

� �qc�jn�qc�kp��qc�
mr � �q�jn�q�kp��q�

mr� � H:c:

(2.4)

The Higgs fields are sufficient to achieve the necessary
symmetry breaking, with the pattern G4!

V SU�3�q �
SU�2�L �U�1�Y!

u SU�3�q �U�1�Q accomplished by the
fields obtaining vacuum expectation values (VEVs) of the
form

1The notation ‘‘c�a means �‘R‘L�a, etc.
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h�‘i �

u‘1
0 u‘2

0 u‘3
0

V‘1
0 V‘2

0
BB@

1
CCA; h�‘ci �

V‘c1 0 V‘c2
0 V‘c3 0

V‘c4 0 V‘c
5

0
BB@

1
CCA;

h�ai� h�
y
c i �

ua1
0 ua2

0 ua3
0

Va1
0 Va2

0
BB@

1
CCA: (2.5)

The u’s are of electroweak order and the Vi’s determine the
higher energy breaking. Since �a and �yc have the same
quantum numbers and hence VEV pattern, they can be
treated together for the purposes of this paper.

The four independent symmetry breaking cascades
which were shown to permit unification are

(1)
 

G4!
v
SU�3�q � SU�2�L � SU�2�‘ � SU�2�R �U�1�

!
x
SU�3�q � SU�2�L �U�1�Y; (2.6)

(2)
 

G4!
v
SU�3�q � SU�2�L � SU�3�‘ � SU�2�R �U�1�

!
w
SU�3�q � SU�2�L � SU�2�‘ � SU�2�R �U�1�

!
x
SU�3�q � SU�2�L � SU�2�‘ �U�1�

!
y
SU�3�q � SU�2�L �U�1�Y; (2.7)

(3)
 

G4!
v
SU�3�q � SU�2�L � SU�3�‘ � SU�2�R �U�1�

!
w
SU�3�q � SU�2�L � SU�2�‘ � SU�2�R �U�1�

!
x
SU�3�q � SU�2�L � SU�2�R �U�1�

!
y
SU�3�q � SU�2�L �U�1�Y; (2.8)

(4)
 

G4!
v
SU�3�q � SU�2�L � SU�3�‘ � SU�2�R �U�1�

!
w
SU�3�q � SU�2�L � SU�3�‘ �U�1�

!
x
SU�3�q � SU�2�L � SU�2�‘ �U�1�

!
y
SU�3�q � SU�2�L �U�1�Y: (2.9)

There are actually eight independent symmetry breaking
routes from the quartification gauge group down to the
standard model gauge group. Constraints on the unification
of the gauge coupling constants revealed that four of these
converged into the single possibility of Eq. (2.6), one
disallowed unification entirely, and the other three are as
listed in Eqs. (2.7), (2.8), and (2.9) [4].

With the introduction of these intermediate steps we
now have five energy scales v � w � x � y > u; the
VEV entries Vi of Eq. (2.5) now assuming the order y, x,
w, or v depending on the route. These are given by

(1)  V‘2;‘c5;a2
� v; V‘1;‘c1;‘

c
2;‘

c
3;‘

c
4;a1
� x; (2.10)

(2)  Va2
� v; V‘2;‘c5

� w; V‘c4;a1
� x;

V‘1;‘c1;2;3
� y;

(2.11)

(3)  Va2
� v; V‘2;‘c5

� w; V‘1;‘c2
� x;

V‘c1;3;4;a1
� y;

(2.12)

(4)  Va2
� v; Va1

� w; V‘2;‘c4;‘
c
5
� x;

V‘1;‘c1;2;3
� y:

(2.13)

As the Vi’s assume different energies across the four
cascades, the mass spectrum resulting from the Yukawa
couplings of Eq. (2.4) differs for each. This variation gives
rise to distinct energy bounds on the intermediate scales
when considering the RGEs [4]. The scales of all the
breakings which allow unification are listed in Table I.
The first cascade offered no flexibility, with the unification
occurring at a fixed value of energy scales only. The other
three cascades deliver unification within a range of ener-
gies, with the last stage of breaking able to occur at
106 GeV. Note that cascades 2 and 3 have identical energy
thresholds despite being independent.

For details of the RGE analysis, including the exact
VEV structure of Eq. (2.5) and the fermion and scalar

TABLE I. The range of energies for the symmetry breaking scales that will consistently give
unification of the gauge coupling constants. Cascade 1 features the last stage of symmetry
breaking necessarily occurring below a TeV. The other three choices allow for a range in the
intermediate scales while still preserving unification. When ymax is chosen for cascades 2, 3, and
4, they also become equivalent.

Cascade y x w v

1 7:1� 102 GeV 1:3� 1013 GeV
2 and 3 ymin � 1 TeV 1 TeV 6:2� 1012 GeV vmax � 1:1� 1013 GeV

4:2� 107 GeV 4:2� 107 GeV vmax � 3:8� 1011 GeV
ymax � 1:2� 106 GeV 1:2� 106 GeV 1:2� 106 GeV 1:4� 1011 GeV

4 ymin � 1 TeV 8:8� 103 GeV 3:6� 1010 GeV vmin � 3:6� 1010 GeV
4:2� 107 GeV 4:2� 107 GeV vmax � 3:8� 1011 GeV

ymax � 1:2� 106 GeV 1:2� 106 GeV 1:2� 106 GeV 1:4� 1011 GeV
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mass spectrum for each cascade, we refer the reader to
Appendix B of Ref. [4].2 It is sufficient for the purposes of
this paper to be aware of the energy bounds on the inter-
mediate and unification scales, and recognize that the
internal structure of the scalar VEVs, and hence fermion
mass matrices, will be unique for each cascade.

III. NEUTRINO MASSES WHEN SU�2�‘ IS BROKEN

Without restrictions imposed on the Higgs fields, the
allowed Yukawa interaction terms in the leptonic sector are

 Y1 Tr	‘‘c�a
; YL�jkm�npr‘jn‘kp��‘�
mr;

YL�jkm�npr�‘c�jn�‘c�kp��‘c�
mr;

(3.1)

with the Y2 term effectively subsumed into the Y1 term.
The leptons with a charge of �1 are the ec, yc1, z2, and x2

components of Eq. (2.2). They mix and form Dirac mass

terms with the charge�1 lepton components e, y1, zc2, and
xc2, in the manner

 

e y1 zc2 xc2
� �

ua3
0 �u‘1

V‘1

0 ua3
u‘2

�V‘2

�V‘c1 V‘c4 Va2
ua2

V‘c2 �V‘c
5
Va1

ua1

0
BBB@

1
CCCA

ec

yc1
z2

x2

0
BBB@

1
CCCA�H:c:

(3.2)

where all the Yukawa coupling factors have been absorbed
into the VEVs. There are three Dirac mass eigenvalues (per
family) of the intermediate scales v, w, or x, and one
eigenvalue (per family) of electroweak scale correspond-
ing to the e, �, and � masses.

The leptonic components N, Nc, �, �c, x1, xc1, y2, yc2, z1,
and zc1 are all neutral. These ten neutral leptons gain
Majorana masses, as per

 ��c�T

0 Va2
0 Va1

u‘3
0 u‘1

0 0 0
Va2

0 ua2
0 0 V‘c3 0 V‘c1 0 0

0 ua2
0 ua1

0 0 �V‘1
0 �u‘3

0
Va1

0 ua1
0 0 0 0 �V‘c2 0 �V‘c3

u‘3
0 0 0 0 ua1

V‘2
0 0 ua2

0 V‘c3 0 0 ua1
0 0 V‘c5 Va1

0
u‘1

0 �V‘1
0 V‘2

0 0 ua3
�u‘2

0
0 V‘c1 0 �V‘c2 0 V‘c

5
ua3

0 0 �V‘c4
0 0 �u‘3

0 0 Va1
�u‘2

0 0 Va2

0 0 0 �V‘c3 ua2
0 0 �V‘c4 Va2

0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

�; (3.3)

where � � N Nc � �c x1 xc1 y2 yc2 z1 zc1
� �

T .
Equation (3.3) is the generic form of this mass matrix for
all four cascades. Given that the Vi’s will have different
orders depending upon the exact route, the strength of the
mixings between particles will also vary across the four
individual cascades, changing the internal structure of the
matrix and hence eigenvalues. Although there are five
energy scales within this matrix, the unification require-
ments give independence to only three of these. In the
following analysis, the higher two scales w and v are
constrained to be nontrivial functions of x and y.
Unfortunately, diagonalization is not analytically tractable,
with analytic approximations creating too much error in
the energy regions of interest, so the relationship between
the eigenvalues and the energy scales was ascertained
numerically.

Cascade 1, with its fixed choice of energy scales, offers
no choice of generating a small neutrino mass, revealing
two light mass eigenvalues of O�u�. These eigenvalues,
although of the same order, are not identical, so they do not
indicate a Dirac neutrino.

At first glance, the other three cascades seem more
promising given that there is flexibility in the energy
scales. However, the mass eigenvalues of cascades 2 and
3 adopt a similar pattern, with two light eigenvalues which
are again not identical. These eigenvalues are of O�u� and
they do not exhibit any significant fluctuation from this
order within the energy bounds listed in Table I.

Cascade 4 is the only option which returns light eigen-
values which depart from the electroweak order. Again we
have two similar, light eigenvalues with the discrepancies
between their values more evident for low x, y. At this end
of the symmetry breaking spectrum, we have a mass ei-
genvalue of no less than O�100� MeV, which increases to
O�u� as x and y approach their maximum values. Thus, one
cannot obtain a small enough Majorana mass for the neu-
trino here.

Additionally, in all of the above cases, the electron
couples to two of the lightest eigenvalues, so there are
two ‘‘neutrinolike’’ particles per family. Thus, we are
unable to return nonzero suppressed neutrino masses in
these models, and there are unwanted partners for the
lightest eigenstates also.

For schemes which are not forthcoming of a natural
seesaw mechanism for neutrinos, there are three main
approaches by which to induce the correct relations which
feature in model building. These are the employment of

2The cascades from Ref. [4] have been relabeled here for
convenience. Thus, here cascade 1 corresponds to cascades 1, 2,
7, and 8 of Ref. [4]; two is four, three is five, and four represents
six.
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discrete symmetries [9], the addition of a neutral fermion
per family which transforms as a singlet under the gauge
group [8], and the implementation of nonrenormalizable
higher-dimensional operators [10]. These three were all
invoked in the model of Babu et al. [3], although not all
were introduced to resolve the issue of neutrino mass. The
former was required to forbid some of the exotic leptons
from gaining GUT scale masses, a result which would be
incompatible with the unification of the gauge coupling
constants. In this case, a small Majorana neutrino mass was
obtained by the addition of a fermion singlet which was
given a GUT scale bare mass.

Unfortunately, the minimal quartification models fail to
automatically yield seesaw suppressed neutrinos. As the
next best alternative, we try to construct the simplest
satisfactory nonminimal class of models. The logical
choice to consider is the addition of a singlet fermion S
with Majorana mass MS. This action does not impact the
renormalization-group equation analysis of Ref. [4], with
the unification constraints still as per Table I. We shall
consider a range of values for the mass MS. Being a
fermion mass, naturalness does not automatically prejudice
us to take its value to be at the highest scale in the theory. In

fact, a small mass term for this singlet has been extensively
employed to generate suppressed neutrino masses [11], and
this was specifically shown in quark-lepton symmetric
models in Ref. [6]. In the latter model, the neutrino mass
term (family structure suppressed) is of the form

 ��cL ��R �Sc
� � 0 u 0

u 0 v
0 v MS

0
@

1
A �L

�cR
S

0
@

1
A: (3.4)

IfMS � 0 then there is a massless Weyl neutrino and Dirac
partner. For small, nonzero MS this Weyl state transforms
into a Majorana neutrino with a mass twice suppressed by
the GUT scale, being of the order u�u=v��MS=v�.
Motivated by this, we try adding a singlet to our more
complicated scenario.

The singlet couples to the neutral leptons via the gauge
invariant terms

 �S�Tr	‘�y‘ 
 � Tr	‘c�y‘c
�S: (3.5)

The mass matrix for the neutral leptons is now simply
Eq. (3.3) with the addition of a column and a row corre-
sponding to S,

 ��0c�T

0 Va2
0 Va1

u‘3
0 u‘1

0 0 0 �sV‘2

Va2
0 ua2

0 0 V‘c3 0 V‘c1 0 0 �sV‘c5
0 ua2

0 ua1
0 0 �V‘1

0 �u‘3
0 �su‘2

Va1
0 ua1

0 0 0 0 �V‘c2 0 �V‘c3 �sV‘c4
u‘3

0 0 0 0 ua1
V‘2

0 0 ua2
�su‘1

0 V‘c3 0 0 ua1
0 0 V‘c

5
Va1

0 �sV‘c1
u‘1

0 �V‘1
0 V‘2

0 0 ua3
�u‘2

0 �su‘3

0 V‘c1 0 �V‘c2 0 V‘c
5

ua3
0 0 �V‘c4 �sV‘c3

0 0 �u‘3
0 0 Va1

�u‘2
0 0 Va2

�sV‘1

0 0 0 �V‘c3 ua2
0 0 �V‘c4 Va2

0 �sV‘c2
�sV‘2

�sV‘c
5

�su‘2
�sV‘c4 �su‘1

�sV‘c1 �su‘3
�sV‘c3 �sV‘1

�sV‘c2 MS

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

�0; (3.6)

with

 �0 �
�
S

� �
:

The same methodology for the eigenvalue analysis is now
applied to this new mass matrix; however, now our search
space expands to allow MS 2 	1 TeV; v
 as motivated
above, and an arbitrary choice of the coupling �s.

Again, cascade 1 can be immediately ruled out, the
presence of the singlet not altering the pattern of the
eigenvalues from the case above. The same is not true for
the other three unification schemes. Consider the second
cascade. With the unification constraints imposed, both v
and w are dependent on the u, y, and x scales, giving us
three variables. For low values of y and x, the inclusion of
the singlet does not have much of an observable effect on
the eigenvalues from the scenario above. However, for

larger values of x, and a small bare mass, we have one
light mass eigenvalue. This occurs for x * 106 GeV and
MS < 106 GeV, with the mass becoming lighter for larger
x and smaller MS. The most favorable outcome is when
there exists a larger hierarchy between x and y. Within this
domain, w and v decrease, with w! x and v=x!
104 GeV. For the range of energies that return a sole light
eigenvalue, this particle displays the correct weak coupling
with the electron and thus can be identified as the neutrino.
Subsequently, if we consider a light singlet, we can gen-
erate seesaw suppressed neutrino masses for this choice of
unification schemes.

Cascade 3, although similar to two in its unification
characteristics, does not offer as attractive a mass spec-
trum. The mass of the singlet must always be less than
106 GeV to return a single light eigenvalue. However,
although light, its value does not become ultralight unless
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we consider the limit y� ymin and x� 107 GeV when this
choice becomes equivalent to cascade 2. It is interesting to
note that both cascades 2 and 3 requireMS & O�x� in order
to return a ultralight eigenvalue. This suggests a nontrivial
relationship between these two scales. This is not alto-
gether surprising given that we have considered w and v
to be functions of x, and so x is the order parameter
governing the lightness of this Majorana mass term.

Cascade 4 also generates an ultralight neutrino mass. As
long as MS & MGUT we have two lighter Majorana eigen-
values. For larger values of x, we have a greater hierarchy
in these two lightest eigenvalues for all values of y � x.
Within this region, x=w! 1 and the hierarchy between v
and w increases. The lightest eigenvalue becomes more
favorably light as the mass of the singlet is lowered, with
an ultralight eigenvalue obtained for MS & 106 GeV. This
one light mass eigenvalue displays the correct weak cou-
pling with the electron. In general, this eigenvalue is lighter
for all values of the breaking scales than the previous
cascades, giving us a lot more freedom. In particular, the
last stage of symmetry breaking can occur at higher ener-
gies while still allowing for small neutrino mass.
Additionally, as an ultralight eigenvalue can be generated
for larger values of x, this pushes the unification scale to
1011 GeV, which, although still low, is more favorable than
the lower unification bound of 1010 GeV.

In all the above cascades, the presence of the singlet only
has a significant influence on the two lightest eigenvalues,
the remaining spectrum of particle mass maintaining con-
sistency with that of Ref. [4] and Table I. Without an
analytic form of the eigenvalues, it is difficult to ascertain
precisely how the presence of the singlet influences the
behavior of the lightest eigenvalue and, in particular, why
MS <MGUT yields a nice spectrum. In particular, the
location of the coupling of order x appears to, at least
numerically, drive the order of this light eigenvalue. This
arises as we have treated the scales undemocratically.
Changing x alters the relative hierarchies of all scales,
and thus provides an energy domain in which there is
seesaw suppression. From this analysis, it appears that
Eq. (3.6) is a (rather complicated) generalization of
Eq. (3.4).

In particular instances, analytic approximations of this
light eigenvalue were obtained. However, in the energy
regions of interest, these approximations became too erro-
neous. Nevertheless, inclusion of the singlet generates a
hierarchy between the two lightest neutral mass terms, with
the heavier of the two pushed up to an energy x > m�c > y.
This, however, has no impact on the RGE analysis of
Ref. [4]. In the regions in which we have an ultralight
eigenvalue for m�, the second lightest term, corresponding
to m�c , has a value that, in general, approaches but never
reaches order x, and thus these values are consistent with
the previous calculations. Even if this mass were to exceed
order x, the resultant effect on the RGEs would be negli-

gible. This means also that any new physics due to the
presence of this exotic singlet will be above a TeV.

So, adding a light singlet fermion to the quartification
models of Ref. [4] gives rise to a small Majorana mass for
the neutrinos for a subset of these schemes. The success of
these scenarios depends nontrivially on the relative hier-
archies between the intermediate scales. It is interesting to
note that the introduction of intermediary symmetry break-
ing stages in quartification models yields both gauge cou-
pling unification [4] and seesaw suppressed neutrino
masses upon the addition of a fermion singlet. The pres-
ence of this singlet, while a complication, does preserve
many of the attractive features of quartification. In particu-
lar, the previous RGE analysis is unaffected, giving us a
unified scheme based on the quartification gauge group that
can deliver the SM and predicts interesting new phenome-
nology at 1 TeV and above. As the addition of the singlet
has not added any new phenomenology below a TeV here,
the phenomenological account of Sec. V of Ref. [4] is still
valid.

IV. NEUTRINO MASSES WHEN SU�2�‘ IS
UNBROKEN

We now consider the case where a residual SU�2�‘
symmetry remains at the standard model level. The four
independent routes for this symmetry breaking are

(1)
 

G4!
v
SU�3�q � SU�3�L � SU�2�‘ � SU�2�R �U�1�

!
w
SU�3�q � SU�2�L � SU�2�‘ � SU�2�R �U�1�

!
x
SU�3�q � SU�2�L � SU�2�‘ �U�1�Y; (4.1)

(2)
 

G4!
v
SU�3�q � SU�2�L � SU�2�‘ � SU�3�R �U�1�

!
w
SU�3�q � SU�2�L � SU�2�‘ � SU�2�R �U�1�

!
x
SU�3�q � SU�2�L � SU�2�‘ �U�1�Y; (4.2)

(3)
 

G4!
v
SU�3�q � SU�2�L � SU�3�‘ � SU�2�R �U�1�

!
w
SU�3�q � SU�2�L � SU�2�‘ � SU�2�R �U�1�

!
x
SU�3�q � SU�2�L � SU�2�‘ �U�1�Y; (4.3)

(4)
 

G4!
v
SU�3�q � SU�2�L � SU�3�‘ � SU�2�R �U�1�

!
w
SU�3�q � SU�2�L � SU�3�‘ �U�1�

!
x
SU�3�q � SU�2�L � SU�2�‘ �U�1�Y; (4.4)

all of which allow for unification of the gauge coupling
constants. The VEV pattern which achieves this breaking is
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h�‘i �

0 0 u‘
0 0 0

0 0 V‘

0
BB@

1
CCA; h�‘ci �

0 0 0

0 0 0

V‘c1 0 V‘c2

0
BB@

1
CCA;

h�ai � h�
y
c i �

ua1
0 ua2

0 ua3
0

Va1
0 Va2

0
BB@

1
CCA: (4.5)

The relationship between the V’s and the breaking scales
for each cascade are listed in Table II along with the energy
bounds of each symmetry breaking event which allows for
the unification of the gauge couplings. For full details of
the derivation of these scales, including the exact VEV
structure and mass spectrum for each cascade, see
Sec. IV A and Appendix A of Ref. [4].

Again, there is a range of possible energies at which
unification and symmetry breaking are compatible, with
the unification condition constraining v and w to be func-
tions of x and u only. Only one choice allows for a TeV
level breaking, the other three routes having a much nar-
rower range for the final stage of breaking.

The x1, xc1, y2, yc2, z1, and zc1 components are now
electrically charged and decouple from the N, Nc, �, �c

components. The mixing between the charged sector is
given by

 

x1 z1 yc2
� � ua1

ua2
V‘

Va1
Va2

�u‘
V‘c2 �V‘c1 ua3

0
BB@

1
CCA

xc1
zc1
y2

0
BB@

1
CCA

� x2 z2 yc1
� � ua1

ua2
�V‘

Va1
Va2

u‘
�V‘c2 V‘c1 ua3

0
BB@

1
CCA

xc2
zc2
y1

0
BB@

1
CCA� ua3

eec:

(4.6)

There is one electroweak Dirac term (per family) corre-
sponding to the e, �, and � masses, and the exotic charged
leptons obtain Dirac masses of order V.

As was concluded in Ref. [4], this model does not admit
a Majorana mass for the neutrinos. Adding the singlet, the
Majorana mass matrix has the form

 N Nc � �c S
� �

�

0 Va2
0 Va1

�sV‘
Va2

0 ua2
0 �sV‘c2

0 ua2
0 ua1

�su‘
Va1

0 ua1
0 �sV‘c1

�sV‘ �sV‘c2 �su‘ �sV‘c1 MS

0
BBBBBB@

1
CCCCCCA

N
Nc

�
�c

S

0
BBBBB@

1
CCCCCA:

(4.7)

For a generic symmetry breaking, the light eigenvalue
can be approximated to be

 m� �
�ua1

Va2
� ua2

Va1
�	MS�ua1

Va2
� ua2

Va1
� � 2�2

s��u‘Va2
V‘c1 � ua2

V‘V‘c1 � u‘Va1
V‘c2 � ua1

V‘V‘c2�


�2
s�Va2

V‘c1 � Va1
V‘c2�

2 : (4.8)

If there were only one symmetry breaking event to GSM �
SU�2�‘, then Vi ! v and the light eigenvalue approaches
u2=v in the limit �s ! 1. However, we know from the
unification conditions of Table II that our intermediate
scales are different and these influence the value of the
light eigenvalue. In fact, it appears that the hierarchy
between the intermediate scales aids in generating the

lightness of this mass term, and Eq. (4.8) remains valid
only for certain subsets of the individual cascades upon
identification of the V’s.

For the first cascade, the singlet does not conspire to give
favorable results, with two light eigenvalues of order the
electroweak scale for all possible values allowed by
unification.

TABLE II. Range of energy scales of symmetry breaking that yield unification of the gauge
coupling constants when the quartification gauge group is broken to GSM � SU�2�‘. There is
only one scenario which allows for a TeV level breaking scale. The others occur at higher
energies, with much narrower ranges for the final stage of breaking.

Cascade V’s x w v

1 V‘c2 � v, Va2;‘ � w, xmin � 1 TeV 2:7� 1012 GeV 1:2� 1017 GeV
Va1 ;‘c1

� x xmax � 6:4� 107 GeV 7:5� 1013 GeV 7:5� 1013 GeV
2 V‘ � v, Va2;‘

c
2
� w, xmin � 6:5� 105 GeV 6:5� 105 GeV 3:9� 1019 GeV

Va1 ;‘
c
1
� x xmax � 6:5� 107 GeV 7:4� 1013 GeV 7:4� 1013 GeV

3 Va2
� v, V‘;‘c2 � w, xmin � 6:3� 107 GeV 7:7� 1013 GeV 7:7� 1013 GeV
Va1 ;‘c1

� x xmax � 4:9� 1010 GeV 4:9� 1010 GeV 7� 1012 GeV
4 Va2

� v, Va1
� w, xmin � 6:2� 108 GeV 1:7� 1012 GeV 1:7� 1012 GeV

V‘;‘c2 � x xmax � 4:8� 1010 GeV 4:8� 1010 GeV 7� 1012 GeV
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We turn now to cascade 2 where the value of the last
stage of symmetry breaking has a much more narrow
range. The analytic approximation of the light eigenvalue
is valid only for x! xmax. In this limit, we obtain two light
eigenvalues, both of electroweak order. If MS  v then
one of these becomes lighter and the other heavier; how-
ever, we still cannot generate an ultralight mass. Thus we
are concerned with the lower bound of the last stage of
symmetry breaking. Fixing MS at the GUT scale, there is
one ultralight mass eigenvalue for x & 106 GeV. This light
eigenvalue appears to be independent of MS, remaining at
approximately the same order for all choices of the singlet
mass, and it displays the correct electroweak coupling. In
this limit, however, we have two additional light eigenval-
ues of electroweak order. The values of these two eigen-
values are significantly influenced only by x, not MS, and
they become larger than a TeV in the region in which we no
longer have an ultralight eigenvalue. In this case, the
presence of the singlet alters the spectrum of our particles,
with there being a light exotic singlet in addition to the
right-handed neutrino and the SM neutrino. This does not
impact the results of the RGE analysis of Ref. [4], as these
exotic singlets can be taken to be the Nc and �c compo-
nents which carry hypercharge Y � 0. So, one must choose
whether the generation of seesaw suppressed masses in this
scenario warrants the presence of exotic singlets with
masses under a TeV.

Cascade 3, conversely, exhibits seesaw suppressed neu-
trino masses for values of x closer to the upper energy
bound. For smaller values of x, the presence of the singlet,
and the variation of its mass, does not prove fruitful. The
Majorana mass matrix has three eigenvalues of order v and
two electroweak order eigenvalues which in the limit w!
v are approximately 	uv�v� x�
=v2. Again, considering
MS � v, increasing x affects three of the five eigenvalues.
An order v mass term becomes slightly lighter, approach-
ing order w, while the hierarchy between the two lightest
eigenvalues becomes more pronounced. As x! xmax, the
second lightest tends towards 106 GeV, and the lightest
becomes of order �fu2	MS � 2�2

sw�x�
g=�2
sw�x�2 for

smaller MS, as given by Eq. (4.8). Lowering the singlet
mass lowers the value of x at which the hierarchy between
the two lightest Majorana terms becomes prominent, and
lowers the third eigenvalue closer tow. At x � xmax we can
generate an ultralight eigenvalue, the particle displaying
the correct coupling with the electron. The second lightest
eigenvalue approaches order x but never attains it, and the
limiting value of the heavier eigenvalue is always larger
than order w. This preserves the spectrum of masses con-
sidered for the RGE analysis in Ref. [4] and, in particular,
there are no exotic singlets below a TeV.

The final cascade is the only choice which returns the
two lightest Majorana masses at distinct scales for all
values of Table II irrespective of the scale of the singlet
mass. In the limit x! w, Eq. (4.8) reduces to 	u2MS�v�

w�2
=�2
sw

4, this mass becoming lighter for larger x, w. An
ultralight eigenvalue can be obtained in this high x limit,
with the variation of the singlet mass not affecting this
order much. This particle has the correct coupling with the
electron. The other eigenvalues are influenced by the pres-
ence of the singlet; however, as in cascade 3, the ordering
of the particle spectrum is consistent with the RGE analy-
sis, and the linear combination corresponding to �c gains a
mass larger than a TeV.

So, when there is a residual SU�2�‘ gauge symmetry, we
still have three scenarios which achieve unification of the
gauge coupling constants and generate neutrino masses
that would result from the regular seesaw mechanism.
One of these choices is less desirable, having exotic sin-
glets at electroweak order. Again, this appears to be a
generalization of the case of Ref. [6]. Furthermore, the
range of energies in which this results demands that
MGUT > 1012 GeV, meaning that Higgs induced proton
decay has a greater suppression. Although this result ne-
cessitates the addition of a fermion singlet per family, this
is still an improvement on the model of Ref. [3], as uni-
fication is still possible without the need to invoke a further
discrete symmetry and nonrenormalizable operators. In
particular, this analysis cements the fact that unification
in this case is not unique. Additionally, for the latter two
cascades, all exotic singlets lie above a TeV; thus, in these
scenarios there is no new phenomenology at a TeV other
than that previously commented [4].

V. PROTON DECAY

We finish with a brief comment on the proton decay in
those models that return light Majorana masses for the
neutrinos. Although in quartification baryon number is
conserved by the gauge interactions, proton decay may
still proceed, mediated by Higgs boson exchange. In the
absence of S, baryon number conservation can be imposed
on the model. With S present, this is no longer the case, so
we need to examine the finite proton lifetime induced by
the SYukawa coupling terms. Proton decay occurs through
the mode p! ���. In addition to the terms in Eq. (3.5),
the singlet must also couple to the quark multiplets as per

 �s�Tr	q�yq 
 � Tr	qc�yqc
�S (5.1)

in order to be closed under the Z4 symmetry. However,
while the Yukawa Lagrangian of Eq. (2.4) assigns �q and
�qc the baryon numbers� 2

3 and 2
3 , respectively, the simul-

taneous presence of the interaction terms of Eq. (5.1) leads
to baryon number violation by one unit. Proton decay is
mediated by a tree-level graph involving a virtual colored
Higgs field. The decay products must be ��� because the
field S must be involved.

The current experimental lower bound on the lifetime of
this decay mode is�1032 years [12], with the partial width
for this channel approximately
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 ��
1

32�
��sYL sin��2

m5
p

m4
�

: (5.2)

mp and m� are the masses of the proton and colored Higgs
fields, respectively, YL is the Yukawa coupling defined in
Eq. (2.4), and sin� describes the admixture of S within the
light neutrino eigenstate. It turns out that this tiny mixing
angle provides the necessary suppression.

Given that both �s and � are not independent of the
Majorana neutrino masses, it is not possible to make a
generic estimation of the proton decay rate. Rather, one
must look at the cascades above individually. When the
leptonic color symmetry is broken entirely, there are only
two choices which return realistic neutrino masses.
Looking first at cascade 2, choosing the singlet coupling
strength �s � 10�3, an ultralight Majorana mass term re-
sults when the unification scale is�1011 GeV. The admix-
ture of the singlet within this light neutrino eigenstate is
�� 10�4, giving an estimation of the lifetime to be ��
1
Y2
L

1028 years. (In general, for this case, over the range of

allowable scales that give unification, the mixing angle is
� * 10�4). If the Yukawa coupling strength is YL & 10�2,
then the decay lifetime is above experimental bounds.

Cascade 4 yields a more favorable estimate. For the
same singlet coupling strength, the neutrino eigenstate
has a mixing angle �� 10�6, and the unification scale is
again of order 1011 GeV. This gives the lifetime of this
particular mode to be �� 1

Y2
L

1032 years.

When the SU�2�‘ symmetry remains unbroken, the uni-
fication scales are of larger orders and so generate a greater
suppression of the decay rate (independent of the mixing
angle suppression) than the previous case. Cascade 4 re-
turns the lowest of the unification scales and thus returns
the shortest estimation of the lifetime. For symmetry
breaking scales of v� 1012, w� 1011, x� 109 GeV, and
�s � 10�2, the mixing angle is of order �� 10�7. This
gives an estimate of the proton lifetime to be �� 1

Y2
L

4�

1036 years. So, unless the Yukawa coupling YL > 102, then
this lifetime is well above current experimental bounds.

VI. CONCLUSION

Models based upon a quark-lepton symmetry offer alter-
native unification schemes. Gauge coupling constant uni-
fication can result in several of these schemes which
consider different symmetry breaking routes from the
quartification gauge group down to the standard model
gauge group [4]. These schemes considered a minimal
quartification scenario in which there are no additional
symmetries or higher-dimension operators. This paper in-
vestigated the neutrino sector of these successful unified
schemes. We corrected an error in Ref. [4], and as a
consequence our claim in that paper that light Majorana
masses for the neutrinos can be generated in these minimal
schemes was shown to be false. To achieve a satisfactory
neutrino mass outcome, nonminimal models must there-
fore be considered. We chose to add a fermion singlet per
family. The addition of these singlets provided the neces-
sary dynamics to return seesaw suppressed Majorana
masses for the neutrinos in a subset of the unification
schemes. When there was no residual leptonic color sym-
metry, there were four unique cascades consistent with the
gauge coupling unification. Of these, two returned both
favorable neutrino masses and realistic bounds on proton
stability. In the models that had a remnant SU�2�‘ symme-
try, of the four possible choices, there were three which
displayed consistency with both neutrino masses and pro-
ton decay.
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