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We give an example of modeling phenomenological heavy-quark potentials in a five-dimensional
framework nowadays known as AdS/QCD. In particular we emphasize the absence of infrared
renormalons.
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I. INTRODUCTION

Heavy-quark potential is one of the basic observables
relevant to confinement. It has been measured in great
detail in lattice simulations,1 and the results reveal a re-
markable agreement with the so called Cornell potential
[2]

 V�r� � �
�
r
�
r

a2 � C; (1)

where the coefficients are adjusted to fit the charmonium
spectrum

 � � 0:48; a � 2:34 GeV�1; C � �0:25 GeV:

(2)
As follows from above, � and 1=a2 can be interpreted as
4=3�s and the string tension, respectively.

One of the implications of the AdS/CFT correspondence
[3] is that it resumed interest in finding a string description
of strong interactions. For the case of interest, let us briefly
mention a couple of results.

First, in the approach called usually gauge/string duality
one tries to keep the underlying string structure. As a
consequence, the theory is ten dimensional and its reduc-
tions to five dimensions in general contain additional
higher derivative terms (stringy �0 corrections).2

According to [4], the expectation value of the Wilson
loop is given by

 hW�C�i � e�S; (3)

where S is an area of a string world-sheet bounded by a
curve C at the boundary of AdS space.3

Second, in more phenomenological approach called
AdS/QCD one starts from a five-dimensional effective

field theory somehow motivated by string theory and tries
to fit it to QCD as much as possible. It was recently pointed
out [6,7] that asymptotic linearity of Regge trajectories
arises for some backgrounds. Such backgrounds reduce
to the standard AdS background in the UV but differ
from it in the IR. The latter turns out to be crucial for
linearity. In this case, it would be natural to expect that the
interquark interaction would include the dominant
Coulomb term at short distances as well as the dominant
linear term at large distances.

In this note we explore this expectation in the context of
(3). For simplicity we will concentrate here on the case of
[7]. However, it should not be hard to adapt the arguments
to [6]. It is worth noting a recent attempt to derive the
Cornell type potential within the model based on a trun-
cated AdS space [8].4

Before proceeding to the detailed analysis, let us set the
basic framework. We consider the following Euclidean
background metric

 ds2 � GnmdX
ndXm � R2 h

z2 �dx
idxi � dz2�;

h � e�1=2�cz2
;

(4)

where i � 0; . . . ; 3. In the region of small z the metric
behaves asymptotically as Euclidean AdS5, as expected.
We also take a constant dilaton. Note that the use of the
Euclidean signature for the background metric slightly
modifies h. So, the exponent has an opposite sign to that
of [7].

II. CALCULATING THE POTENTIAL

Given the background metric, we can attempt to calcu-
late the corresponding potential. In doing so, we adapt the
conjecture (3) to AdS/QCD.

We consider a rectangular Wilson loop C living on the
boundary (z � 0) of five-dimensional space as shown in

*Electronic address: andre@itp.ac.ru
†Electronic address: xxz@mppmu.mpg.de
1For a review, see [1].
2These corrections are of order 1=

������
Nc
p

. Thus, they might be
relevant at Nc � 3.

3The literature on the Wilson loops within the AdS/CFT
correspondence is very vast. For a discussion of this issue, see,
e.g., [5] and references therein.

4In this case there is a subtle point. The use of two different
solutions leads to a discontinuity in the interquark force.
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Fig. 1. The quark and antiquark are set at x � r
2 and x �

� r
2 , respectively. As known, taking the limit T ! 1 al-

lows one to read off the energy of such a pair from the
expectation value of the Wilson loop, namely, hW�C�i �
e�TE�r�.

Now we are ready to evaluate the expectation value of
the loop. To this end, we make use of the Nambu-Goto
action equip with the background metric (4)

 S �
1

2��0
Z
d2�

���������������������������������������
detGnm@�X

n@�X
m

q
: (5)

Next, we choose �1 � t and �2 � x. This yields

 S �
g

2�
T
Z r=2

��r=2�
dx

h

z2

������������������
1� �z0�2

q
; (6)

where g � R2=�0. A prime denotes a derivative with re-
spect to x.

Now it is easy to find the equation of motion for z

 zz00 � �2� cz2��1� �z0�2� � 0 (7)

as well as the first integral

 

h

z2
������������������
1� �z0�2

p � const: (8)

The integration constant can be expressed via the maxi-
mum value of z. On symmetry grounds, z reaches it at x �
0. By virtue of (8), the integral over �� r

2 ;
r
2	 of dx is equal

to

 r � 2

����
�
c

s Z 1

0
dvv2e�1=2���1�v2��1� v4e��1�v

2����1=2�; (9)

where v � z=z0, � � cz2
0, and z0 � zjx�0.

At this point a comment is in order. A simple analysis
shows that the integral (9) is real for � < 2. It develops a
logarithmic singularity at � � 2 and becomes complex for
larger �. Hence, there exists the upper bound on the
maximum value of z

 z0 <

���
2

c

s
: (10)

Note that in the limit as c goes to zero z0 is not bounded, as
should be for the AdS space. As function of z, the effective
string tension reaches its minimum at z � z0. Thus, there

exists a kind of horizon which is a generic feature of
confining theories.

Now, as in [4], we will compute the energy of the
configuration. First, we reduce the integral over x in
Eq. (6) to that over z. This is done by using the first integral
(8). Since the integral is divergent at z � 0 due to the factor
z�2 in the metric (4), in the process we regularize it by
imposing a cutoff �. Then we replace z with v as in (9).
Finally, the regularized expression takes the form

 ER �
g

�

����
c
�

r Z 1

�=z0

dvv�2e�1=2��v2
�1� v4e��1�v

2����1=2�:

(11)

Its �-expansion is simply

 ER �
g

��
� E�O���; (12)

where
 

E �
g

�

����
c
�

r �
�1�

Z 1

0
dvv�2


 �e�1=2��v2
�1� v4e��1�v

2����1=2� � 1	
�
: (13)

Similarly as r, E is real only for � < 2. Having observed
that the energy acquires an imaginary part, it is tempting to
interpret this as the string breaking. However, this occurs at
complex r. Our model is therefore stable.

In contrast to the AdS case [4], the potential in question
is written in parametric form given by Eqs. (9) and (13).5

We can, however, gain some important insights into the
problem by considering two limiting cases.

First, let us have a close look at Eq. (9). As noted earlier,
the range of � is 0 � � < 2. After a short inspection we
find that r is a continuously growing function of �. The
asymptotic behavior near zero is given by6

 r �
1

�

����
�
c

s �
1�

1

4
��1� ��2� �O��2�

�
; (14)

where � � �2�14�=�2��
3=2. From this it follows that small

�’s correspond to small values of r.
The asymptotic behavior near 2 is given by7

 r � �

���
2

c

s
ln�2� �� �O�1�: (15)

Thus, this region corresponds to large values of r.

 t
T

x

r_
2

2

0

 r_−

FIG. 1. A loop C.

5It is unclear to us how to eliminate the parameter � and find E
as a function of r and c.

6All the integrals can be evaluated in terms of the beta
functions as discussed in the Appendix A.

7The integral is dominated by v� 1, where it takes the
following form 2

���
�
c

q R
1
0 dv=

���������������������������������������������
a�1� v� � b�1� v�2

p
, with a �

2�2� �� and b � �� �2� ���3� 2��. The remaining integral
may be found in tables in [9].
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Having understood the correspondence between � and r,
we can investigate the properties of the interquark interac-
tion at short and long distances.

We begin with the case of small r. Expanding the right-
hand side of Eq. (13) up to the quadratic terms in �, we get

 E � �
g

2��

����
c
�

r �
1�

1

4
��1� 3��2� �O��2�

�
: (16)

Combining this with (14), we find the energy of the con-
figuration as a function of r and c

 E � g
�
�
�0

r
� 	0r�O�r

3�

�
; (17)

where �0 �
1

2� �
�2 and 	0 �

1
4 c�

2. Thus, we have the
expected 1=r behavior at short distances.

In a similar spirit, we can explore the long distance
behavior of E. It follows from (13) that in the neighbor
of � � 2 the energy behaves as

 E � �
eg

2�

���
c
2

r
ln�2� �� �O�1�: (18)

Along with the relation (15), this means that the interquark
interaction at long distances is given by

 E � g�	r�O�1�� (19)

that is nothing but the desired linear potential. Here we
have set 	 � e

4� c.
Having understood the two limiting cases, we can now

make a couple of estimates relevant to phenomenology.
It is natural to fix the overall constant g from the slope of

the potential at large distances. Indeed, the stringy ap-
proach is to be most reliable at large distances. From (1)
and (19) we have

 g �
4�
e
�ca2��1 � 0:94; (20)

where we have used c � 0:9 GeV2 as it follows from the
fits to the slope of the Regge trajectories [7].

Next, we can estimate the slope of the linear potential at
short distances. According to the Cornell model (1), the
slope is the same at all the distances while Eqs. (17) and
(19) imply that the coefficients in front of the linear terms
at large and small distances are different. However, a
simple estimate of their ratio yields

 

	
	0
� 8�2e��4

�
1

4

�
� 1:24: (21)

Clearly, the difference in the slopes is not significant for
our phenomenological estimates and the agreement with
the lattice data is very satisfactory at this point.

Finally, we can compare evaluate the 1=r term in the
potential. Phenomenologically, a little algebra shows that
in (1) the coefficients obey 1=�a2 � 0:38 GeV2. If we

truncate our model by keeping only the two terms as in
the Cornell model, we find

 

	
�0
�

1

16�3 e�4

�
1

4

�
c � 0:85 GeV2: (22)

The value is more than twice bigger than that of the Cornell
model. So, this looks disappointing. However, the
Coulomb-like potential at short distances is controlled by
the running coupling �s�r� and can hardly be predicted
within the simplified stringy model we are considering. We
will come back to discuss this point in the next section.

To complete the picture, let us present the results of
numerical calculations. The parametric Eq. (9) predicts a
characteristic form for r, as shown in Fig. 2. It has an
interesting effect on the form of the interquark potential
in the phenomenologically important interval 0:1 fm �
r � 1 fm. It is clear that for quite small values of c this
interval corresponds to small �’s. As a result, the approxi-
mate formula (17) is valid. So, if the desired linear behav-
ior holds, it has the slope proportional to 	0. On the other
hand, larger values of c result in �0s� 2. In this case the
linear behavior has the slope proportional to 	. The effect
can be seen in Fig. 3 for the window 0:5 fm � r � 1 fm
and the two values of c namely, c � 0:42 and 3 GeV2.

FIG. 2. r as a function of � at c � 0:42, 0.9, and 3 GeV2.

FIG. 3. E=g as a function of r at c � 0:42, 0.9, and 3 GeV2.
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III. DISCUSSIONS

In this note we have evaluated the heavy-quark potential
using the now standard ideas motivated by the gauge/string
duality. A key point is the use of the background metric (4)
which is singled out by the observation [7] that it provides,
in terms of the same duality, linear Regge trajectories. The
overall conclusion is that the same background metric
results in a phenomenologically satisfactory description
of the confining potential as well. However, there is a
number of open problems which are mostly rooted in the
heuristic nature of the gauge/string duality in the case of
pure Yang-Mills theory. In conclusion, we list a few such
problems and compare the results with theoretical expec-
tations based on more traditional approaches.

(i) The potential of interest behaves as 1=r at short
distances. This behavior is predicted, of course, by
perturbative QCD as well. On the string theory
side, one might fix the overall factor g in the
world-sheet action (6) by fitting the coefficients
of the 1=r terms in the energy (16) and the pertur-
bative calculations. If so, then g� �s. By contrast,
the AdS/CFT correspondence requires g�

������
�s
p

[3]. Thus, this way of fixing the overall factor
does not look satisfactory.8

On the other hand, in the case of pure Yang-Mills
theory the status of the 1=r term in the potential (1)
is also unclear. Its numerical value fits the theoreti-
cal prediction for the so called Lüscher term [11]
which is derived at large distances. Phenome-
nologically the fit (1) works at small distances as
well. Moreover, a straightforward application of
the expansion in the running coupling �s�r� results
in a badly divergent series at presently available
distances r.9 Thus, it is not ruled out that a pure
perturbative description sets in at much smaller
distances. In view of all these theoretical uncertain-
ties, the lack of agreement between the stringy
potential (17) and the Cornell model at short dis-
tances might be not so significant.

(ii) On the lattice, the so called Casimir scaling has
been observed [1]. The point is that if one measures
the heavy-quark potential for various color repre-
sentations of the quarks, at large distances the
string tension turns out to be proportional to the
coefficient of the Coulomb-like term. Reproducing
the Casimir scaling theoretically is a strong chal-
lenge to the model building [12]. Within AdS/
QCD, such a scaling is obvious. It is reproduced
without fixing any parameter. Indeed, the fitting
parameter is the overall factor g in the expression
for the energy, see the discussion above.

(iii) Power-like corrections to the heavy-quark potential
at short distances were studied earlier mostly in
terms of infrared renormalons.10 Within this ap-
proach, the potential can be represented, in some-
what symbolical form, as

 V�r� � �perturbative series� �
X
k�0

bkr
2k�2k�1

QCD ;

(23)

where the coefficients bk cannot be determined
consistently within short-distance physics and cor-
respond to the infrared renormalons. In particular,
the leading nonperturbative correction to the po-
tential is of order [14]

 Vnon-pert � r2h�sG2i�inst; (24)

where h�sG2i is the gluon condensate and �inst is a
typical instanton size. Note that the instanton size
plays the role of an infrared cutoff. Without such a
cutoff, the calculation is divergent.
In our example, the potential is calculable consis-
tently at short distances. There are no uncertainties
corresponding to the infrared renormalons. The
only exception might be the leading renormalon
corresponding to k � 0 in (23). Indeed, by the
potential one can understand the difference be-
tween the total energy and self-energy of the
quarks. In the bulk of the paper, we were calculat-
ing the total energy. Separation of the potential
from the self-energy involves then the infrared
uncertainty in the mass of the heavy quark which
corresponds to the renormalon.11

We close the discussion of the infrared renormalons
with a few short comments:

(1) There exists a simple picture of the absence
of the renormalons. The key point is that at
short distances a string does not go far away
into the fifth dimension or, in other words, it
does not reach a vicinity of the horizon that
would correspond to the IR.

(2) We discuss a class of metric leading to the
absence of the renormalons with k > 0 in the
Appendix B.

(3) Phenomenologically, there is no significant
r2 term in the potential.12 Thus, the absence
of the infrared renormalons from the stringy
potential can be considered as a success of
the model.

(iv) The AdS/QCD approach provides a natural frame-
work for appearance of a linear piece in the poten-
tial at short distances. Moreover, as follows from

11At technical level this means that the use of minimal sub-
traction in Eq. (12) is not appropriate.

10For further discussion, see [13].

12For further discussion, see [15].

8This difficulty was pointed out in different contexts. See, e.g.
[4,10].

9For a review, see [1].
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Eq. (21), the coefficients of the linear terms in the
short and large distance expansions turn out to be
close to each other. Phenomenological arguments
in favor of such a contribution can be found in [16].
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APPENDIX A

This appendix collects together some of the formulae
that are used in Sec. II.

All the integrals can be expressed in terms of integrals of
the form

 I�a; b� �
Z 1

0
dvva�1� v4�b: (A1)

Making the variable change w � v4, we can easily evalu-
ate the integral over w. The final result is

 I�a; b� �
1

4
B
�
a� 1

4
; b� 1

�
; (A2)

where B denotes the beta function.
In manipulating the beta functions, we use the relation to

the gamma function and the formulae [9]

 �
�
1

2

�
�

����
�
p

; �
�
3

4

�
�
�

1

4

�
�

���
2
p
�;

��x� 1� � x��x�:

(A3)

APPENDIX B

In this appendix we will investigate the question of
whether for a generic form of the warp factor h�z� in the
metric (4) the renormalons with k > 0 are missing as
well.13

Since at z � 0 the metric reduces to that of AdS5, we
take

 h�0� � 1: (B1)

The Nambu-Goto action and the first integral of equation
of motion are given by Eq. (6) and (8), respectively. From
the first integral we get

 r � 2z0

Z 1

0
dvv2 h0

h

�
1� v4

�
h0

h

�
2
�
��1=2�

; (B2)

where z0 is the maximum value of z, v � z=z0, and h0 �
h�z0�.

We compute the energy of the configuration as in
Sec. III. In the process we regularize the integral over z
by imposing a cutoff �. Finally, we get

 ER �
g

��
� E�O���; (B3)

where

 E�
g

�z0

�
�1�

Z 1

0
dvv�2

�
h
�
1�v4

�
h0

h

�
2
�
��1=2�

�1
��
:

(B4)

As a result, the potential is written in parametric form
given by Eqs. (B2) and (B4).

Assume that we eliminated the parameter z0 and foundE
as a function of r.14 Now the question arises: when does
this potential have no terms like r2k? The answer to this is
clear from the form of equations. If we transform z0 !
�z0, then r! �r for any even function h. Meanwhile, the
energy transforms as E! �E. Thus, E is an odd function
of r if h is even. The latter means that in this case the
problem of the renormalons with k > 0 is missing.
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