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We study quantum effects due to a Dirac field in 2� 1 dimensions, confined to a spatial region with a
nontrivial boundary, and minimally coupled to an Abelian gauge field. To that end, we apply a path-
integral representation, which is applied to the evaluation of the Casimir energy and to the study of the
contribution of the boundary modes to the effective action when an external gauge field is present. We also
implement a large-mass expansion, deriving results which are, in principle, valid for any geometry. We
compare them with their counterparts obtained from the large-mass ‘‘bosonized’’ effective theory.
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INTRODUCTION

The presence of borders drastically modifies the energy
spectrum of a quantum field, by producing a vacuum
energy with a nontrivial dependence on the geometry of
the borders and the detailed form of the boundary condi-
tions. The resulting ‘‘Casimir energy’’ has many interest-
ing physical consequences, ranging from the existence of
forces between uncharged metallic surfaces to potentially
relevant effects in some cosmological scenarios [1].

On the other hand, quantum theories in the presence of
background fields naturally arise in many different physi-
cal situations, like when considering the effects of classical
gravitational or electromagnetic background fields on the
vacuum persistence amplitude. Besides, the consideration
of ‘‘classical’’ backgrounds is sometimes an important
intermediate step in the context of the functional quantiza-
tion approach, whereby one considers (trivial or nontrivial)
classical backgrounds whose configurations may after-
wards be allowed to fluctuate; usually this is done without
modifying either the topology or the boundary conditions
of the classical background.

Quantum fields coupled to background fields and mod-
els defined on spaces with nontrivial borders do share some
important properties. Indeed, the latter can sometimes be
regarded as a special limit of the former. Background fields
do of course also modify the energy spectrum in a non-
trivial way. As a result of this, the vacuum persistence
amplitude, obtained by integrating out the quantum fields
becomes a (usually) complicated functional of the back-
ground field.

QED in 2� 1 dimensions is an interesting arena for the
analysis of the combined effect of boundary conditions and
background fields on the quantum vacuum. The Casimir
energy for massless and massive spinor fields in 2� 1
dimensions has been discussed at length, using the zeta
function approach [2]. The effect of boundary conditions in
the presence of external fields have also received some
attention, in particular, in the case of fermions satisfying

MIT boundary conditions on a circle in the presence of a
magnetic flux string [3].

In this paper, we shall consider a path-integral approach
to the computation of the effective action in the presence of
nontrivial boundaries and external fields. This approach,
introduced in [4], has been adapted to the case of the
electromagnetic field satisfying perfect conductor bound-
ary conditions on the borders [5], and successfully applied
to the calculation of Casimir forces in different geometries
[6]. The main idea is to implement the boundary conditions
as delta functions in the functional integral, and to write
them in terms of auxiliary fields living on the boundaries.
Here we will apply a similar idea to the case of a Dirac field
in 2� 1 dimensions. We will assume that the field is
confined into a static spacetime region, and that it is
minimally coupled to an Abelian gauge field. We shall
obtain a general formula for the effective action in terms
of a nonlocal kernel evaluated on the boundary. We will
then analyze some of its formal properties, applying it next
to the calculation of the Casimir energy and of the con-
tribution of the borders to the effective action for the gauge
field.

The paper is organized as follows. In Sec. II, we adapt
the method of [4] to the present case. That approach is also
used to understand the issue of gauge invariance, and to
calculate the fermion propagator in the same system.

After studying some general properties of those func-
tional representations, we apply them, in the following
sections, to calculate the effective action under different
approximation schemes and simplifying assumptions. In
Sec. III, we consider the Casimir energy for massless Dirac
fermions, which is derived from the effective action with a
vanishing gauge field, for the special geometry of two
parallel plates.

In Sec. IV, we evaluate the effective action in a large-m
approximation, for the case on an arbitrary external gauge
field. This yields a contribution coming from the boundary
modes, which is local when the mass tends to infinity. In
this section, we also discuss the same system from a differ-
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ent point of view: we start from the ‘‘dual’’ or bosonized
version of the Dirac field in the large-mass limit, which is a
Chern-Simons action. This action is then constrained to
satisfy the corresponding boundary condition, which now
is a kind of ‘‘perfect conductor’’ boundary condition for the
Chern-Simons gauge field. We obtain the resulting func-
tional integral for the boundary modes, and compare with
the previous result.

In Sec. V, we consider the dependence of the effective
action on the external gauge field, for the particular case of
a linear wall.

II. THE EFFECTIVE ACTION

A. The model

We want to derive a general expression for the effective
action due to a massive Dirac field in the presence of an
external Abelian gauge field, in a spatial region U with a
nontrivial (static) spatial boundary C. We shall assume C to
correspond to a simple closed plane curve C (Fig. 1).

The physical system, Dirac fermions in a background
Abelian gauge field, may be conveniently defined by its
Euclidean action Sf which, in our conventions, is given by:

 Sf� � ; ; A� �
Z
U
d3x � �x�� 6D�m� �x� (1)

where 6D � ��D� andD� � @� � ieA��x�, �� are Dirac’s
matrices and A� denotes an external Abelian gauge field.
We shall adopt the prescription that indices from the be-
ginning of the Greek alphabet ��;�; . . .� can take the
values 0, 1 and 2, those from the middle ��; �; . . .� run
from 0 to 1, while Roman indices �i; j; . . .� can take the
‘‘spatial‘‘ values 1 or 2. Dirac’s matrices are chosen ac-
cording to the convention: �0 � �1, �1 � �2 and �2 � �3

(�1, �2 and �3: Pauli’s matrices) unless explicitly stated
otherwise.

In order to introduce the boundary conditions, we shall
assume that the curve C has been parametrized: � ���! r���,
where r��� � �r1���; r2����, and that the parameter � be-
longs to some interval I. Besides, for every point of C, we
introduce the unit vectors t̂ and n̂, tangent and (outer)
normal to C, respectively, (see Fig. 1).

An explicit expression for t̂ and n̂ may be written as
follows:

 ti��� �
_ri���
j _r���j

; ni��� � "ijtj���; (2)

where _ri��� �
dri���
d� .

Besides, when considering the large-mass limit, we shall
also need to invoke an alternative description for the curve
C, obtained by introducing u1 and u2, two orthogonal
curvilinear coordinates for the plane, in such a way that
C corresponds to u2 � 0. Since they are orthogonal coor-
dinates, the square of dx can be written as follows:

 jdxj2 � h2
1du

2
1 � h

2
2du

2
2; (3)

where h1 and h2 may depend on u1 and u2. A further
simplification we shall adopt is that we will fix u1 to
coincide with the arc length for the points on the curve C
(of course, when u2 � 0), namely,

 u2 � 0; du2 � 0! jdxj2 � du2
1 � d�2

1: (4)

We shall not need to construct that system of coordinates
explicitly; rather, we note that, in a neighborhood of u2 �
0, one can construct u2-constant coordinate lines by drag-
ging C along the direction of n̂. On the other hand, the
u1-constant lines are obtained by using the property that n̂
is tangent to them (at every point on the curve).

Equipped with the previous definitions, we introduce
baglike boundary conditions on C for the fields  and � ,
as follows:
 

P L��� �x0; r���� � 0;

� �x0; r����P R��� � 0; 8 � 2 I;
(5)

where P L and P R are the projectors:

 P L��� �
1� � � n̂���

2
; P R��� �

1� � � n̂���
2

; (6)

where the dot denotes the scalar product between (spatial)
2-component vectors: a � b � aibi � a1b1 � a2b2. The
conditions (5) ensure the vanishing, at all the points of C,
of jn, the normal component of the induced fermion cur-
rent:
 

jn�x0; r���� � ieh � �x0; r����� � n̂��� �x0; r����i � 0;

8 � 2 I: (7)

Here, the vacuum average h. . .i is defined by:
FIG. 1. The spatial region U, bounded by C. t̂ and n̂ denote the
unit tangent and normal vectors, respectively.
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 h. . .i �

R
U D D � . . . e�Sf� � ; ;A�R

UD D � e�Sf� � ; ;A�
(8)

where
R
U means that the integration is constrained to

verify the proper boundary conditions, we shall see how
to implement them by the use of Lagrange multipliers (see
below).

B. Functional representation for the effective action

Following the idea of the approach presented in [4], we
introduce Z�A�, the partition function, and ��A�, the effec-
tive action corresponding to the fluctuating Dirac field
subject to the conditions (5), by means of the functional
integral

 Z �A� � e���A� �
Z

D D � D	RD �	Re
�Sf� � ; ;A�ei

R
dx0

R
d�� �	R�x0;��P L��� �x0;r����� � �x0;r����PR���	R�x0;��	; (9)

where we introduced auxiliary chiral Grasmmann fields
	R, �	R to exponentiate the 
 functions. They are two-
component fields living in 1� 1 dimensions, and we find
it convenient to use a more symmetric notation for their
arguments: 	R � 	R��0; �1�, �	R � �	R��0; �1�, where
�0 � x0 and �1 � � . These chiral fields may, of course,
be thought of as chiral projections of Dirac fiels:

 	R��0; �1� � P R��1�	��0; �1�

�	R��0; �1� � �	��0; �1�P L��1�:
(10)

We note that the auxiliary fields functional integration
measure is:

 D	RD �	R �
Y

�1<�0<1

Y
�12I

�d	R��0; �1�d �	R��0; �1�	:

(11)

We see in (9) that the auxiliary fields will have a non-
trivial dynamics as a result of the Dirac field fluctuations.
Indeed, performing the (Gaussian) integral over the Dirac
fields  , � :

 Z �A� � det� 6D�m�



Z

D	RD �	Re
�
R
d2�
R
d2�0 �	R���KC��;�0�	R��0�

(12)

where we introduced:
 

KC��; �
0� � P L��1�h�0; r��1�j� 6D�m�

�1j�00; r��
0
1�i


 P R��
0
1�; (13)

which is a kernel that induces a nonlocal action for the
auxiliary fields. Here, and for the rest of this article, we use
a ‘‘Dirac bracket’’ notation in order to simplify and clarify
the formulae involving operator kernels.

Note that only one ‘‘chirality’’ of the auxiliary fields is
actually coupled, but the decomposition between the
would-be ‘‘left’’ and ‘‘right’’ components is point-
dependent. This means, in particular, that �	R���	R��

0�
does not necessarily vanish when � � �0. This fact pre-
vents the introduction of one-component Weyl fermions as
auxiliary fields, since their local (point dependent) defini-
tions would render the apparent simplification illusory. We

shall however, in some special situations, use Weyl fermi-
ons: that will be the case when the normal vector n̂ is
piecewise constant, like in the calculation of the Casimir
effect for parallel ‘‘plates’’ (lines).

The determinant factor on the rhs of (12) agrees with the
would-be Z�A� when the borders are sent to infinity (i.e.,
when there are no borders). Since we are interested pre-
cisely in the effects due to the presence of borders, we shall
factor out that contribution, considering instead:
 

ZC�A� �
Z�A�

det� 6D�m�
� e��C�A�

�
Z

D	RD �	Re
�
R
d2�
R
d2�0 �	R���KC��;�0�	R��0�

� detKC: (14)

Thus, the effective action corresponding to this functional
is given by

 �C�A� � �Tr lnKC: (15)

At this point, it is useful to disentangle from �C�A� the
purely Casimir energy contribution from the part due to the
external field:

 �C�A� � �C�0� � ~�C�A� (16)

where �C�0� is proportional to the Casimir energy density
E, while ~�C�A�, which vanishes when A � 0, is a measure
of the effect of the borders on the response of the system to
the external field.

We shall use a Z functional corresponding to each of
these terms; they will be denoted by ZC�0� and ~ZC�A� (in
an obvious notation).

C. Gauge invariance of ��A�

Being a functional of A, the study of gauge invariance
for ��A�, reduces to an analysis of its behavior under gauge
transformations for the gauge field, namely:

 
!��A� � ��A� @!� � ��A� (17)

where ! is a smooth function of (all of) the spacetime
coordinates. In order to understand the effect of those
transformations, it is convenient to recall representation
(9), in order to see that:
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e���A�@!� �
Z

D D � D	RD �	Re
�Sf� � ; ;A�@!�


 exp
�
i
Z
d2�� �	���P L��1� ��0; r��1��

� � ��0; r��1��P R��1�	���	
�
: (18)

We then compensate the change in Sf due to the trans-
formation of A, by means of a gauge transformation in the
Dirac fields:

  �x� ! e�ie!�x� �x�; � �x� ! � �x�eie!�x�; (19)

which is, of course, non anomalous. The only source of
noninvariance under the transformations we have just per-
formed is in the coupling to the Lagrange multiplier fields,
which is concentrated on the boundary C:
 

e���A�@!� �
Z

D D � D	RD �	Re
�Sf� � ; ;A�


 exp
�
i
Z
d2�� �	R���P L��1�


 e�ie!��0;r��1�� ��0; r��1��

� � ��0; r��1��e
ie!��0;r��1��P R��1�	R���	

�
:

(20)

At this point, we realize that all the dependence in! can be
erased by transforming the Lagrange multipliers:

 	R��� ! e�ie!��0;r��1��	R���;

�	R��� ! �	R���e
ie!��0;r��1��:

(21)

Since they are chiral fields, there arises a nontrivial
Jacobian J �!;A� from their integration measure:

 D	RD �	R !D	RD �	RJ �!;A�: (22)

To the first order in !

 J �!;A� ’ exp
�
ie
Z
d2�!��0; r��1��F �A; �0; �1�

�
(23)

where F �A; �0; �1� is the anomaly a functional of A and a
function of the parameters of the worldsheet corresponding
to the border. We have assumed that �1 � u1, so that the C
coincides with u2 � 0.

From (20), (22), and (23) we conclude that:

 @�

�

��A�

A��x�

�
� ie

Z
d�1
�x� r��1��F �A; x0; �1�; (24)

which shows explicitly the fact that the gauge noninvar-
iance will be concentrated on the boundary, although the

actual form of the anomaly will, in principle, depend on the
field A also at points slightly away from the boundary.

We see that (24) is relevant to the physical problem of
imposing baglike boundary conditions. Indeed, we easily
see that (24) implies:

 @�j��x� � �ie
Z
d�1
�x� r��1��F �A; x0; �1�; (25)

where j��x� is the induced vacuum current:

 j��x� � ieh � �x��� �x�i: (26)

Integrating the anomalous divergence Eq. (25) on the
world-volume generated by the (fixed) region U during a
time interval �0; T	, we see that Gauss’ theorem yields:

 

Z
U
dxj0�0;x� �

Z
U
dxj0�T;x�

�
Z
C
�0;T	

d2�jn�x0; r���� � ie
Z
d2�F �A;�0; �1�:

(27)

Then the existence of the anomaly implies that, under some
circumstances, the bag condition will be violated. Indeed,
assuming, for example, that the total charge of the 2� 1
dimensional system is constant (insulated system), then the
lhs of the previous equation vanishes, and we get a relation
involving the integral of the anomaly and the flux of the
current. If the former is not zero, the latter is necessarily
different from zero. The explicit form for the anomaly is, in
these coordinates (�1 � u1, �2 � u2):

 F �A;�0; �1� � �
e

2�
"��@� ~A����; (28)

where ~A� � A���0; �1; 0�. Thus the nonvanishing of the
anomalous contribution depends only on the circulation of
~A1 (which is the tangential component of A on C) at the
times T and 0. This may also be put in terms of the
magnetic flux through U at those times. Then:

 

Z
C
�0;T	

d2�jn�x0; r���� �
e2

2�

�Z
dx"ij@iAj�x; T�

�
Z
dx"ij@iAj�x; 0�

�
: (29)

This anomalous current flux is of course just another
manifestation of the fact that the effective theory shall
contain a Chern-Simons like term, which introduces a
gauge noninvariance on the boundary. Indeed, that is the
usual set-up for the study of this phenomenon, which is
dealt with in the context of the effective theory for the bulk,
and the dynamics for the boundary modes is obtained
therefrom [7].

Of course, the gauge noninvariance could be cured by
adjusting the matter content, or by imposing conditions on
the external gauge field, like the invariance of the total
magnetic flux through U.
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D. Fermion propagator

Let us derive now an expression for the fermion propagator by using this representation. A simple way to do that is to
introduce a generating functional containing linear couplings to two auxiliary Grassmann sources, denoted by �� and �:

 Z � ��;�� �
Z

D D � D	D �	e�Sf�
� ; ;0��

R
d3x� �� � � ��ei

R
dx0

R
d�� �	�x0;��P L��� �x0;r����� � �x0;r����P R���	�x0;��	; (30)

whereby the fermion propagator h �x� � �y�i can be obtained as follows:

 h �x� � �y�i �
1

Z�0; 0�

�

2


��y�
 ���x�
Z� ��;��

�����������0; ���0
: (31)

Performing the Gaussian integrations, and evaluating the derivatives, we obtain for the free fermion propagator the
following expression:
 

h �x� � �y�i � hxj�@�m��1jyi�
Z
d2�0

Z
d2�00hxj�@6 �m��1j�00;r��

0
1�iP R��

0
1�K

�1
C ��

0;�00�P L��
00
1 �h�

00
0 ;r��

00
1 �j�@6 �m�

�1jyi:

(32)

It is evident, from the previous expression, that the propagator so obtained does verify the proper boundary conditions.
Indeed,
 

P L��1�h ��0; r��1�� � �y�i � P L��1�h�0; r��1�j�@6 �m��1jyi �
Z
d2�0

Z
d2�00P L��1�h�0; r��1�j�@6 �m��1j�00; r��

0
1�i


 P R��
0
1�K

�1
C ��

0; �00�P L��
00
1 �h�

00
0 ; r��

00
1 �j�@6 �m�

�1jyi � P L��1�h�0; r��1�j�@6 �m�
�1jyi

�
Z
d2�0

Z
d2�00KC��; �

0�K�1
C ��

0; �00�P L��
00
1 �h�

00
0 ; r��

00
1 �j�@6 �m�

�1jyi

� P L��1�h�0; r��1�j�@6 �m��1jyi �
Z
d2�00
��0 � �000 �
��1 � �001 �


 P L��001 �h�
00
0 ; r��

00
1 �j�@6 �m�

�1jyi � 0: (33)

In Sec. V, we will find an explicit expression for the free fermion propagator in the presence of a linear wall.

III. CASIMIR ENERGY

Let us consider here the Casimir term �C�0�, for the physically interesting case of m � 0, evaluating it explicitly for a
particular geometry.

We first write this object more explicitly, in terms of the corresponding functional integral over auxiliary fields:

 ZC�0� � e��C�0� �
Z

D	D �	e�
R
d2�
R
d2�0 �	R���P L��1�h�0;r��1�j@6 �1j�0;r��01�iP R��01�	R��

0�: (34)

The simplest nontrivial geometry is the one corresponding to the region: U � f�x1; x2�:0 � x2 � lg, so that C is just the
union of two lines: C0, corresponding to x2 � 0 and Cl, to x2 � l. Of course, in this case, the normal vectors shall be �x̂2

and x̂2, respectively. In order to parametrize the auxiliary fields, we find it convenient to use x1 2 ��1;�1� as the
(common) parameter, but using a label to distinguish the fields corresponding to the lower (	�0��x0; x1�), and upper
(	�l��x0; x1�) borders.

Then,

 e��C�0� �
Z

D	�0�D �	�0�D	�l�D �	�l�e�SC�	
�0�; �	�0�;	�l�; �	�l�� (35)

where the ‘‘action‘‘ SC is defined by:
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 SC �
Z
d2x

Z
d2x0� �	�0��x�P�hx0; x1; 0j@6

�1jx00; x
0
1; 0iP�	

�0��x0� � �	�l��x�P�hx0; x1; lj@6
�1jx00; x

0
1; liP�	

�l��x0�

� �	�0��x�P�hx0; x1; 0j@6 �1jx00; x
0
1; liP�	

�l��x0� � �	�l��x�P�hx0; x1; lj@6 �1jx00; x
0
1; 0iP�	

�0��x0�	 (36)

where P� �
1��2

2 . It should be clear now that, since these
projectors are constant, the auxiliary fields 	�0;l�, when
multiplied by those projectors, are trivial functions of
(different) one-component Weyl fermions. Namely,

 P �	
�0��x� � ��0��x�

0

 !
; P�	

�l��x� �
0

��l��x�

� �
;

(37)

and

 �	 �0��x�P� � �0; ���0��x��; �	�l��x�P� � � ���l��x�; 0�;

(38)

where ��0�, ��l�, and their adjoints, are one-component
Weyl fields.

We may combine them into a two-component field 	:

 	�x� � ��0��x�
��l��x�

 !
; �	�x� � � ���0��x�; ���l��x��; (39)

and write the action SC as:

 SC �
Z
d2x

Z
d2x0 �	�x�D�x; x0�	�x0�; (40)

where

 D �x; x0� �
hx0; x1; 0j

@�

@2 jx00; x
0
1; 0i hx0; x1; 0j �

@2

@2 jx00; x
0
1; li

hx0; x1; lj
@2

@2 jx00; x
0
1; 0i hx0; x1; lj

@�

@2 jx00; x
0
1; li

 !
; (41)

where @� � @0 � i@1 and @� � @0 � i@1. Then we have,

 �C�0� � �Tr lnD � �
1

2
Tr ln�DyD�; (42)

which is best evaluated by introducing a Fourier trans-
formation with respect to the coordinates x0 and x1. We
see that:

 

~D�k� �
�i�k0 � ik1�=2k e�lk=2

e�lk=2 �i�k0 � ik1�=2k

� �
: (43)

Then:

 �C�0� � �
1

2
LT

Z d2k

�2��2
ln
�

1

2
�1� e�2lk�

�
; (44)

where L is the length of the plates, and T the extension of
the (Euclidean) time interval. In this expression, there is a
(divergent) l-independent contribution which we attribute
to the self-energy or each plate, plus a Casimir energy
(energy per unit length):

 E � �
1

2

Z d2k

�2��2
ln�1� e�2lk�; (45)

which can be easily integrated:

 E � �
3��3�

64�l2
: (46)

An interesting feature of this result is that the Casimir
energy is already given by an integral over the momenta
which are parallel to the plates. Thus, the series over the
discrete momenta along the normal direction to the plates
has already been summed up.

Of course, both approaches are related, as can be easily
seen by first noting that the eigenvalues of DyD are
identical to the squares of the eigenvalues of a Dirac
Hamiltonian in 3� 1 dimensions (with one of the spatial
coordinates playing the role of the time). Those eigenval-
ues are known to be [8]:

 n;k �
																		
!2
n � k

2
q

; (47)

where !n �
�2n�1��

2l . Then we see that:

 ln�1� e�2lk� �
1

2

X1
n��1

ln��2l�2�!2
n � k

2�	; (48)

where we have neglected l-independent terms. The sum on
the rhs of (48) arises naturally when one evaluates the
Casimir energy by finding the eigenvalues of the Dirac
operator for the modes constrained to satisfy the bag
boundary conditions.

One can also obtain an expression similar to (45) for the
Casimir energy starting from its usual definition as the sum
of the zero-point energies of the field modes, and using
Cauchy’s theorem to write the sum as a contour integral in
the complex plane [9].

IV. THE LARGE-MASS LIMIT

We shall approach this limit by following two different
strategies: first, we shall begin with a quantized Dirac field,
implementing the approximations and simplifications that
follow from the assumption that the fermionic mass is
much larger than the other relevant dimensionful objects;
i.e., the gauge field derivatives. Our second approach
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amounts to start from the effective ‘‘bosonized’’ theory that
follows by taking the large-mass limit beforehand, and
introducing the boundary condition afterwards.

A. Fermionic representation

In the large-mass limit, we can obtain some explicit
results as a consequence of the fact that the kernel KC

becomes local. We begin by noting that ~ZC�A� may be
regarded as a regularized version (with the fermion massm
playing the role of an UV cutoff) of the determinant of a
local operator. Indeed, taking into account the fact that P L
and P R are orthogonal projectors at every point of C, we
may rewrite KC as:
 

KC��; �0� � P L��1�h�0; r��1�

�������� �6D

�6D2 �m2

���������00; r��01�i

 P R��

0
1� (49)

or:

 KC��; �
0� �

1

m2 P L��1�h�0; r��1�jf
�
�6D2

m2

�

��6D�j�00; r��

0
1�iP R��01� (50)

where f�x� � 1
1�x . Since f�0� � 1, and f and all its de-

rivatives tend to zero when x! 1, it is evident that ~ZC�A�
is a regularized version of another functional, which we
denote by Zloc�A�, defined as the result of taking the f ! 1
limit in ~ZC�A�:

 Z loc�A� � �~ZC�A�	m!1 �
Z

D	D �	e�Sloc� �	;	;A�; (51)

where

 Sloc �
Z
d2� �	���Kloc��; �

0�	���; (52)

and:

 K loc��; �0� � �P L��1�h�0; r��1�j 6Dj�00; r��
0
1�iP R��01�:

(53)

Sloc is a local action, and we have neglected an infinite
(A-independent) factor det�m�2�. It is important at this
point to remark that, since the auxiliary fields behave as
1� 1 dimensional Dirac fermions with a minimal gauge
coupling, no infinity arises when removing the regulator
(m! 1). Of course, this will not necessarily be the case in
higher dimensions. Besides, the regulator only affects the
real part of the effective action (namely, the modulus of the
fermionic determinant). The imaginary part is of course
still there, and requires its own regularization. Note, how-
ever, that the imaginary part is also determined by the local
action, since the ‘‘regulator’’ affects only the modulus of
the eigenvalues of the Dirac operator, and those are gauge
invariant.

It should be obvious that, to make further progress, it is
convenient to write (53) more explicitly, in terms of coor-
dinates which are more adapted to the geometry of C. To
that end, we invoke the coordinates u1 and u2, introduced
in the previous section, recalling that u1 and �1 actually
coincide on C, to see that the local action may be written as
follows:

 Sloc �
Z
d2� �	��0; �1�P L��1��~��d��P R��1�	��0; �1�

(54)

where:

 P L��1� �
1� ~�2��1�

2
; P R��1� �

1� ~�2��1�

2

d� � @� � ie ~A���0; �1�

~A���0; �1� � A���0; r1��1�; r2��1��

(55)

and

 ~� 0 � �0; ~�1��1� � � � t̂��1�;

~�2��1� � � � n̂��1�:
(56)

Note that there is no coupling to the component of A that
is normal to the curve.

Then, in the infinite mass limit, the effective action due
to the presence of the boundary reduces to the one of a
chiral fermion determinant:

 Z loc�A� � e��loc�A�; �loc�A� � �Tr ln�~��d�P R	:

(57)

By our comment above on the imaginary part, it is clear
that:

 Im �C�A� � Im�loc�A�; (58)

where, of course, a regularization procedure has to be
invoked (as it has to be also in a local theory).

B. Bosonic representation

To describe a Dirac field coupled to an external gauge
field A� we may, in the limit when the fermion mass is
large (in comparison with the momenta of the external
fields) use an approximate bosonization procedure [10–
13]. The fermion $ boson mapping leads to a bosonic
action, S�b�, whose leading form in a large-mass expansion
is given by:

 S�b��a; A� � SCS�a� � i
Z
d3x"���@�a�A�; (59)

where a� is a new gauge field, introduced to implement the
duality, and SCS is the Chern-Simons action:
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 SCS�a� � i
�
2

Z
d3x"���a�@�a�; (60)

where � is a constant.
The second term in (59) corresponds to the standard

coupling between current and external gauge field, since
a� is related to the average value of the fermionic current,
j�, by:

 j� � i"���@�a�; (61)

a relation which is exact, i.e, independent of the approxi-
mation used to obtain the bosonized action.

The bosonized partition function in the absence of
boundaries, Z�b��A�, can be defined as follows:

 Z �b� �
Z

Dae�S
�b��a;A�: (62)

To take into account the boundary conditions corre-
sponding to the fermionic theory in this setting, we note
that the mapping between the fermionic and bosonic rep-
resentations for the current implies that we should impose:

 �@0al � @la0�tl � 0 on C (63)

i.e., the wall must behave like a ‘‘perfect conductor’’ for
the a� gauge field, since there is no tangential component
for its electric field on the border. Note that this boundary
condition is independent of the large-mass expansion,
since it only relies upon the exact mapping (61) between
j� and a�.

Introducing now a new field ’��0; �1�, a Lagrange mul-
tiplier field for the previous condition, we are lead to ~Z�b�C ,
the bosonized form of the partition function for the con-
tribution due to the modes localized on the borders:

 

~Z
�b�
C �A� � e�

~��b�
C
�A� �

Z�b�C �A�

Z�b�C �0�
(64)

where now
 

Z�b�C �A� �
1

Z�b��A�

Z
DaD’e�SCS�a��i

R
d3x"���A�@�a�


 ei
R
d2�’��0;�1�f0l��0;r��1��tl��1� (65)

where f�� � @�a� � @�a�.
When evaluating the Gaussian integral, an important

point arises as a consequence of the existence of a bound-
ary term coming from an integration by parts. Indeed, to
perform the Gaussian integral we need to rewrite the term
that couples the bosonized current to the external field A�.
After performing an integration by parts and applying
Gauss’ theorem, we see that:

 

Z
d3x"���@�a�A� �

Z
d3x"���@�A�a�

�
Z
d3xa��x�R��x� (66)

where

 R0�x� � �
Z
d�1
�x� r��1��Al�x�tl��1�

Rk�x� �
Z
d�1
�x� r��1��A0�x�tk��1�:

(67)

To keep this boundary term amounts to reproducing the
proper result, in particular, for the anomalous behavior of
the effective action under gauge transformations.

The Gaussian integral over a� can now be performed,
what yields an action SC for the Lagrange multiplier field:

 Z �b�C �A� �
Z

D’e�SC�’;A�; (68)

where a ‘‘bulk’’ Chern-Simons term has been cancelled
out, and:

 

SC�’;A� �
1

2

Z
d2�

Z
d2�0�@0’��� � A0��0; r��1��tj��1�Mjk��; �

0�tk��
0
1��@

0
0’��

0� � A0��
0
0; r��

0
1��

�
Z
d2�

Z
d2�0’���tl��1�@lMj��; �

0�tj��
0
1��@

0
0’��

0� � A0��
0
0; r��

0
1��

�
Z
d2�

Z
d2�0tl��1�Al��0; r��1��Mj��; �0�tj��01��@

0
0’��

0� � A0��00; r��
0
1��

�
i
�

Z
d2�’���tl��1�F0l��0; r��1�� (69)

where F�� � @�A� � @�A�, and

 Mjk��; �
0� � �

i
�
"jk



�0; r��1�

�������� 1

�@2

���������00; r��01�
�

Mj��; �0� �
i
�
"jk



�0; r��1�

�������� @k
�@2

���������00; r��01�
�
:

(70)

It is straightforward to see that (69) has the same trans-
formation properties as its fermionic equivalent. Indeed, all
the terms in SC except for the last one are invariant under
gauge transformations restricted to the border:

 A���0; r��1�� ! A���0; r��1�� � @�!��0; r��1�� (71)

if the scalar field is also transformed:
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 ’��0; �1� ! ’��0; �1� �!��0; r��1��: (72)

It is clear that the last term in SC does reproduce the chiral
anomaly, since under the previous gauge transformation:

 
!SC�’;A� � �
i
�

Z
d2�!��0; r��1��tl��1�F0l��0; r��1��;

(73)

which is, of course, consistent with the result obtained
from the fermionic representation. The results agree

when � � 4�
e2 , which is the proper value for the bosonized

theory with ‘‘minimal‘‘ regularization.

V. LINEAR WALL

In this section we calculate the free fermion propagator
and the effective action for the particularly simple case of a
linear boundary, which we assume to be at x2 � 0, with
U � f�x1; x2�:x2  0g.

Let us first consider the free fermion propagator. Using
x0 and x1 as coordinates we write the free kernel K�0�

linear as

 K �0�
linear�x0; x1; x00; x

0
1� �



x0; x1; 0

�������� ���@�
�@�@� �m

2 P R

��������x00; x01; 0
�
�



x0; x1

�������� ���@�

2
																													
�@�@� �m

2
q P R

��������x00; x01
�
; (74)

where P R �
1��2

2 . Inserting this expression into (32), after some algebra we obtain:

 h �x� � �y�i � hxj�@6 �m��1jyi � 2
Z
d2x0

Z
d2x00hxj�@6 �m��1jx00; x

0
1; 0iP�hx

0
0; x
0
1jVjx

00
0 ; x

00
1 iP�hx

00
0 ; x

00
1 ; 0j�@6 �m�

�1jyi:

(75)

where P� �
1��2

2 , and

 V �
��@� �m																											
�@�@� �m

2
p : (76)

Now we consider the evaluation of the effective action ~�f, which is given by

 

~� f � �Tr lnKlinear (77)

with

 K linear�x0; x1; x00; x
0
1� �



x0; x1; 0

�������� ���D�

�� 6D�2 �m2 P R

��������x00; x01; 0
�
: (78)

Note that, in the previous expression, the Dirac operator in the denominator will in general depend on A2, which does not
commute with @2. Thus, in general, no simpler expression may be written for (78) unless some simplifying assumptions are
introduced.

Assuming that the A�’s are smooth functions of x2 in the region around x2 � 0, the leading term in a @2 derivative
expansion is

 K linear�x0; x1; x00; x
0
1� ’



x0; x1; 0

�������� ���D�

����D��
2 � @2

2 � e
2A2

2�x0:x1; 0� �m
2 P R

��������x00; x01; 0
�

(79)

or,

 K linear�x0; x1; x00; x
0
1� �



x0; x1

�������� ���D�

2
																																																																						
����D��

2 � e2A2
2�x0:x1; 0� �m2

q P R

��������x00; x01
�
; (80)

which is a sort of dimensional reduction of the original problem, although at the expense of having to deal with a nonlocal
theory. This nonlocal kernel may properly be called the effective Dirac operator for the boundary modes, in a microscopic
representation. It clearly shows the well-known fact that the corresponding Dirac determinant contains gapless excitations
(as it should be [7]) and also captures part of the non locality which would have been lost if the m! 1 had been taken
beforehand.

The imaginary part of the effective action, on the other hand, can be borrowed from the known result about the chiral
fermion determinant in 1� 1 dimensions:
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 Im ~�f �
e2

2�

Z
d2x

@ � A

@2 ���@�A�; (81)

while for the real part we have:

 Re ~�f�A� � �
1

2
Tr ln

�
���D�

2�����D��
2 � e2A2

2�x0; x1; 0� �m2�

�
: (82)
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