PHYSICAL REVIEW D 74, 025019 (2006)

Vacuum accumulation solution to the strong C P problem
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We suggest a solution to the strong CP problem in which there are no axions involved. The super-
selection rule of the # vacua is dynamically lifted in such a way that an infinite number of vacua are
accumulated within the phenomenologically acceptable range of # < 10~°, whereas only a measure-zero
set of vacua remains outside of this interval. The general prediction is the existence of membranes to
which the standard model gauge fields are coupled. These branes may be light enough to be produced at
the particle accelerators in the form of the resonances with a characteristic membrane spectrum.
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I. INTRODUCTION

The strong CP problem [1] can be expressed as an
inexplicable smallness of the CP-violating 6 parameter
in the QCD Lagrangian,

0 TrG,,G"", (1)

where G, and GHrv = etrP G, are the QCD gauge field
strength and its dual, respectively. A nonzero € implies a
nonzero expectation value of the dual gauge field strength,
(TrGG) # 0, which would lead to the observable CP
violation, unless 6 is tiny, # < 107° [2].

The strong CP problem is the problem of the vacuum
superselection. The parameter 6 scans a continuum of the
vacuum states that have different expectation values of the
operator TrGG. These vacua satisfy the superselection
rule, which forbids any transition between the vacua with
different values of 6. Because of this superselection rule,
there is no a priori reason to give any preference to the
vacua with small @ (small TrGG).

In this paper we shall propose a new approach to this
problem, in which the 6 vacua become rearranged in such a
way that a vacuum with an acceptably small § becomes
“infinitely preferred” relative to the other vacua. In our
treatment, the superselection rule gets partially lifted, but
in such a way that the infinitely many vacua accumulate
inside the region # << 10~°, whereas only a measure-zero
set of vacua remain outside this interval.

Our solution is based on the following key facts. First,
because a nonzero 6 implies a nonzero vacuum expectation
value (TrGG), the explanation of the small 6 reduces to the
explanation of the small value of TrGG. Note that the latter
gauge invariant can be rewritten as a dual four-form field
strength of a Chern-Simons three-form in the following
way (below everywhere we shall work in units of the QCD
scale):

2 .
% TrGG = F = Fop,5€*P7?, 2)
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where
Fagys = 9[aCpys). 3)

Copy 18 a Chern-Simons three-form, which in terms of the
gluon fields can be written as

2
_8 3
Caﬁy = 8772 Tr(A[aABAy] - EA[D[GBAYO (4)

Here g is the QCD gauge coupling, A, = A%T? is the
gluon gauge field matrix, and 7¢ are the generators of the
SU(3) group.

The above parametrization is not just a formality, but has
a physical meaning. It is known [3] that in low energy QCD
the Chern-Simons three-form behaves as a massless gauge
field, and the corresponding four-form field strength F can
assume an arbitrary constant value. Hence, the strong CP
problem can be simply understood as the problem of an
arbitrary constant four-form electric field. Any dynamical
solution that would explain why such a field must be
unobservably small would also automatically solve the
strong CP problem.

For example, as explained in [4], the celebrated Peccei-
Quinn solution [5] solves the strong CP problem by putting
the three-form gauge theory into the Higgs phase. This
happens because the three-form gauge field becomes mas-
sive by “eating up” a would-be massless axion [6], and
acquires a propagating longitudinal degree of freedom.
This effect is analogous to an ordinary Higgs effect in
which the photon acquires a longitudinal polarization by
eating up a Goldstone boson. The generation of the axion
mass from the QCD instantons can be reformulated in this
language as a three-form Higgs effect. As a result of this
effect, the four-form electric field is screened [7], and the
vacuum is automatically CP conserving. Thus, the three-
form language gives a very simple explanation to the fact
[8] that the minimum of the axion potential is always at
0 = 0 [4].

In the present paper, we shall present an alternative
solution to the strong CP problem. We shall attempt to
explain why the QCD four-form electric field (and thus 6)
is small by employing the vacuum accumulation mecha-
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nism of [9,10]. This mechanism is ready-made for the
three-form gauge theories and provides a general frame-
work in which the small value of any parameter, that is
determined by a four-form electric field, can become an
accumulation point of the infinite number of vacua.

Applied to the strong CP problem, our strategy can be
outlined as follows. We shall lift the superselection rule of
the 6 vacua by postulating the existence of two-branes that
source the QCD Chern-Simons three-form C. These branes
substitute the axion field a of the Peccei-Quinn solution in
the following way. In the Peccei-Quinn scenario the QCD
Chern-Simons three-form C,g,, is sourced by the topologi-
cal axionic current €,g,, 0*a. This sourcing is the reason
for screening the expectation value of F. In our treatment
this topological current gets replaced by a world-volume
history of a dynamical two-dimensional surface, a two-
brane

YD a(x) — f AYEY§4(x — Y), )

where Y“’s are the target space coordinates of the brane. In
this way the massless scalar that screens F gets replaced by
a massive extended object that affects the expectation value
of F in a different way. The precise origin of these branes is
unimportant to us. The only nontrivial assumption is that
the branes are CP odd. The transition within the subset of
vacua then becomes possible quantum-mechanically via
the two-brane nucleation. The branes in this picture play
the role of the domain walls that separate vacua with
different values of 6 (and F). Although at low energies
the real-time transitions are extremely rare, this does not
concern us, since we are mostly preoccupied with the
resulting vacuum statistics. This statistics turns out to be
pretty profound, because of the CP-odd nature of branes.

By parity (P) and CP symmetries the charge of the
branes with respect to C,g, must also be parity odd and
is determined by the value of the parity-odd four-form
electric field (3). Thus, in vacua with a smaller electric
field F, the sourcing is correspondingly weaker, and en-
tirely diminishes in the vacuum with F = 0 (@ = 0). In this
way, the brane charge is set by 6, and hence the step by
which 6 changes from vacuum to vacuum is set by 6 too.
This fact guarantees that the vacuum with § = F = (O 1is the
maximally preferred one. That is, essentially all of the
infinite number of (quantum-mechanically connected) va-
cua have arbitrarily small values of the # parameter, and
only a measure-zero fraction has an observably large CP
violation.

Summarizing briefly, due to the lift of the superselection
rule, the @ vacua get split in discrete sets of the vacuum
states that we shall refer to as the vacuum families. Each
family contains an infinite number of vacua. The defining
property of a given family is that all its member vacua can
be connected to one another by a quantum-mechanical
tunneling, whereas the transition between the different
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families is forbidden. Within each family the number of
vacua as a function of the # parameter diverges for § — 0
as

ng~6% or nyg~In(67"), (6)
where k> 0. Thus, 8 = 0 is the vacuum accumulation
point. Such points in the space of vacua were called the
vacuum attractors in [9,10].

This is the essence of the solution, which we shall
discuss in detail below.

At the end, we should stress a couple of important
points. First, the considered mechanism, due to the gauge
invariance of the brane three-form coupling, requires us to
postulate an exactly massless degree of freedom, the
Stiickelberg field. This field, however, is different from
the standard axion, since it couples to the three-form
only through the heavy branes. As explained in the paper,
once such a field is introduced, the only way it could
acquire a mass in perturbation theory is through the screen-
ing of the three-form field by the brane loops. Interestingly,
such a screening (if it takes place in the first place) would
by itself solve the strong CP problem, by default. Thus,
massless or not, the above field does not jeopardize the
solution of the strong CP problem. Instead, what happens
is that the nature of the solution changes depending on the
Stiickelberg mass. In our work we shall concentrate on the
case when the Stiickelberg field is exactly massless, and,
thus, the three-form electric field is not screened.

The second point is about cosmology. Our aim in this
paper is purely field theoretical. We shall prove that in a
given theory there is an infinite set of vacua, all of which,
up to a measure-zero set, accumulate at small 6. In other
words, we are concerned solely with the vacuum statistics,
and we show that statistically the most probable vacua have
small 8. We do not attempt to advocate any particular
cosmological scenario, which would explicitly explain
why the Universe ended up in a statistically most probable
vacuum, although one could easily imagine such scenarios
in the context of the eternal inflation. Obviously, it goes
without saying that, since our theory postulates very heavy
branes (in this respect we are not any different from any
other theory with branes, solving the CP problem or not),
some period of inflation should have happened after the
comoving patch of today’s observable Universe made its
choice of the “final” 6 vacuum. An interested reader is
referred to [9] for the discussion of one particular possible
cosmology, in the context when the similar ideas are
applied to the hierarchy problem.

The general prediction of the above scenario is the
existence of branes that source the Chern-Simons forms
of the standard model gauge fields. The tension of these
branes can be sufficiently low to be produced in particle
collisions at CERN LHC in the form of the resonances with
spacing and multiplicity characteristic of the brane
spectrum.
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II. THREE-FORM OVERVIEW

For a massless three-form field the lowest order parity-
invariant Lagrangian has the following form:

L = F,up,F**PY + Cop, J*F7, @)

where Fqp, = 9[,Cqpy) is the four-form field strength,
and J*P is a conserved external current

9,JBY = 0. (8)

The action (7) is then invariant under the gauge trans-
formation

Capy = Capy + diaQpy) ®)

where () is a two-form. Because of this gauge freedom in
four dimensions, C contains no propagating degrees of
freedom. Despite the absence of propagating degrees of
freedom, C nevertheless can create a ‘“Coulomb”-type
long-range electric field in the vacuum F,.g, =
Fo€,qpy- In this respect, the 3 + I-dimensional three-
form gauge theory is very similar to 1 + 1 electrodynamics
[11]. As is obvious from the equation of motion, in the
absence of sources, the four-form electric field can assume
an arbitrary constant value. Its equation of motion

aBy

G”Fﬂmﬁ = 0 (10)
is solved by

F,qu,B = FOE,uVaB’ (11)
where F|, is an arbitrary constant.

Thus, the theory has a continuum of the vacuum states
each labeled by an expectation value of a constant electric
field F,,. These vacua obey the superselection rule. Fj is
not a dynamical quantity, and there is no transition between
the different vacua. In other words, no F vacuum is pre-
ferred over any other, and any choice of Fj is good. In this
respect Fj, vacua are very similar to the 6 vacua in QCD
[1].

As said above, this connection between the F' vacua and
QCD 6 vacua is deeper than one may naively think, and
will play the central role in our approach to the strong CP
problem. The key point in this connection is that the QCD
6 vacua can be exactly reformulated in terms of the vacua
with the four-form electric fields (3). We shall come back
to this issue shortly.

Let us now briefly discuss how the superselection rule in
the above example gets lifted in the presence of branes. In
the presence of the external source J*#7 the superselection
rule gets partially lifted, permitting transitions between the
vacua with certain discretized values of the electric field.
As said above, the gauge invariance demands that the
three-form be sourced by two-dimensional surfaces, two-
branes, for which the conserved current takes the following
form:
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JoBY(x) = fd3§84(x — Y(f))q(aya ov” aYV)G“bC,

E 9" aE
(12)

where g is the charge of the brane, and x* = Y*(§) specify
a 2 + 1-dimensional history of the brane in 3 + 1 dimen-
sions as a function of its world-volume coordinates &¢
(a =0, 1,2). Obviously, the current J 1s conserved as
long as g is a constant.

The brane self-action has the standard form

-7 f TN (13)

where T is the brane tension (a mass per unit surface), and
8ab = 9,Y*03,Y" 7, is the induced metric on the brane.
Note that, since the bulk four-dimensional gravity plays no
essential role in our considerations, we have taken a flat
Minkowskian four-dimensional metric 7,,,. The brane can
be taken to be flat and static, Y# = & for u = 0, 1, 2, and
Y3 = 0. The equation of motion then becomes

aBy

aMF'“”“B = —g8(z)e"*Fs, (14)

where z = 0 is the location of the brane. Equation (14)
shows that the brane separates the two vacua in either of
which F; is constant, and the two values differ by |g|.
Thus, the introduction of branes ensures that the transition
between the vacua with different values of F|, is possible,
as long as the value of F; changes by an integer multiple of
q. Hence the discrete quantum transitions between the
different vacua are possible via nucleation of closed
branes.

In other words, the theory given by the action (7) has a
multiplicity of the discrete vacuum states. Among all pos-
sible vacua there are the subsets (the vacuum families) that
are connected via quantum-mechanical tunneling. The dif-
ferent vacua within a given family can be labeled by an
integer n. The value of the field strength in these vacua is

_ ﬁ F

wpyu€ P =Fy=qn + f,, (15)

where f is a constant, which is a fixed number for a given
family, but changes from family to family. Thus, within a
given family, the value of F is quantized in units of the
brane charge.

III. THE STRONG CP PROBLEM IN THREE-FORM
LANGUAGE

As discussed above, the vacua with a constant four-form
electric field F are very similar to € vacua in CQD. We
wish now to show that the real QCD 6 vacua can be
understood as the vacua with different values of an electric
field of a composite QCD four-form (3). The detailed
discussion of this connection can be found in [4]. Before
going to real QCD let us formulate the #-vacuum problem
in a theory with a free fundamental three-form, with the
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simplest Lagrangian (7) and no sources. This theory is in
the Coulomb phase, and this fact is the source of the
generalized strong CP problem. As shown above, equa-
tions of motion are solved by an arbitrary constant electric
field (11), where F is arbitrary and plays the same role as
the 6 parameter in QCD. In particular, the constant electric
field (11) is CP odd. Also, the F, vacua obey a super-
selection rule. Note that the expansion on a background
with a constant electric field Fy generates a direct analog of
the 6 term,

OF, (16)

where 0 = 21—4F o- Hence, the @ parameter in a three-form
gauge theory is equivalent to a constant four-form electric
field in the vacuum. This is analogous to what happens in
the free massless electrodynamics in two dimensions in
which the 6 parameter also appears as an electric field [11].
Thus, the strong CP problem reformulated in the language
of a three-form gauge theory reduces to the following
question. How can the four-form Coulomb electric field
be made naturally small?

The strong CP problem in QCD can be reformulated in
the above-presented three-form language. For this, con-
sider a #-term in SU(N) gauge theory with a strong cou-
pling scale A (which we shall set equal to 1) and no light
fermion flavors,

g2

3272
where g is the gauge coupling, and a is an SU(N)-adjoint
index. As discussed in the Introduction, this term can be
rewritten as a dual of the four-form field strength F of a
composite three-form C, g, according to (2) and (4). Under
the gauge transformation, C,g,, shifts as (9) with

QU‘B =Af’a6mw”, (18)

L=26

G°G4, (17)

where w“ are the SU(N) gauge transformation parameters.
The four-form field strength F, .5, = 9[,Capy) is of
course invariant under (9) and (18). Note that the SU(N)
Chern-Simons current K, can be written as

K CcePr, (19)

= €uapy

It is known [3] that, at low energies, the three-form C
becomes a massless field and creates a long-range
Coulomb-type constant force. The easiest way to see that
C mediates a long-range interaction is through the Kogut-
Susskind pole [12]. The zero momentum limit of the
following correlator,

lim -oqq” [ d'se ™ OITK, (KO0, 20)

is nonzero, as it is related to topological susceptibility of
the vacuum, which is a nonzero number in pure gluody-
namics. Hence, the correlator of the two Chern-Simons
currents has a pole at zero momentum, and the same is true
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for the correlator of two three-forms. Thus, the three-form
field develops a Coulomb propagator and mediates a long-
range force. Because the probe sources for the three-form
are two-dimensional surfaces (domain walls or the two-
branes), the force in question is constant.

In other words, at low energies, the QCD Lagrangian
contains a massless three-form field, and can be written as

L=0F+K(F)+---. 1)

The exact form of the function K in QCD is unknown,’ but
it is unimportant for our purposes. It is obvious now that
the @ problem in QCD is isomorphic to a problem of a
constant four-form electric field, and that QCD 6 vacua are
simply vacua with different values of this electric field.

Notice that the axion solution of this problem is nothing
but Higgsing the composite three-form given in (4). That
is, the axion solves this problem by giving a gauge-
invariant mass to the three-form field and screening its
electric field in the vacuum.”? Indeed, the axion solution
is based on the idea of promoting € into a dynamical
pseudoscalar field a, which gives us the following
Lagrangian:

2
L= ) (0,a)* — aF + %K(F), (22)

2
where f is the axion decay constant. The reader can easily
check that the minimum of the axion potential in the above
theory is always at F' = 0, regardless of the form of the
function K(F), and that the theory contains no massless
correlators. In other words, the three-form gauge theory is
in the Higgs phase, due to ““eating up” the axion field.? The
detailed discussion of this phenomenon can be found in [4].

We shall now choose a different path for solving the
strong CP problem. We shall not introduce any massless
axions. In our approach the four-form electric field will
remain in the Coulomb phase, but we shall explain its
smallness by altering the structure of the # vacua. In our
treatment the vacuum superselection rule will be lifted, but
in such a way that the vacua will accumulate in a tiny-6
region.

IV. PROMOTING 6 = 0 INTO THE VACUUM
ACCUMULATION POINT

We shall now discuss the dynamics that promotes § = 0
(TrGG = 0) to the vacuum accumulation point. As a result
of this dynamics, all but a measure-zero set of vacua
become piled up near § = 0.

'Some subleading terms were estimated in [13] using the
large-N QCD expansion.

Alternatively one could try screening 6 by dramatically
altering the topology of space [14].

*The Higgs effect can be clearly visualized by dualizing the
axion to an antisymmetric two-form field [4,7].
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We shall achieve this effect by replacing the topological
axion current €*FY#9 pa in the second term of the
Lagrangian (22) by the CP-odd two-brane current, accord-
ing to (5). In other words, we trade a massless CP-odd
scalar for a massive (P) CP-odd extended object, the two-
brane.

(The meaning of a CP-odd brane requires some clarifi-
cation. In fact, a topological domain wall formed by a P-
and CP-even scalar y represents a simplest field theoretic
example of a P- and CP-odd two-brane. Indeed, let us
assume that y changes by Ay through the wall. The
topological current J*#Y = e*F7#9  x then has the parity
which is opposite to the one of Cy . Thus, in such a case,
the coupling Cg,J @BY is not permitted by P and CP and
must be accompanied by the odd powers of a P-odd
electric field F. In the effective low energy description,
in which the wall thickness is integrated out, the topologi-
cal current plays the role of the two-brane current which

sources C, By

ePrig  x(x) — de"‘Byﬁ“(x —Y). (23)

In view of this, if we wished to limit ourselves to entirely
field theoretic realization, with no fundamental extended
object, we could have simply replaced a massless pseudo-
scalar axion field with a heavy scalar y that forms topo-
logical domain walls. One can easily construct other more
involved examples of the CP-odd walls. However, we wish
to keep our treatment maximally general, without specify-
ing any underlying nature of two-branes.)
Up to total derivatives, the Lagrangian then becomes

JQBY

L=2LK(F)+C

where J (‘J‘Tf 7 is the transverse part of the brane current (12).
The reason for transversality is as follows. From the as-
sumption that the brane is CP odd it follows that the brane
charge ¢ can no longer be a constant, but should be an odd
continuous function of F. For example,

q— q(F) = F>"*1, (25
where 7 is a positive integer. This is exactly what we need,
since, according to the general mechanism of [10], the zero
of the electric field F will become an accumulator in the
space of vacua. We shall demonstrate this explicitly in a
moment. But let us first note that, in order to maintain the
gauge invariance in the case of a field-dependent g, we
shall follow the prescription of [10] and couple C,g, and
J%PY transversely. That is, we shall adopt the following
coupling,

CapyI(h (26)

where J(r) is the transverse part of the current
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JeBY — H[lf”]uﬁy]'

s 27

Here I1,, = n,, — agf” is the transverse projector.

For constant ¢, we have %J,5, = 0 and J7) = J. Thus,
the coupling (26) reduces to the one in (7). This fact
accomplishes our goal. In each given vacuum the expecta-
tion value of F is fixed to a constant. On the other hand, the
change of ¢ from vacuum to vacuum is permitted, because
Capy only couples to the transverse part of J,g,. The
existence of the attractor point at F' = 0 is guaranteed by
the fact that J7y — 0 when F — 0.

The coupling (26) is the gauge-invariant generalization
of (7) for the case of a nonconstant charge g(F). Although
the coupling (26) contains a projector, as shown in [10], it
is local, and can be obtained from a local underlying theory
after integrating out the Stiickelberg field. For complete-
ness, we repeat this derivation in the Appendix.

Putting all the ingredients together, let us now show that
the theory has an attractor point in the space of vacua at
F = 0. Since the existence of the attractor point at F = O is
independent of the form of the function K(F), we shall
take K(F) = F?/2 for simplicity,

L=5F + Cop, . (28)
The equations of motion are
aJKpT
@ M\ _ 708
et 578M<F + 24CKpT a—F> = J(?T)’y (29)

The vacuum structure of a similar toy example of 1 +
I-dimensional electrodynamics was studied in [15]. The
analysis in our case is pretty similar. In order to visualize
the vacuum structure, we have to figure out how the
constant four-form electric field F' changes at the static
brane. For definiteness, we shall place the latter at x> =
z = 0. Then the only nonzero components of the current
become J*PY = €*F¥3§(z). We shall now look for the
static z-dependent configuration F = F(z) and C*AY =
€*B73C(z). Then the only nontrivial equation is

aq(F ))

— = —¢q(F(z))6(z). (30)

a’z<F(z) + 8645(2)C(2)

To find a jump in the value of F, we integrate the equation
in a small interval near z = 0. This integration gives

AF = —g(F(0)). 31)

Because ¢(F) is an odd function of F, Eq. (31) shows that
jumps are becoming smaller and smaller as F — 0, which
proves that there are an infinite number of vacua within an
arbitrarily small neighborhood of F = 0. Thus, F =0
(6 = 0) is a vacuum accumulator point.

As it was shown in [10,15] the number of vacua with the
electric field exceeding a certain value F, diverges with
F.— 0as
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1 dF
~ —_—. 2
= |, G2
For q(F) = F, this gives
1
~In[—).
nr, n(ﬂ) 33)

Translated to the statistics of the # vacua, this implies that
the number of # vacua within each family diverges as

ng ~1n(6~1) (34)
for § — 0.

V. THE ACCUMULATOR-SHIFT PROBLEM AND
THE FIX

We shall now address a potential problem which could
destabilize the above solution of the strong CP problem.
The problem may arise from the perturbative gluon loops
that may generate a constant part in g(F) and therefore
shift the accumulator point away from F =0 (6 = 0).
Such a constant part may be generated because of the
following reason. The symmetries that guarantee that
q(F) is an odd function of F are P and CP. However,
both symmetries are broken in the electroweak sector of
the standard model, and this breaking will result in a
contribution to the f-term, which we shall call fg,;. We
shall assume that Oy ~ 1. The breaking of CP by the
Osm-term can (and, in general, will) be communicated to
the brane via the gluon loops, and this will result in the shift
of the function ¢(F) by an F-independent constant propor-
tional to the Ogy-term,

q(F) = q(F) + Osy AL (35)

where A, is a cutoff. Such a shift by a large constant would
be a disaster for our solution, since the vacuum accumu-
lation point now would be shifted to the F' # 0 value that,
in general, would result in 0peeryvapie ~ Osm-

We shall now solve the above problem dynamically. For
this we shall assume that CP is broken spontaneously at
some scale M, by a nonzero vacuum expectation value
(VEV) of some scalar field ¢. In such a case all the
CP-violating operators, and, in particular, the fy5-term
will be generated from some effective high-dimensional
operator of the form

d) N ~
(M) TtGG — Oy F, (36)

where N is some power, which depends on the details of
model building and, in particular, on quantum numbers of
the field ¢ under different gauge symmetries. After ¢ gets
a VEV, the above coupling will translate into an effective
Osp-term with Ogy = (%))N.

At this point we should make it clear that our approach
should not be confused with the one by Nelson and Barr
[16]. In fact, our strategy is exactly orthogonal. If we
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translate the strong CP problem in three-form language,
the initial postulate in the Nelson-Barr type approach
amounts to choosing the vacuum by the requirement of
the CP invariance, that is, by the requirement that the
electric field (2) (equivalently @) should vanish in the
vacuum.

Our philosophy is precisely to avoid this type of choice,
because the electric field ((GG) = 0) is not a parameter in
the fundamental action, but rather a solution of the equa-
tions of motion, which, as any other solution, does not have
to respect the symmetry of the initial action. Therefore, we
do not put any such restrictions on the vacuum states, and
consider all of them. We then solve the strong CP problem,
by explaining why the ones that conserve strong CP are
statistically more probable.

The crucial difference is already obvious from the fact
that we are not demanding any particular smallness of fgy;.
Because in the vacuum {¢) ~ M, the 6gy; is naturally of
order 1. So in the absence of our CP-odd branes the strong
CP problem would be there, as usual. What we gain by
promoting sy into a VEV of a field is that its expectation
value can diminish in the vicinity of the brane due to the
influence of the latter. This fact solves the accumulator-
shift problem. The shift of the brane charge by the gluonic
loops now will manifest itself through correcting g(F) by
the following local operator:

AN 14
a(F) = 4(F) + (1) AL (37)
The important point is that, in evaluating this shift, the
value of ¢ has to be taken not in the vacuum, but at the
location of the brane. Because of the influence of the brane,
the latter value can be negligibly small, as we show in a
moment. In this way the accumulator shift is avoided.
The suppression of the ¢ VEV on the brane can happen,
because the ¢ field is allowed to have various potential
terms on the brane world volume, compatible with sym-
metries. The most important of these is a brane-localized
mass term, which can be introduced in the four-
dimensional action in the following form:

! f i My (02 7, (38)
where
M%r(x) = =+ fde\/—_gM384(x -7). (39)

In the above expression My is a positive mass parameter.
As shown in [10] in the case of the positive sign, the brane-
localized mass term has an effect of suppressing the ¢
VEV on the brane. The source for this suppression is easy
to understand. The equation for ¢ in the background of the
brane (located at z = 0) is

PP — A (P* —m*)p — 8()Mpdp = 0. (40)
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Here we have assumed that the bulk potential for the ¢
field is V() =4 (4> — m?)? so that the bulk VEV is
dpux = m. From (40) it is clear that the positive brane-
localized mass term is seen by the field as a potential
barrier, which for My > Am strongly suppresses the ex-
pectation value on the brane, ¢y, <K dpux-

¢y, can be estimated by minimizing the following ex-
pression (we ignore the factors of order 1):

E = Mgdi + (P, — m)P>m + A2(PpE, — m?)’m~1. (41)

The first term in this expression comes from the brane mass
term. The second and the third terms are the expenses in
the gradient and the bulk potential energies. The full ex-
pression is minimized at

bor = b’ “2)
br bulk MB ’

where my = Am is the bulk mass. Thus, in any given
vacuum, the brane expectation value of ¢ is by the factor
my /My smaller relative to its bulk counterpart.

This statement can be checked exactly. Equation (40)
has an explicit solution

#(2) = mth[\/— <| z| + \/—m¢ arcsh(z\flgnqﬁ))} (43)

$(0) =

which confirms the above estimate, since ¢, =
\/Qmm(ﬁ /Mpg.

To summarize, by decreasing the bulk mass of ¢ relative
to its brane mass, the expectation value at the brane gets
diminished. The brane surrounds itself by a “halo” of a
restored CP region. The size of this halo is ~m:ﬁl. Inside
this region, the only source of the CP violation is the
expectation value of F that is sourced by the CP-odd brane.

Because of the above effect, the accumulator gets shifted
to the point

g(F) ~ ( B>N. (44)

This value can be naturally extremely small. To get a rough
feeling about the possible smallness, consider an extreme
case, when the brane has a Planck scale tension. Then, we
can take Mg ~ Mp. If ¢ is a modulus that couples to the
standard model fields via the Mp suppressed interaction,
the natural lower value for mg is somewhere around
1073 eV. This will be the case if the supersymmetry break-
ing scale is around TeV. Then taking g(F) = F the value of
the observable O-term at the accumulator point will be
O opservable ~ 1073, which is practically unobservable. A
phenomenologically more interesting situation occurs for
the lower values of the brane tensions, in which case the
predicted 6 ,peervanle May be close to the phenomenological
lower bound, and be potentially observable.
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VI. EXPERIMENTAL SIGNATURES

We wish to briefly discuss some possible experimental
signatures of the presented scenario. The crucial role is
played by the branes to which the standard model gauge
fields are coupled. These branes can be introduced either as
some field theoretic domain walls (see [10]), or as the
fundamental objects. The latter possibility is phenomeno-
logically the most interesting one, since branes can be
produced at particle colliders.

There is no obvious particle physics upper bound on the
tension of these branes (although the specific cosmological
considerations may place one). In this respect, the role
played by the brane tension in our scenario is analogous
to the one played by the axion decay constant in the Peccei-
Quinn solution. The latter can be arbitrarily high, allowing
the axion to be arbitrarily weakly coupled and practically
unobservable [17].

However, if the brane tension is at the TeV scale or
lower, the branes may be observed at LHC in the form of
the resonances with a specific spectrum. One can think of a
number of possible production channels for these reso-
nances. Because branes are predicted to be coupled to all
possible CP-odd combinations of the standard model
Chern-Simons forms and dual field strengths, they can be
produced in gauge boson scattering. For instance, they can
be produced in gluon-gluon collisions accompanied by the
production of the additional gauge fields. A typical process
would be

2g — brane resonance + 2, (45)

in which two gluons produce a brane resonance and two
photons. The brane resonances can then decay into a
combination of the standard model gauge fields [for in-
stance, into four photons (gluons, weak bosons)]. They can
also decay into the CP-violating scalar ¢, which then (if
mass allows) can decay into the standard model fermion-
antifermion pair and a Higgs.

Note that the brane tension may be below the W, Z
masses, in which case the decay in these particles is
excluded. Also note that the mass of ¢ in the extreme
case can naturally be as small as 1073 eV. This will be the
case if the supersymmetry breaking scale is TeV, and ¢
couples via Planck scale suppressed operators to the stan-
dard model fields. In such a case ¢ can only decay into the
photons, and the lifetime will be too long for being ob-
served within the detector. In such a case, ¢ can also
manifest itself through a new gravity-competing force at
submillimeter scales.

Brane resonances can also be produced in quark-
antiquark annihilation together with the Higgs in the final
state, via an intermediate ¢ scalar.

The generic distinctive feature of brane resonances will
be their characteristic spectrum. For instance, it is known
[18] that the radial excitations of a spherical membrane
have the spectrum of a radial Schrodinger equation with a
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quartic potential (for simplicity we work in units of the
brane tension),

2
(= 5+ 7 Jpto) = it (46)

which has a m? ~ n*/3 scaling for large n.

VII. CONCLUSIONS

The source of the strong CP problem is that the QCD has
a continuum of the vacuum states labeled by the parameter
6, which obey the superselection rule and most of which
are excluded observationally. The phenomenologically ac-
ceptable values # < 10° are not preferred by any statistics
or dynamical considerations.

What we have achieved in our treatment is that we have
lifted the superselection rule in such a way that the tran-
sition within an infinite subset of vacua, called a vacuum
Sfamily, is now permitted by nucleation of branes. A given
family of vacua can be constructed by randomly choosing
the value of the parameter 6 and adding all possible vacua
that can be created from it by nucleation of the arbitrary
number of branes. The set of vacua created in this way will
by default be isolated from the other sets by the super-
selection rule. Thus, the transition among the families is
still forbidden. A priori, the number of families may be
large or even infinite, but within each family the accumu-
lation of the infinite number of vacua happens within the
phenomenologically permitted region 8 < 10~°.

In this way, in the full theory, the phenomenologically
unacceptable vacua form a measure-zero set.

In this work we were mainly concerned with the vacuum
statistics, and we did not discuss an explicit cosmological
scenario that in the real-time picture would drive the
Universe towards the vacuum accumulation point.
However, it is intuitively clear that, in any early universe
scenario in which the statistics of vacua matters, the high-
est probability will be given to the phenomenologically
acceptable ones, due to their enormous number.

We also wish to remark that, although fundamentally
different, the presented mechanism shares some spiritual
connection with the irrational axion idea [19].

Finally, there are possible experimental signatures of the
above theory. The general prediction is the existence of the
two-branes to which the standard model gauge fields are
coupled. The tension of these branes may be around the
TeV scale or lower. In such a case, they can be produced in
particle collisions in the form of the resonances with a
characteristic spectrum.
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APPENDIX

In this appendix, we briefly repeat the method of
Ref. [10] for obtaining the couplings (27) from the local
gauge-invariant theory. This is achieved by introducing the
following couplings in the Lagrangian:

(Caﬁv o a[aBﬁy])JaBy + Xﬁyaa(caﬁv o a[ozBﬁW])'
(AD)

Here, two-form B,z is a compensating Stiickelberg field,
which under the gauge transformation (9) shifts in the
following way:
Baﬂ_)BaB—i_QaB' (A2)

XBY is a two-form Lagrange multiplier that, through its
equation of motion, imposes the transversality constraint

0, Bapg) = 9"Chap. (A3)
Integrating out the X and B fields, we arrive at the effective
coupling (27).

Let us briefly comment on a potential effect, discussed in
[10], which is a possible screening of the electric field F by
the virtual brane loops. The effect is somewhat analogous
in spirit to the charge screening by fermion loops in the
massless Schwinger model [20], except that this issue in
the brane case is more subtle. The point is that the loops of
the branes could, in principle, generate operators of the
form

C’“’BRHE’M Crap) (A4)
where R is some function that can be expanded in a series
of the positive powers of 92/M?, where M is a cutoff. If
this expansion contains a constant 92-independent term,
the propagator of the three-form would acquire a physical
pole. This would screen the electric field F. In this case the
strong CP problem would be solved automatically, just as

in the axion case, and there would be no need to allude to
the vacuum accumulation effects.
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