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We discuss a mechanism through which the multivacua theories, such as string theory, could solve the
hierarchy problem, without any UV-regulating physics at low energies. Because of symmetry the number
density of vacua with a certain hierarchically small Higgs mass diverges, and is an attractor on the vacuum
landscape. The hierarchy problem is solved in two steps. It is first promoted to a problem of the
superselection rule among the infinite number of vacua (analogous to � vacua in QCD) that are finely
scanned by the Higgs mass. This rule is lifted by heavy branes, which effectively convert the Higgs mass
into a dynamical variable. The key point is that a discrete ‘‘brane-charge-conjugation’’ symmetry
guarantees that the fineness of the vacuum scanning is set by the Higgs mass itself. On a resulting
landscape, in all but a measure-zero set of vacua, the Higgs mass has a common hierarchically small value.
In minimal models this value is controlled by the QCD scale and is of the right magnitude. Although in
each particular vacuum there is no visible UV-regulating low energy physics, the realistic models are
predictive. For example, we show that in the minimal case the ‘‘charge-conjugation’’ symmetry is
automatically a family symmetry, and imposes severe restrictions on quark Yukawa matrices.
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I. INTRODUCTION

It is usually assumed that the solution to the hierarchy
problem requires the existence of some new physics
around the TeV scale, in order to regulate quadratic diver-
gences in the Higgs mass. In the present article, we shall
attempt to provide a counterexample to this statement. Our
approach will be based on generalization of [1], which we
shall closely follow. Another inspiration is provided by the
recent progress [2–5] in understanding the distribution of
vacua on string theory moduli spaces. We will comment on
the connection with the latter work below.

In [1] it was shown that in simple ‘‘string inspired’’
extensions of the standard model, postulating the coupling
to the heavy branes and the three-form fields, the number
of vacua with a hierarchically small value of the Higgs
vacuum expectation value (VEV) diverges due to symme-
try reasons. Such a value of the Higgs VEV was called an
‘‘attractor’’ point in the space of vacua. The crucial point is
that by symmetry the attractor point is stable against the
quantum corrections. The situation is rather peculiar. The
theory in question has an infinite number of vacuum states
separated by the large potential barriers. The Higgs mass
(and the VEV) takes different values in different vacua, but
the vacua with large values of the Higgs VEV are rare and
gradually increase in number density towards the smaller
Higgs VEV. An infinite number density of vacua cluster
around a certain hierarchically small value of the Higgs
VEV, which marks the attractor point. In other words, the
scanning of the vacuum landscape by the Higgs mass
becomes hyperfine near the attractor value.

In each particular vacuum within the neighborhood of
the attractor point, there is no UV-regulating new physics

around the scale of the Higgs mass. So a naive observer,
living inside of any such vacua and suspecting nothing
about the multiplicity of the similar vacuum states, would
attribute the smallness of the weak interaction scale to
a mysterious fine-tuning. Nevertheless, for an ‘‘outside’’
observer, knowing that the number density of such vacua
is divergent, the ‘‘fine-tuning’’ becomes perfectly natural.
The hierarchy problem is solved since the prior prob-
ability distribution is singular, and probability is sharply
peaked around the vacua with the hierarchically small
Higgs mass.

These ideas indicate that multivacua theories, such as
string theory, have the potential for solving the hierarchy
problem without invoking any UV-stabilizing new physics
around the weak scale. Hence, in such theories our ideas
about naturalness must be reconsidered. This view is sup-
ported by the recent progress in the field.

It is becoming evident [2–10] that the string theory
‘‘landscape’’[8], which reveals enormous complexity of
the vacuum states, could play an important role in selection
of the observed vacuum. So it is conceivable that the
attractor solution of the hierarchy problem could find a
natural implementation in string theory. Putting aside the
question of the Higgs mass and the strength of the diver-
gence in the vacuum number density, the attractor of [1]
can be viewed as some sort of ‘‘holographic dual’’ to
one class of vacua considered by Giddings, Kachru, and
Polchinski [2], which arise at conifold points in Calabi-
Yau moduli space.1 The recent interesting studies [3–5]
indicate that ‘‘attractive’’ conifolds with flux can lead to
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clustering of a high number of vacua. Although the cluster-
ing of the vacua in the case of conifolds is weaker than in
the case of [1], it will be shown below that this feature is
rather parameter dependent. This connection deserves fur-
ther study [11]. Some related ideas can also be found in
[10].

We should stress, however, that the vacuum structure of
the theory considered in the present work is different from
the conventionally discussed string landscapes, in the sense
that in our case the attractor points accumulate literally an
infinite number of vacua. Although we do not see any a
priori fundamental reason that would make such sharp
attractors impossible in string theory, we are not aware of
any example.

Because of the above, in the present paper we shall limit
ourselves to the effective field theory analysis of the
attractor idea, although some string theory concepts will
play a crucial role in this analysis. We discuss how the
attractor behavior arises in effective field theory which
involves some of the key ingredients of string compactifi-
cations, such as the three-form fields, axions (two-forms),
and effective two-branes.

We should also emphasize that the two-forms that we
shall employ should be exactly massless, unlike the stan-
dard QCD or the string theory axions, which typically
acquire mass at low energies. They are demanded by the
gauge invariance of the three-form-to-brane couplings,
which in our case should depend on the expectation value
of the Higgs field. They can only couple to the standard
model particles via the heavy branes.

We shall show that, although the attractor solution does
not require any UV-regulating new physics, the realistic
models nevertheless have a predictive power and are po-
tentially testable. For example, in the most minimal case,
without any low energy extension of the standard model,
we show that the attractor-stabilizing symmetry is auto-
matically a family symmetry of standard model quarks, and
implies restrictions on the structure of quark Yukawa
couplings.

Among the possible approaches to the hierarchy prob-
lem, the attractor solution is probably the closest possible
analog of the axion solution of the strong CP problem.
Indeed, from the beginning of our treatment the hierarchy
problem, from being a problem of the UV stability of the
Higgs mass (m�), gets promoted to the problem of a super-
selection rule among the infinite vacua scanned by m�.
These are analogous to � vacua in QCD that are scanned by
the � parameter [12]. The advantage of dealing with a
superselection problem, as opposed to the one of UV
stability, is the following. Unlike the latter problem, the
new physics that solves the former can be arbitrarily
weakly coupled to the standard model sector. The famous
example of such new physics in the case of the Peccei-
Quinn (PQ) solution [13] of the strong CP problem is the
axion [14,15], which can be arbitrarily weakly coupled and

practically invisible [16,17]. As we shall see, in our case
too, the new physics that solves the hierarchy problem via
the attractor mechanism can be practically decoupled from
the standard model sector. Of course, along with the anal-
ogies, there are fundamental differences with the axion
mechanism. In both cases the parameter of interest is
promoted to a dynamical variable. In the PQ case this is
the � angle, and in our case the Higgs mass m�. In both
cases, the vacua with small values of the parameters are
selected, but the selection mechanisms are different. In the
case of the � angle the selection is via the vacuum relaxa-
tion mechanism, since small � corresponds to the true
ground state of the system [18]. In our case, the selection
happens through the enormous multiplicity of states.
Because of the attractor, in all but a measure-zero number
of vacua, the Higgs mass is small.

Finally, we wish to say that in the present paper we are
addressing the statistics of the Higgs vacua, without put-
ting them into a concrete cosmological scenario. That is,
we show that the vacua with large hierarchy are statisti-
cally most probable, or to be more precise, are maximally
probable. That is, if one had to choose randomly, with the
equal weight, one would end up in such vacua with unit
probability. This is all we can claim. Of course, in a
concrete real time cosmology, the probabilities may be
altered, for example, by the initial conditions of the
Universe. We shall not attempt to estimate them here.
One possible cosmological scenario was discussed in [1],
in the context of the eternal inflation, and this answers
some of the general questions. For instance, because
inflation is eternal, the Universe realizes all the possibil-
ities, and the vacuum statistics actually becomes a real
statistics (it is analogous to throwing a biased die an infinite
number of times). Over the infinite space-time range most
of the volume of the Universe will be in the vacuum that is
statistically the most probable one. Of course, there will be
an infinite number of causally disconnected patches of
such a vacuum, but they will all share the property that
in all of them the electroweak scale will be low. This
eliminates the need of anthropic considerations.

Of course, as in any other inflationary scenario in theo-
ries with different vacua (or branes), any patch that today is
within our cosmological horizon should have inflated after
it chooses its final vacuum, or else we would see the
domain walls or branes in our observable Universe. This
is not specific to our mechanism, and is common to any
theory with domain walls or branes. In order not to have a
cosmological problem, we need the inflationary scale to be
lower than the brane (or wall) tension. When this is sat-
isfied, the inflation solves the cosmological problems, as
usual.

Notice that the fact that the last transition within the
observable patch happens before the end of inflation does
not jeopardize the statistical solution, but is exactly the
opposite. This is precisely how inflation convert the vac-
uum statistics into the statistics of the causally discon-
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nected patches of the Universe. Again, this is explained in
detail in [1].

Note that the massless two-form field can only be pro-
duced together with the branes, and this is a tremendously
suppressed process. Finally, because the large transition
within our patch happened before the end of inflation, there
are no immediate observable consequences for either dark
matter or the cosmic microwave background (CMB)
spectrum.

The paper is organized as follows. In Sec. II, we briefly
summarize our criteria of naturalness and the essence of
the attractor vacuum. In Sec. III, we gradually build the
attractor vacuum, by putting all essential ingredients to-
gether. At the end of this section we derive an effective
equation for finding the vacua on the landscape, and give
their number counting. In Sec. IV, we give a general
discussion of the shift of the attractor point to the realistic
values of the Higgs VEV. The precise mechanisms are
discussed in Secs. V and VI. In Sec. V, we study the effect
of world-volume terms, such as brane-localized mass
terms, on the attractor dynamics, and show that depending
on the parameters they can either lead to sharpening of the
attractor, or to regulating it (that is, cutting off the diver-
gence in vacuum number densities). In Sec. VI, we discuss
the realistic model building and present the two versions of
the complete models. We show that the minimal one,
which requires no enlargement of the electroweak sector,
imposes severe restrictions on the structure of Yukawa
matrices. The next to minimal case, which is less constrain-
ing, is discussed at the end of Sec. VI. In Sec. VII, we show
that, when extended to grand unified theories, the attractor
solution automatically solves the problem of doublet-
triplet splitting. In Appendix A, we show how the theories
with the attractor can be obtained from local gauge-
invariant theories after integrating out the Stückelberg
field, and in Appendix B we discuss some related potential
issues. In Appendix C, we discuss some exact solutions. In
Appendix D, we show, following [1], that the branes
charged under the three-form fields can be the axionic
domain walls. Finally, in Appendix E, we study how the
axionic walls with field-dependent charges could be ob-
tained without the Stückelberg method, by integrating out
some intermediate scalars.

In the next article [19], we shall apply a very similar idea
to the strong CP problem.

II. NATURALNESS AND THE ESSENCE OF THE
ATTRACTOR PHENOMENON

In this section, we wish to briefly formulate our criteria
of naturalness, and summarize the essence of the attractor
solution. The hierarchy problem is the problem of UV
sensitivity of the Higgs mass (m�) and consequently of
the Higgs VEV (h�i). The excellent formulation of the

problem can be found in [20]. The attractor mechanism
solves this problem by selecting the vacuum with the
hierarchically small Higgs mass. The selected value is
UV insensitive due to the symmetry reasons. In this re-
spect, the attractor solution of the hierarchy problem is
natural in the same sense as the technicolor [20,21] or the
low energy supersymmetry, but has some advantages over
the latter. For example, as we shall show, the attractor
mechanism also automatically solves the problem of
doublet-triplet splitting in grand unified theories, which
supersymmetry alone fails to solve.

By simple choice of symmetry, the attractor solution
gives the possibility of obtaining the Higgs VEV in terms
of the QCD scale.

The essence of the attractor solution can be summarized
as follows. The attractor is a special point on the energy
landscape that contains an infinite number of discrete
vacua. The vacua are scanned by a given parameter, which
in the case of interest is the Higgs mass. What makes the
attractor landscape special is the fact that, due to the
symmetry reason, all but the measure-zero set of the vac-
uum states exhibit practically equal and hierarchically
small values of the Higgs mass. This value is the attractor
point.

The attractor vacuum is achieved in two steps. First, by
coupling the Higgs to the field strength of an antisymmetric
three-form, we promote the hierarchy problem into the
problem of the superselection rule, analogous to the strong
CP problem in QCD. The vacua are scanned by the Higgs
massm�, which plays the role analogous to the � angle that
scans the QCD vacua. The superselection rule is lifted by
two-branes that effectively source the Higgs mass and
allow the quantum transition between the vacua with dif-
ferent m�. Thus, the Higgs mass gets promoted to a
dynamical variable. This shares some analogy with the
axion solution of the strong CP problem, in which the �
angle gets promoted to a dynamical variable. However, the
reason why the desired vacuum is selected in the attractor
case is different from the axion scenario. In the latter case,
because the dynamical � angle changes continuously, the
selection is energetic. The selected vacuum is the true
ground state of the theory, to which the system relaxes on
a microscopic time scale. In our case, the transitions be-
tween the vacua with different m� are discretized. The
barrier between the vacua is very large, but the fineness
of m�- scanning changes throughout the landscape and
becomes superfine around the attractor point. Because of
the large potential barrier, each vacuum is extremely long-
lived. In such a situation energetics plays no role in select-
ing the vacuum. Instead, what is important is the density of
the vacua with the given values ofm�. We show that, due to
symmetry reason, which triggers a profound backreaction
on the brane charge, essentially all vacua cluster around a
certain hierarchically small value of m�, which is the
attractor point.
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III. THE ATTRACTOR VACUUM

A. The superselection rule

Expanding the analysis of [1], we start with a detailed
discussion of the attractor idea. String theory contains
various antisymmetric form fields, which after compacti-
fication to four dimensions give rise to three-forms, two-
forms (axions), and one-forms (vectors). The crucial role in
our solution of the hierarchy problem is played by the
three-form field C���. For a free three-form field, the
lowest order parity-invariant action has the following form,

 

Z
3�1

1

48
F����F���� (1)

where F���� � d��C���� is the four-form field strength.
This action is invariant under the gauge transformation

 C��� ! C��� � d������; (2)

where � is a two-form. Because of this gauge freedom in
four dimensions C contains no propagating degrees of
freedom, and its equation of motion

 @�F���� � 0 (3)

is solved by

 F���� � F0�����; (4)

where F0 is an arbitrary constant. Hence, in the absence of
other interactions, the effect of the three-form is reduced to
adding an arbitrary integration constant to the Lagrangian.
This constant will contribute to the overall cosmological
term. However, in the presence of interactions with the
other fields, the integration constant F0 will also contribute
to their effective masses and couplings. Consider, for in-
stance, an interaction with a scalar field �. In what follows
we shall treat � as the prototype of the standard model
Higgs. The lowest order parity- and gauge-invariant
Lagrangian describing a nontrivial interaction between �
and C has the following form,

 L � j@��j
2 �

1

48
F2 � j�j2

�
m2 �

F2

48M2

�
�
	
2
j�j4

� � � � : (5)

Here 	 is the quartic coupling, and m and M are the mass
parameters that naturally are of the order of the UV cutoff,
which we shall take to be around the Planck mass MP. For
definiteness, we shall assume m2 > 0, M2 > 0. Note that
the value of F determines the value of the effective mass 2
and consequently the VEV of the Higgs field. The latter is
equal to

 j�j2 �
1

	
�m2 � F2=48M2�: (6)

The value of F is determined from the equation of motion

 @���1� j�j2=M2�F����� � 0; (7)

which is solved by

 F���� �
F0�����

�1� j�j2=M2�
(8)

where F0 is an arbitrary integration constant. Plugging this
solution into the equation for the Higgs field, we get the
following effective equation determining the Higgs VEV,

 

�
�m2 �

F2
0

2M2�1� j�j2=M2�2

�
�� 	j�j2� � 0: (9)

It is obvious that the above theory has a continuum of the
vacuum states, labeled by F0. In many of these vacua the
VEV and the mass of the Higgs are much smaller than the
cutoff. These are the vacua with m2 � F2

0=2M2 	 M2, in
which �	 M. For instance, there is a vacuum with F2

0 �
2m2M2 in which � � 0. In this vacuum � is exactly
massless.

Although there exist vacua with a light scalar, the hier-
archy problem is nevertheless not solved in the above
theory. The reason is twofold. First, in the above theory
the vacua are uniformly scanned by the integration con-
stant F0, and the light Higgs vacua are not special in any
way. Second,F0 is not a dynamical quantity, and there is no
transition between the different vacua. In other words,
there is a superselection rule in F0, no vacuum is preferred
over any other, and any choice of F0 is good. In this respect
F0 vacua are similar to theta vacua in QCD [12]. As it is
well known, in QCD with no massless quarks there is a
continuum of physically distinct vacuum states that can be
parametrized by a periodic variable �. These � vacua obey
the superselection rule; there is no transition between the
states with different �. This situation gives rise to the
celebrated strong CP problem, since the phenomenologi-
cally acceptable vacua, with � < 10�9, are not particularly
preferred by the system.

The situation in our case is analogous. The model (5) has
a continuum of the vacuum states, scanned by F0 or
equivalently by h�i, and there is no transition between
the different h�i vacua. Thus, the hierarchy problem,
from the problem of UV instability of the Higgs mass, is
promoted to the superselection problem, analogous to the
strong CP problem in QCD.

In order to solve the former, we shall try to follow, as
closely as possible, the general strategy adopted by the
axion solution of the strong CP problem. As it is well
known, this solution is based on (a) first promoting � into a
dynamical variable (axion), and (b) showing that � � 0 is
the true ground state of the system.

Thus, in order to solve the hierarchy problem we need to
accomplish two more steps.

(1) Promote F0 into a dynamical variable.
(2) Find the symmetry reason that will ensure that the

vacua are not uniformly distributed and that the
vacua with the light Higgs are preferred over all
the others.
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As we shall see, the first step is achieved by the intro-
duction of branes which permit the transition between the
different � vacua. The difference with the axion case is
that the transition is quantum mechanical and discrete, as
opposed to being classical and continuous. This circum-
stance creates a profound difference between our solution
of the hierarchy problem and the axion solution of the
strong CP one. The impossibility of the continuous clas-
sical transition tells us that we cannot directly generalize
the axion mechanism of � relaxation, but it also suggests a
natural substitution. Indeed, because there is no classical
transition, the energy difference is unimportant for select-
ing the vacuum state, and what matters is the multiplicity
of vacua with a given value of �. We shall see that the
hierarchy problem is solved, because an infinite number of
vacua cluster around the small �-value, due to the sym-
metry reason.

In what follows we shall give a detailed discussion of
this phenomenon.

B. The role of the branes: Breaking the superselection

As said above, the superselection rule is lifted by in-
troducing two-branes (membranes) that source our three-
form field C���. Ignoring the Higgs field for a moment, the
effective action incorporating the interaction with branes
can be written as

 

q
6

Z
2�1

d3
C���

�
@Y�

@
a
@Y�

@
b
@Y�

@
c

�
�abc �

Z
3�1

1

48
F2;

(10)

where the first explicitly written term describes the inter-
action between the brane and the three-form. q is the
charge of the brane, and x� � Y��
� specify a 2�
1-dimensional history of the brane in 3� 1 dimensions
as a function of its world-volume coordinates 
a�a �
0; 1; 2�. This term can be rewritten in the form of the
following four-dimensional integral,

 

Z
d4x

1

6
J���C��� (11)

where J��� is the brane current

 J����x� �
Z
d3
�4�x� Y�
��q

�
@Y�

@
a
@Y�

@
b
@Y�

@
c

�
�abc:

(12)

Obviously, the current J��� is conserved as long as q is a
constant.

The brane self-action has the standard form

 � T
Z
d3


�������
�g
p

; (13)

where T is the brane tension (a mass per unit surface), and
gab � @aY

�@bY
���� is the induced metric on the brane.

Note that, since the bulk four-dimensional gravity plays no

essential role in our considerations, we have taken a flat
Minkowskian four-dimensional metric ���. Despite this,
the induced metric on the brane is not flat in general, due to
the dynamical curving of the brane. With the brane source
taken into the account, the equation of motion of the three-
form now becomes

 @�F���� � �q
Z
d3
�4�x� Y�
��

�
@Y�

@
a
@Y�

@
b
@Y�

@
c

�
�abc:

(14)

The brane can be taken to be flat and static, Y� � 
� for
� � 0, 1, 2, and Y3 � 0. The equation of motion then
simplifies to

 @�F
���� � �q��z�����z (15)

where z � 0 is the location of the brane. Both (14) and (15)
show that the brane separates the two vacua in either of
which F0 is constant, and the two values differ by jqj.
Thus, the introduction of branes ensures that the transition
between the vacua with different values of F0 is possible,
as long as the value of F0 changes by the integer multiple
of q. Hence the discrete quantum transition between the
different vacua is possible via nucleation of closed branes
(this fact was used in an interesting attempt [22] to explain
the smallness of the cosmological term).

In other words, the theory given by the action (10) has
multiplicity of vacua that can be labeled by an integer n.
The value of the field strength in this vacua is

 �
1

24
F��������� � F0 � qn� f0; (16)

where f0 is a constant, which we will set equal to zero.
That is, the value of F is quantized in units of the brane
charge. Restoring the coupling to the Higgs field, the
equation (9) determining the Higgs VEV now becomes

 

�
�m2 �

�nq�2

2M2�1� j�j
2

M2 �
2

�
�� 	j�j2� � 0: (17)

The good news is that now the transition between the vacua
with different n is possible; however, the hierarchy prob-
lem is still not solved. First, because both m and M are
large, we need a very small q in order to ensure a fine
enough scanning of the Higgs mass. Second, even for a
small q, the vacua with small Higgs VEV are not preferred
over the others. Both problems can be cured in one shot, by
requiring a symmetry which will promote q into a continu-
ous function of �. For example,

 q! q��� / �N: (18)

Then, the zero of the function q��� will become an attrac-
tor (accumulation of an infinite number of vacua) in the
space of vacua. This will guarantee both the superfine
scanning of the Higgs mass and the preference of the vacua
with the small values of the Higgs VEV. Thus, the idea of
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the attractor is that the multiplicity of the vacua with the
small values of the Higgs VEV becomes divergent (or at
least very sharply peaked), because of the symmetry
reasons.

The essence of the attractor phenomenon can be sum-
marized schematically in the following sequence (written
in units of the fundamental scale):

 �q � �N� ! ��F � q� !
�
��
�

 q

�
! ��q
 q�N�2�:

(19)

The arrows indicate that a nonzero charge of the brane
separating the two different vacua implies the change of F
across the brane, which implies the change of�. The latter
implies the change of the brane charge in a new vacuum,
and closes the cycle. We shall give a detailed discussion of
the dynamics of the above sequence throughout the paper.

C. Charge conjugation: Creating an attractor

Thus, to achieve an attractor, we must promote the brane
charge q into the function of �, such that q vanishes for
small values of�. To guarantee this, we shall require a new
discrete symmetry Z2N,

 �! ei�=N��; (20)

which acts on the brane as ‘‘charge conjugation.’’ That is,
we require that q! �q under Z2N . The invariance under
Z2N then demands q to be an odd function of �N . The
simplest choice is

 q � qeff��� �
�
2

�
�
MP

�
N
� H:c: (21)

where � is some constant.
For successful implementation of the above idea, we

need to address the following technical issue. For non-
constant q the current (12) is not conserved, and hence
the coupling (11) is not gauge invariant. In order to main-
tain the gauge invariance, following [1], we shall modify
this coupling in the following way:

 �
Z
d4x

1

6
C���J

���
�T� (22)

where J�T� is the transverse part of the current

 J���
�T� �

1
6�
��
� J����: (23)

Here ��� � ��� � �@�@�=@2� is the transverse
projector.2

For constant q, we have @�J��� � 0 and J�T� � J. Thus,
the coupling (22) reduces to (11). This fact accomplishes
our goal. In each given vacuum the expectation value of the

Higgs is fixed, and so q is constant. So in each vacuum with
an unexcited Higgs field the brane couples to the three-
form in a normal way. On the other hand, the change of q
from vacuum to vacuum is permitted, because C��� only
couples to the transverse part of J���. The existence of the
attractor point at � � 0 is guaranteed by the fact that
J�T� ! 0 when �! 0.

The coupling (22) is the gauge-invariant generalization
of (11) for the case of a nonconstant charge q���. For the
constant � the above coupling is equivalent to (10) with
qeff � �Re��=MP�

N . Although the coupling (22) con-
tains a projector, it actually can be obtained from a local
underlying theory after integrating out certain degrees of
freedom. This issue is discussed in the Appendix A. It is
shown there how the coupling (22) can be obtained by
integrating out the Goldstone-type degrees of freedom à la
Stückelberg. In a very crude sense, the Stückelberg field
plays the role analogous to the one of the axion in the
solution of the strongCP problem. Some alternatives to the
Stückelberg method will be discussed in [23].3

Putting all the ingredients together, let us now show that,
with Z2N symmetry, theory has an attractor point in the
space of vacua at � � 0. For convenience, we write down
the combined Lagrangian, which takes the following form:
 

L � j@��j2 �
1

48
F2 � j�j2

�
m2 �

F2

48M2

�
�
	
2
j�j4

�
1

6
C���J

���
�T� : (24)

The above theory admits the divergent number of vacua at
small VEV of �, at least when4

 m�
����
2
p
M

�
m����
	
p
MP

�
N
: (25)

In order to see this, we shall integrate out the brane and the
three-form field and write down the effective potential for
�. Choosing the brane to be located at z � 0, the equations
are
 

@���1� j�j2=M2�F����� � ��������z
�

Re
�
�
MP

�
N
��z�

�
;

(26)

 

@2��
�
m2 �

F2

48M2

�
�� 	j�j2�

�
�N
12

��N�1

MN
P

��z��z������C��� � 0: (27)

2J�T� can also be written in the following form, J���
�T� �1

6 �
������

�����!C
��!, where ��� � @�@�=@

2 is the longitudi-
nal projector.

3We thank Gregory Gabadadze for enlightening discussions on
this and other issues.

4The meaning of this constraint is to avoid ‘‘overshooting’’ to
the vacua with the large positive Higgs mass, in case we start in a
vacuum with F � 0, in which the Higgs VEV is maximal, and so
is the brane charge.
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In integrating these equations, for simplicity, we will
first make the following approximation which is well
justified in the vacua with the small VEVs of � (a more
rigorous derivation is discussed in Appendix C).

(1) We shall ignore terms of order �2=M2 in the gauge-
kinetic function of F in the left-hand side (l.h.s.) of
Eq. (26).

(2) We shall ignore the terms proportional to the de-
rivatives of qeff in the right-hand side of (26).

The above is justified, because the change in q in each
elementary transition between the small � vacua is very
small. So the correction to �F0 because of the change in q
is of the higher order smallness in �=MP and can be
ignored.

Indeed, the change in � (��), in each elementary step
that connects the neighboring vacua, is due to change of F,
which is �F ’ qeff . Because the VEV of � in any vacuum
is given by (6), the change in � is

 ���2� ’
�F0F0

	M2 ’ qeff
F0

	M2 : (28)

Thus, even if the attractor point happens to be for the
maximal value F
M2, the change ��2 
 qeff , and con-
sequently

 �qeff �
N�

2

�N�2

MN
P

���2� 
 qeff
��N�2

MN
P

: (29)

Thus, the change in the brane charge is higher order in
�=MP. So, around the attractor point (�! 0), this sub-
leading correction can be safely ignored in each elemen-
tary step and qeff can be regarded as constant. Only after
many steps can the accumulated change in � become
significant.

This fact simplifies the equation (26). Integrating it for
the constant qeff we get that F is given by (4) with

 F0 � nqeff ; (30)

where n is an integer that labels the different vacua.
Plugging this result into the equation for � we get the
effective equation defining the VEV of �,5

 �

�
m2 � n2 �2

2M2

�
�N

MN
P

��
�� 	�3 � 0: (31)

Thus, n labels different vacua. It is obvious that there are an
infinite number of vacua close to� � 0. Thus, the vacuum
with a vanishing VEV is an attractor.

We should stress that Z2N symmetry guarantees the UV
stability of the attractor point. Indeed, the attractor point is
the vacuum in which the brane charge vanishes, q � 0.
Because of Z2N symmetry, this happens when � � 0.
Thus, any renormalization of � implies the corresponding

renormalization of the brane charge, such that � � 0
remains an attractor point.

D. Counting the number of vacua

We shall now give a simple general rule for counting the
number of vacua near the attractor point. For simplicity, we
set the parameter 	
 1. We wish to estimate the number of
vacua in which the expectation value of the Higgs field is of
the order of a given value �0 	 M. The number of the
vacua in which the Higgs VEV is �
�0, we shall denote
by n�0

. There is a simple way to estimate this number. We
start with a vacuum with a given VEV � � �0 and begin
lowering � by jumping to new vacua via creating branes,
until the VEV changes in first nonzero digit. The VEVof�
in each vacuum is given by (6). The change of � in each
elementary step is given by (28) and is small, because q is
small. The number of vacua n�0

is equal to the number of
steps that will make the accumulated relative change of �
of order one. That is, n�0

is defined by the condition that
the quantity

 

��
�0


qn�0

�2
0

(32)

should become of order one. Thus, the number of vacua is

 n�0


�2

0

q



MN
P

��N�2
0

; (33)

which for N > 2 diverges as �0 ! 0.
The above expression should not create a false impres-

sion that there is no attractor for N � 2 or less. The
equation (33) indicates that the number of vacua in which
� is of the order of a given value�0 diverges as�0 ! 0, as
long as N > 2. For smaller N, this number is either con-
stant or decreases with �0, but the total number of vacua
accumulated around � � 0 is always infinite.

In other words, the number of vacua with the Higgs VEV
in an interval MP >�>�0 is given by the sum

 n�>�0�
�
X
n�0

(34)

where the sum is taken over all the discrete vacua. As said
above, for the condition (25) the vacua can be arranged into
the groups labeled by �0. In any vacuum belonging to the
�0th group the VEVof the Higgs is equal to �0 in the first
nonzero digit, and the number in each group is given by
n�0

. Although for N � 2 or less this number either stays
constant or decreases with �0, the density of the groups
grows as 1=�2

0 and overcompensates the decrease of n�0

for any N > 0. To put it shortly, for the small �0 the sum
can be approximated by the following integral,

 n�>�0�

MP

Z MP

�0

n�
d�

�2 (35)

which shows that even forN � 1 the total number of vacua
5Without the loss of generality we can put the VEV of � to be

real.
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diverges as log��0�. The divergence of n�>�0�
for �0 ! 0

for N > 0 can also be seen from (31), which for N � 1
gives the following expression for the VEV of �:

 j�0j
2 �

m2

	� n2��2=2M2M2
P�
: (36)

This VEV approaches �0 � 0 for n! 1.

IV. THE WEAK SCALE SHIFT OF THE
ATTRACTOR

We have shown that a theory in which the brane charge q
is set by the VEVof a scalar field has a divergent number of
vacua with the values of the scalar field for which q! 0.
This is the essence of the attractor phenomenon. In the
above example the charge conjugation Z2N symmetry
guaranteed that the attractor point was at � � 0.
However, in order to solve the hierarchy problem in the
standard model, we have to make sure that the attractor
point is not at zero, but instead at the observed value �

100 GeV. As it was shown in [1], when the attractor theory
is considered in the cosmological context of an eternally
inflating universe, the attractor point can be shifted to the
value of the Hubble parameter during inflation. The solu-
tion of the hierarchy problem then would require this
parameter to be around the weak scale or so.

Despite the cosmological possibilities, it is important to
have other mechanisms that could generate the small shift
of the attractor point in a cosmology-independent way. One
universal possibility is to shift the brane charge by a small
�-independent amount

 qeff !
�
2

�
�N

MN
P
� 


�
� H:c: (37)

where 
 is a �-independent part. We should think of q0 as
of ‘‘spurion,’’ the VEV that spontaneously (softly) breaks
Z2N symmetry. It is important to stress that even for con-
stant 
, because 
 � 0 is an enhanced symmetry point, the
value of 
 is perturbatively stable. The attractor point then
will be shifted to

 � � �
�1=NMP: (38)

The origin of 
 is model dependent. We shall explore two
possibilities. In Sec. V, we will show that 
 can come from
the QCD condensate of the standard model quarks.6

Another avenue, to be discussed in the next section, is to
take into account the possible impact of the brane-localized
mass term of the Higgs field. As we will show, such terms
can have nontrivial effects on the attractor dynamics.

V. THE EFFECT OF THE BRANE-LOCALIZED
POTENTIAL

The � field may have various potential terms on the
brane world volume, compatible with symmetries. The
most important of these is a brane-localized mass term,
which can be introduced in the four-dimensional action in
the following form,

 �
Z
dx4Mbr�x�

2j�j2; (39)

where

 M2
br�x� � 

Z
d
3 �������

�g
p

MB�4�x� Y�: (40)

In the above expression MB is a positive mass parameter.
The question is as follows: what is the effect of this brane-
localized mass term on the attractor dynamics? We shall
show that this effect depends on the sign in (66). For the
positive sign the attractor at � � 0 becomes sharper,
meaning that the number of vacua diverges faster for �!
0. In the case of the negative sign, the two subregimes are
possible, depending on the parameters. One possibility is
that the attractor point is shifted away from zero, but the
divergence of vacua is kept intact. Another possibility is
that the attractor becomes ‘‘softer,’’ meaning that the brane
charge cannot decrease below a certain minimal value. In
the latter case, the scanning of the Higgs VEV cannot get
finer beyond the certain minimal step, and correspondingly
the divergence in the number density of vacua gets cut off
at some maximal value. We shall now give a more detailed
discussion of the above two regimes.

A. A positive mass term: Sharpening the attractor

Consider the effect of the positive mass term first. Such a
mass term ‘‘repels’’ the � field from the brane, and effec-
tively diminishes its VEV at the brane location. Ignoring
the effect of 
qeff-terms, the equation for � in the back-
ground of the brane located at z � 0 is

 @2�� �m2
bulk � ��z�MB��� 	�3 � 0 (41)

where m2
bulk is the effective bulk mass term which includes

the contribution coming from F,

 m2
bulk � m2 � F2

0=2M2: (42)

From (41) it is clear that the positive brane-localized mass
term is seen by the field as a potential barrier, and for
MB � mbulk the expectation value at the brane location
��0� is considerably smaller than its bulk counterpart
��1�.
��0� can be estimated by minimizing the following

expression (we ignore the factors of order one):
 

E � MB��0�
2 � ���0� �mbulk�

2mbulk

� ���0�2 �m2
bulk�

2m�1
bulk: (43)

6
 can also be set by the expectation value of some hidden
sector fermionic condensate, which has no direct interactions
with standard model particles.
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The first term in this expression comes from the brane mass
term. The second and the third terms are the expenses in
the gradient and the bulk potential energies. The full ex-
pression is minimized at

 ��0� 

m2

bulk

MB
: (44)

Thus, in any given vacuum, the brane expectation value of
� is by the factor mbulk=MB smaller than its bulk counter-
part��1� 
mbulk. Thus, for a given value of the bulk mass
term, the value of the brane charge qeff is smaller by a
factor of �mbulk=MB�

N , as compared to what it would be for
MB � 0. Correspondingly, according to the general rule of
vacuum counting, the number of vacua with a given VEV
of the Higgs field �
�0 becomes

 n�0



�
MN
P

��N�2
0

��
MB

�0

�
N
; (45)

and is by a factor of �MB=�0�
N bigger than what it would

be for MB � 0. Thus, the positive sign brane-localized
mass term makes the attractor stronger.

B. A negative mass: Smoothing out the attractor

Now let us show that in the case of the negative sign the
brane-localized mass term has an opposite effect, and may
either shift the attractor or cut off the divergence of the
number of vacua. This is because, for the negative brane
mass term, � develops a nonzero expectation value on the
brane even for m2

bulk � 0 (that is, when the bulk VEV is
zero). Thus, the brane continues to have a nonzero charge q
even in� � 0 vacua, and the step of change stays finite. As
a result, the number of vacua gets cut off.

Let us show that, for the negative sign of the brane mass
term, � indeed develops a nonzero value on the brane in
the limit m2

bulk ! 0. The fact that � wants to condense on
the brane can be seen by examining the linearized equation
for small perturbations about the � � 0 solution in the
brane background. This equation has the following form:

 �@2 � ��z�MB�� � 0: (46)

It is obvious that there is a normalizable exponentially
growing tachyonic mode, localized on the brane,

 � � e�1=2�MBte��1=2�jzjMB: (47)

This instability signals that � condenses on the brane and
develops a nonzero expectation value there. This conden-
sate is ��0� 
MB, since for mbulk � 0, MB is the only
mass scale in the problem. Hence, the expectation value on
the brane is 
MB even though the bulk VEV vanishes.

This fact has profound implications for the attractor
dynamics, since now even in the vacua with mbulk � 0
the brane charge is nonzero and is given by

 qmin 
��MB=MP�
N: (48)

To see what these implications are, first note that the value
of F0 in the vacuum withmbulk � 0 is F2

0 � 2M2m2. Then,
if

 M2
B � 4

���
2
p m

M
qmin; (49)

the attractor will be shifted to a positive value m2
bulk �

M2
B=4. In the opposite limit,

 M2
B < 4

���
2
p m

M
qmin; (50)

the attractor will be regulated, and the divergence in the
vacuum number density will be cut off at

 nmax 

mM
qmin

: (51)

The above two regimes can be understood from the fact
that the equation

 �@2 �m2
bulk � ��z�MB�� � 0 (52)

has an exponentially growing normalizable tachyonic
mode

 � � e�1=2�t
������������������
M2
B�4m2

bulk

p
e��1=2�jzjMB; (53)

as long as7

 M2
B � 4m2

bulk > 0: (54)

Thus, only in this regime does� develop a nonzero VEV in
the vicinity of the brane. If (50) holds in the mbulk � 0
vacuum, then the condition (54) will be violated within a
single step, and the branes will become chargeless. Thus,
qmin is the smallest possible nonzero brane charge. Because
of this, the singularity in the number density of vacua will
get smoothed out at this point, according to (51).

VI. REALISTIC MODEL BUILDING AND
PREDICTIONS

A. The need for a second SU�2� � U�1� doublet

So far we have been discussing the attractor solution of
the hierarchy problem on a toy example in which the
prototype for the standard model Higgs was a complex
singlet �. In order to implement this idea in the realistic
model, we have to promote � into the doublet representa-
tion of the SU�2� �U�1� group. This creates an issue of
how to write down the gauge-invariant interaction with the
brane. Since C��� carries no electroweak quantum num-
bers, q��� must be an SU�2� �U�1�-invariant, but
Z2N-odd function of �. This is, however, impossible to
achieve by employing a single Higgs doublet, since the

7For M2
B � 4m2

bulk � 0 there is a localized zero mode � �
�e��jzjMB=2� that can be given an arbitrary expectation value
without costing any energy up to bilinear in �. In other words,
for 	 � 0 there is a one-parameter class of the zero energy
solutions with arbitrary �.
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only possible gauge-invariant ��� is also automatically a
Z2N invariant. This in unacceptable, since Z2N oddness of
the brane charge is what guarantees the UV stability of the
attractor point. Fortunately, there are a number of ways for
circumventing the above technicality. Here we shall dis-
cuss one of the simplest and most economical ones.

B. Quark condensate as a second doublet

The QCD condensate of the light quarks in the standard
model carries the quantum numbers identical to the Higgs
doublet and contributes to the Higgsing of SU�2� �U�1�
symmetry. In fact, because of this quark condensate, the
electroweak W and Z bosons would get masses even in the
absence of the Higgs scalar [20]. We can use this conden-
sate in convolution with the Higgs doublet for creating the
gauge-invariant (but Z2N-odd) brane charge. There are two
lowest possible gauge invariants (per generation) that can
be made out of the Higgs and the quark bilinears. These are
[SU�2� indices are suppressed]

 � �QLUR (55)

and

 ��� �QLDR; (56)

respectively. HereQL is the left-handed quark doublet, and
UR, DR are the right-handed up and down quarks, respec-
tively. � is an antisymmetric SU�2� tensor. Because of the
QCD quark condensate, the expectation value of these
invariants is nonzero as long as � � 0. Thus, any of these
invariants can be used for creating the attractor at � � 0.
For this we have to require that the given invariant, e.g.,
(55) (or any power of it) is odd under the brane conjugation
symmetry. For example,

 �� �QLUR� ! ei�=N��� �QLUR�: (57)

Then the brane charge becomes the function of (55)

 q �
�
6

Re
�
� �QLUR

M4
P

�
N
: (58)

Note that, since (55) transforms nontrivially under Z2N
conjugation, it cannot appear in the Lagrangian. Thus,
the standard model Yukawa coupling that could give a
diagonal mass to the given U quark is forbidden in this
theory. This fact highlights a generic feature of the model:
irrespective of which quark condensate creates a brane
charge, appearance of certain zeros in the Yukawa matrix
is the generic prediction. Precise structure depends on the
Z2N charge assignment, and will not be discussed here, but
it is an important aspect for understanding the predictivity
of the attractor solution.

C. A complete model

Putting all the ingredients together, we can now write
down a simple extension of the standard model which

solves the hierarchy problem via the attractor mechanism.
The action is
 

S �
Z

3�1
jD��j

2 �
1

48
F2 � j�j2

�
m2 �

F2

48M2

�
�
	
2
j�j4

��
1

6
C���J

���
�T� �Mbrj�j2; (59)

plus the usual action of the standard model. In (59) D� is
the covariant derivative. Mbr is the brane-localized mass
term given by (66), and we choose the sign to be positive.
The current J���

�T� is given by (12) with

 qeff �
�
12

��
� �QLUR

M4
P

�
N
�

� �QLUR
�QLDR

M6
P

�
K
�
� H:c:

(60)

In this model we choose to use the quark condensate as a
second Higgs doublet in order to construct a gauge-
invariant brane charge. The attractor value is shifted
away from � � 0 by the second quark condensate. For
the latter invariant to be nonzero the quarks must be taken
from different generations. The integers N and K are
determined by the transformation properties of the various
fields under the discrete symmetry. These transformation
properties also restrict the structure of Yukawa matrix
elements. For instance, as said above for arbitrary N, the
diagonal Yukawa coupling of the up quark is forbidden.

Taking all these terms into account, the attractor value
for the bulk Higgs VEV is

 �attr 

���������������
MBMP

p �
�QCD

MP

�
�3�K=N���3=2��

(61)

where �QCD 
 GeV is the strong interaction scale. For
MB 
MP 
 1019 GeV, the correct attractor value is estab-
lished around K=N ’ 5=6 or so. Since the brane charge-
conjugation symmetry implies nontrivial restrictions on
the matrix of Yukawa couplings, it would be interesting
to classify predictions of fermion mass relations for various
assignments that lead to the correct attractor value.

We wish to note that other standard model parameters,
such as, for example, Yukawa coupling constants, can (and,
in general, will) depend on the values of F and � through
some high-dimensional MP-suppressed operators. The
question then is how the attractor influences the values of
such parameters. To answer this question it is useful to
classify parameters by their transformation properties
under Z2N . The general rule then is that the parameters
that are Z2N even do not change significantly near the
attractor point, since in the zeroth order such parameters
do not depend on the � VEV. Examples of Z2N-even
parameters are, for instance, all the Yukawa coupling con-
stants of the couplings that are allowed by the Z2N sym-
metry. The dependence of such a coupling constant on �
and F can be parametrized in the form of the expansion in a
series of invariants F2=M4

P and j�j2=M2
P,
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 g � g0 � g1F2=M4
P � g2j�j2=M2

P � � � � (62)

where g0, g1, g2 are field-independent constants. It is
obvious that, unless g0 is minuscule, the change of g
near the attractor point is negligible, since both �F and
�� vanish there. So, generically, at the attractor point the
expectation values of Z2N-even parameters will be set by
some attractor-insensitive physics.

D. The heavy Higgs doublet

An alternative to the quark condensate for creating an
SU�2� �U�1�-invariant brane charge is to introduce a
second Higgs doublet H. We shall assume that H has a
positive mass square M2

H of order M2
P, and has no expec-

tation value in the bulk vacuum. However, H is allowed by
symmetries to have a large brane-localized mass term. We
shall choose the sign of this mass term to be negative so
that H develops a nonzero VEV on the brane. This is
sufficient for forming the Z2N-odd but SU�2� �
U�1�-invariant brane charge out of the two doublets.

To achieve this we shall require that the SU�2� �
U�1�-invariant product of the two doublets transforms
under the brane ‘‘charge conjugation’’ Z2N symmetry

 �H��� ! ei=N�H���: (63)

The new H-dependent terms in the action are

 S �
Z

3�1
�

1

6
C���J

���
�T� �Mbr�x�

2jHj2 � jD�Hj
2

�M2
HjHj

2 �
1

4
jHj4 � � � � : (64)

The current J�T� is given by (23) with

 qeff �
�
6

Re
�
H��

M2
P

�
N
: (65)

The second term is the brane-localized mass term

 M2
br�x� �

Z
d
3 �������

�g
p

MBH�
4�x� Y�; (66)

where MBH > 0. In addition, the total action will contain
all possible SU�2� �U�1� � Z2N-invariant couplings
among H, �, and F. These are unessential and are not
shown, for simplicity. The only requirement on such cross-
interaction terms of the form jHj2j�j2, jHj2F2 is that they
do not make the effective bulk mass 2 of H negative. This
is easy to arrange by choosing the signs of these interac-
tions, and can be assumed to be the case without any loss of
generality. Note that Z2N symmetry forbids the appearance
of the mixing term H�� in the action.

As long as

 M2
BH > 4M2

H; (67)

H develops a nonzero VEV on the brane. This is because
for (67) the linearized equation for H in the brane back-
ground (located at z � 0),

 �@2 �M2
H �MBH��z��H � 0; (68)

has a localized exponentially growing tachyonic mode,

 H � e�1=2�t
�����������������
M2

BH�4M2
H

p
e��1=2�MBHjzj: (69)

Because H is nonzero on the brane, the effective brane
charge (65) vanishes only for�! 0, and the vacuum � �
0 is an attractor.

VII. THE DOUBLET-TRIPLET SPLITTING

In grand unified theories (GUTs) the low energy super-
symmetry alone cannot guarantee the smallness of the
Higgs mass, due to the problem of doublet-triplet splitting.
The problem can be illustrated on an example of a simplest
SU�5� extension of the standard model. Because of SU�5�
symmetry the Higgs doublet � acquires a color-triplet
partner (T), and the two together form the five-dimensional
representation of the SU�5� group, 5Higgs � ��; T�. Thus,
because of GUT symmetry both the weak doublet and the
color triplet are forced to couple to quarks and leptons that
transform as 10� �5 dimensional representations per gen-
eration,

 5Higgs10 10� �5�Higgs10�5: (70)

SU�3� � SU�2� �U�1� reduction of the above coupling
shows that the three-level exchange of the color-triplet
Higgs violates the baryon number and would mediate an
unacceptably fast proton decay, unless T acquires a very
large mass due to GUT symmetry breaking. At the same
time � should stay light, and this requires an additional
fine-tuning not provided by supersymmetry alone. Let �j

i
be an SU�5�-adjoint Higgs that breaks the GUT symmetry
[i; j � 1; 2; . . . ; 5 are SU�5� indices]. The doublet-triplet
mass splitting is accomplished through the coupling of
5Higgs with �,

 5�Higgs�a�2 � b��5Higgs � �cTr�2 �m2�5�Higgs5Higgs

(71)

where a, b, c are some constants. After � develops the
VEV � � diag�2; 2; 2;�3;�3��, the masses of � and T
become split as

 m2
� � �9a� 30c��2 � 3b��m2 (72)

and

 m2
T � �4a� 30c��2 � 2b��m2; (73)

respectively. The additional fine-tuning amounts to setting
(72) to 
�100 GeV�2.

We wish to point out now that the attractor solution of
the hierarchy problem automatically solves the problem of
doublet-triplet mass splitting in grand unified theories.
Applying the attractor idea to GUTs simply amounts to
promotingm2 in (72) and (73) into the function of the four-
form field strength F. The SU�5�-symmetric generalization
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of the brane charge (58) is straightforward,

 q �
�
6

Re
�
5Higgs10 10

M4
P

�
N
; (74)

where a standard SU�5�-invariant contraction of the indi-
ces (5a10bc10de�abcde) is assumed. In the same way (65)
gets generalized to

 qeff �
�
12

��
5Higgs10 10

M4
P

�
N
�

�
10 10 10 �5

M6
P

�
K
�
� H:c:

(75)

Then, just as in case of standard model,m2
� is attracted to a

small value, and at the same time m2
T is attracted to a large

one. Note that, depending of the parameters, because of
SU�5� symmetry of the brane charge, there may be other
attractor points, e.g., at m2

T � 0.

VIII. DISCUSSIONS AND OUTLOOK

The attractor solution is probably as close as the axion-
type dynamical relaxation mechanism could come to the
solution of the hierarchy problem. Indeed, the first step of
the attractor solution is exactly to bring the hierarchy
problem on the same footing as the strong CP problem
[12] in QCD. The latter, as we know, is not the problem of
UV sensitivity but rather the problem of the superselection
rule among the infinitely many � vacua. As we have shown
in Sec. III A, this is precisely what happens to the hierarchy
problem when we couple the Higgs to the three-form field:
From the problem of UV sensitivity of the Higgs mass, it
gets converted into a superselection problem of the latter.
The continuum of the vacua scanned by m� are all good,
very much like QCD � vacua in QCD.

Having achieved this, we realize that there is a profound
difference between the problem of UV sensitivity and the
problem of superselection. The solution of the UV-
sensitivity problem always requires a new strongly coupled
physics at low energies, whereas the solution of the super-
selection problem does not. In the former case the new
strongly coupled physics is required in order to regulate the
quadratic divergency in the Higgs mass. An example for
such a regulating physics is the low energy supersymmetry,
whereas the new physics which solves the superselection
problem can be arbitrarily weakly coupled. A good ex-
ample of such new physics in the case of the strong CP
problem is the axion, which can have an arbitrarily high
scale and be practically invisible. Likewise, in our case the
new physics that selected the attractor vacuum is arbitrarily
decoupled, and can be practically unobservable at low
energies. Nevertheless, as we have seen already the mini-
mal realistic models can be predictive and potentially test-
able. The attractor is the mechanism through which the
multivacua fundamental theory could make a sharp low
energy prediction.

If the attractor solution of the hierarchy problem can be
fully implemented in string theory, it will most likely have
softer properties. For instance, the infinite number density
of vacua will probably be regulated, as already suggested
by the distribution of vacua in [4,5]. This should not be an
obstacle for solving the hierarchy problem, provided the
number of vacua is sharply peaked around the small Higgs
mass. Moreover, as we saw in Sec. V B, the softened
attractors can appear already in an effective field theory
treatment.

In theories with attractor vacua, there are a number of
open important questions, such as whether some version of
the attractor mechanism could select the small cosmologi-
cal constant. Some of these questions will be addressed in
[23].
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APPENDIX A: GAUGE INVARIANCE FROM
GOLDSTONE FIELDS

In this appendix we shall discuss how the coupling (22)
can be obtained by integration of Goldstone-type degrees
of freedom in a local, gauge-invariant theory. Let us first
illustrate the idea on an example of electrodynamics.
Imagine that we wish to couple a photon A� to a non-
conserved current J� (@�J� � 0� in a gauge-invariant
way. For example, such can be a 1� 1-dimensional ver-
sion of the current (12)

 J��x� �
Z
d
�2�x� Y�
��q�Y�

�
@Y�

@


�
(A1)

which, in general, is not conserved unless q is a constant.
The conservation can be restored by introducing additional
degrees of freedom that will compensate the divergence of
(A1) for nonconstant q.

This can be accomplished by introducing a compensat-
ing Stückelberg field �. The coupling to the source then can
be written in the following form:

 �A� � @���J�: (A2)

This coupling will be gauge invariant if we demand that
under the gauge transformation

 A� ! A� � @�! (A3)

the compensating field shifts as
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 �! ��!: (A4)

Hence, � is in fact a Goldstone field. Because of the gauge
invariance, the Lagrangian can only depend on � through
the combination �A� � @���. Since the current J� is not
conserved, to maintain the gauge invariance we have to
impose an additional constraint,

 @2� � @�A
�: (A5)

Then, integrating out � we can write down an effective
Lagrangian for A�,

 L � �1
4F��F

�� � J����A�: (A6)

We see that, after integrating out of the Stückelberg field,
the photon only couples to the transverse part of J�, as
required by gauge invariance.

The generalization of the above construction to the case
of the three-form field C��� is straightforward. Again, in
order to achieve a gauge-invariant coupling of the three-
form field to a nonconserved current J���, we introduce a
compensating two-form B��, which under the gauge trans-
formation (2) shifts in the following way:

 B�� ! B�� ����: (A7)

The gauge-invariant coupling to an arbitrary nonconserved
source J��� is

 �C��� � FB����J
���; (A8)

where FB is the field strength of B,

 FB��� � d��B���: (A9)

As in the photon example, we have to impose the following
constraint on B:

 @�FB��� � @�C���: (A10)

This constraint can be enforced by introducing an addi-
tional auxiliary two-form field X�� with the following
coupling in the Lagrangian:

 X��@��C��� � F
B
����: (A11)

The equation of motion of X�� then imposes the constraint
(A10). Now integrating out the B��-field we write down
the effective Lagrangian for C

 L � �1
4F��F

�� � 1
6J
�����

��C����: (A12)

The above effective coupling coincides with (22) up to a
total derivative.

APPENDIX B: THE CHARGE SCREENING

We shall now discuss a potential effect, which may lead
to the screening of the three-form charge by the brane
loops. The effect is somewhat similar in spirit to the charge
screening by fermion loops in the massless Schwinger

model [24], except that this issue in our case is more subtle,
as we shall now discuss. For simplicity, let us consider the
analogous question in electrodynamics first. Consider the
action given in (A6) where J� is some generic current.
Since the photon couples only to its transverse part, the
theory is automatically gauge invariant regardless of
whether the current J� is conserved or not. Consider now
a correlator of the two currents

 hJ��x�J��x0�i � P��� � R��� (B1)

where P and R are some scalar functions of the cutoff and
the momentum. If the transverse part of the correlator is
nonzero (P � 0), it will generate the following effective
operator in the photon action:

 A�P���A�: (B2)

Depending on the structure of the operator P, this can be
interpreted as the correction either to the photon kinetic
terms, to the mass term, or to both. If the propagator 1

@2�P
has a physical pole, (B2) generates the mass for the photon,
and charges will be screened. This is, in particular, the case
for P � constant. The result depends on the underlying
structure of the theory. For instance, for the conserved
fermionic current J�, (A6) is equivalent to the usual mass-
less electrodynamics, which gives different answers in
different numbers of dimensions. In 3� 1 dimensions,
for the conserved fermionic current P / @2, and no photon
mass is generated. On the other hand, in the 1� 1
Schwinger model the answer depends on the fermion
mass [24]. In the case of massless fermions, the photon
mass is generated and the charges are screened. For mas-
sive fermions, however, the screening is only partial.

Let us now show that the analogous question can be
posed in our case. Consider the coupling (22). The corre-
lator of the two currents J� can again be parametrized in
the form (B1). If R � 0 this will generate the following
operator,

 C���R��
��C���� (B3)

which would signal the generation of mass, if 1
�1�R� had a

physical pole. Because, in general, R is expected to be a
function of @2=M2, the requirement of the absence of the
physical poles below the cutoff scale reduces to the re-
quirement of the absence of the constant part in R. In our
case, R depends on the loops of the superheavy branes, and
we will not attempt to calculate it.

APPENDIX C: EXACT SOLUTIONS

The effective equation, Eq. (31), was derived in the
approximation of constant � per unit step. In reality, there
will be a small backreaction on � in each individual step,
which will lead to the readjustment of the brane charge,
and subsequent readjustment of the VEVs in the bulk. It is
obvious that, in the attractor neighborhood, this backreac-
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tion is negligible, but it is instructive to take it into account
for completeness.

So we shall now derive the effective bulk equation
determining the VEV of � without ignoring the variation
of � in an elementary step. For this, we shall solve the
equations (26) and (27) without the simplifying approxi-
mations listed below them. Substituting the form (4),
Eq. (26) now becomes

 @���1� j�j2=M2�F0� � ����z
�

Re
�
�
MP

�
N
��z�

�
(C1)

or equivalently

 @2��1� j�j2=M2�F0� � ��@z

�
Re
�
�
MP

�
N
��z�

�
: (C2)

The solution with the correct boundary conditions is
 

F0�xj; z� �
�

2MN
P �1�

j��xj;z�j2

M2 �
�Re��N�z� 0; fi�xj; z�����z�

�Re��N�z� 0; fi�xj;�z������z�

� f0�M
N
P=��� (C3)

where ��z� is the step function, and xi, i � 0, 1, 2 are the
three remaining space-time coordinates parallel to the
brane. For clarity, we have indicated the coordinate depen-
dence, in order to stress how the values of the � field at
different locations determine the bulk value of F0. The
functions fi�z� are such that fi�xj; z�jz�0 � xi,

 @2�N�z � 0; fi�xj; z��� � 0: (C4)

Note that the function �N�z � 0; xi� is the value of �N at
the brane location. f0 is the integration constant. Thus, we
see that for small � the value of F0�z� in the bulk vacuum
z � 0 is essentially determined by the value of the �N

function at the brane location z � 0. For z � 0 the depen-
dence of F0�z� on local values of ��z� is rather mild and
has an additional suppression factor of �2=M2

P.
For instance, for the background values that are func-

tions of z and t only, the solution is

 F0�z; t� �
�

2MN
P �1�

j��z;t�j2

M2 �
��Re��N�0; �t� z����z�

� Re��N�0; �t� z������z� � f0�M
N
P=���:

(C5)

From here it is clear that the change of the expectation
value of � on the brane triggers the corresponding change
in�, which propagates away from the brane at the speed of
light. Existence of such waves indicates the presence of
some ‘‘hidden’’ massless degrees of freedom. This is not
surprising, since the degree in question is the Stückelberg
field B��, which we have integrated out. In some sense,
this degree of freedom in our case plays the role analogous
to the one played by the invisible axion in the solution of
the strong CP problem in QCD.

Substituting the solution (C5) into Eq. (27), we get the
following bulk equation for �:
 

@2��
�
m2 �

�2

8M2M2N
P �1�

j��xj;z�j2

M2 �2

� ��Re��N�0; �t� z����z� � Re��N�0; �t� z������z�

� f0�MN
P=���

2

�
�� 	j�j2� � 0: (C6)

Since in the vacua F0 takes discrete values that between the
two neighboring vacua are spaces by
�N , for small� the
scanning becomes almost continuous. So the dynamics of
the small-� vacua can be studied by considering the ap-
propriate values of the integration constant f0. In small-�
vacua this constant takes the value

 f2
0 ’ 8m2M2: (C7)

Expanding (C6) about such a vacuum, and noticing that the
value of the �N determining F0 is taken at the brane
location, we see that self-interactions are weak in the
attractor vacuum.

APPENDIX D: RESOLVING THE BRANE

We shall now resolve the structure of the brane, and
show that it can arise in the effective low energy theory in
the form of an ‘‘axionic’’ domain wall.8 Such a possibility
was suggested in [1,25], but we shall review it here in more
detail for completeness. For this we shall introduce an
axion field a, defined modulo 2, with the decay constant
fa. First, let us show that, in the presence of the coupling
between the axion and the three-form field C���, the
axionic domain walls become branes charged under C.9

For demonstrating this, the possible coupling to the
Higgs field � plays no role and we shall ignore the latter
for simplicity. Consider then the following Lagrangian:

 L �
f2
a

2
�@�a�2 � V�a� �

q
12

@�aC�������� �
1

48
F2;

(D1)

where V�a� is the axion potential, which is required to be
periodic under

 a! a� 2n: (D2)

The equations of motion are

 @�F���� �
q

2
@�a�����; (D3)

8The ‘‘axion’’ should not be confused with the one solving the
strong CP problem. The role of the former can be played by one
of the axions appearing in string compactifications.

9At the level of the present discussion we shall treat both a and
C as ‘‘elementary’’ objects, without specifying their possible
origin from the fundamental underlying theory [11].
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 f2
a@

2a� Va �
q

12
F����

24
����� � 0: (D4)

Integrating the first equation, we get

 F���� �
q

2
�a� 2k������ (D5)

where k is an integer integration constant. Under shift
symmetry (D2) k changes as

 k! k� n: (D6)

The relation (D5) implies that any axionic domain wall,
through which a changes by �a, effectively acquires a
three-form charge

 qeff �
q�a
2

: (D7)

The value of �a through the elementary wall can be found
by substituting the solution (D5) into Eq. (D4). This gives
the following effective equation for the axion:

 f2
a@

2a� Va �
q2

242 �a� 2k� � 0: (D8)

The value of the �a through the elementary wall is deter-
mined by the distance between the neighboring minima of
the effective potential:

 Veff � V�a� �
q2

482 �a� 2k�2: (D9)

For the small q and fixed k, the number of local minima is
roughly
V�a�max=q2, where Vmax�a� is the maximal value
of V�a�. The elementary step is �a ’ 2. Thus, the branes
acquire an effective three-form charge qeff � q. The above
counting of vacua is not surprising, since the model (D1)
can be viewed as the simplest four-dimensional general-
ization of the massive Schwinger model, in which there is
an analogous counting of states [26].

Restoration of the� dependence of the brane charge can
now be done in a straightforward way, by promoting q into
the function of � given by (21). The gauge-invariant
Lagrangian has the following form:
 

L �
f2
a

2
�@�a�

2 � V�a� �
qeff���

12
@�a��

�C����
����

�
1

48
F2 � j@��j2 � j�j2

�
m2 �

F2

48M2

�

�
	
2
j�j4 � � � � : (D10)

The equations of motions are
 

f2
a@2a� Va �

qeff���
12

F����

24
�����

� �qeff � derivatives� � 0; (D11)

 

@���1� j�j2=M2�F����� �
qeff���

2
���@�a�����

� �qeff � derivatives� � 0; (D12)

 

@2��
�
�m2 �

F2

48M2

�
�� 	j�j2�

�
�N
24

��N�1

MN
P

@�a��
�C�������� � 0; (D13)

and again ignoring the derivatives of qeff and the terms of
order �2=M2 in the l.h.s. of Eq. (D12), and integrating the
equation for C, we get the following effective equation for
� vacua:
 

��m2� �a� 2k�2
�2

42M2 �Re��N=MN
P �

2���	�3 � 0;

(D14)

where a is defined by the equation

 Va �
q2

eff

242 �a� k� � 0 (D15)

as discussed above; for small qeff the minima of the �
potential are at a � 2n, which means that near the
attractor point the � vacua are defined by Eq. (31).

APPENDIX E: AXION–THREE-FORM
COUPLINGS FROM MASSLESS SCALARS

We shall now discuss how the axionic domain walls with
Higgs-dependent three-form charges can be generated by
integrating out some intermediate scalar fields, and show
that this is only possible if the scalars in question are
exactly massless. The idea is to start with the local cou-
pling

 qeff@�aJ�; (E1)

where J� is the gauge-invariant current, with the diver-
gence

 @�J� � cF� � � � (E2)

where c is some constant. Then ‘‘integrating out’’ J� we
write the effective coupling between a and C. In order to
fulfill this program, we shall consider a toy 1�
1-dimensional example first. This is a 1� 1-dimensional
electrodynamics coupled to two pseudoscalars, an axion a
and an additional pseudoscalar �. The Lagrangian is
 

L � 1
2�@�a�

2 � 1
2�@�a�

2 � qeff@�a@
��� V�a� � V���

� �@��C��
�� � 1

4F
2: (E3)

Here C� is the electromagnetic vector potential, and � is
some constant. qeff , which is understood to be the function
of the Higgs VEV, will be treated as a constant for a
moment. The reason for us to consider the above example
is that the electric field in 1� 1 dimensions shares some
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properties with a three-form in 3� 1 dimensions. Just like
the latter, the noninteracting 1� 1 electric field has no
propagating degrees of freedom, but its value can change in
the presence of charges, which play the role analogous to
two-branes in four dimensions.

Our aim is to start from the local Lagrangian (E14),
which for arbitrary qeff is invariant under the axionic shift
symmetry (D2) as well as under the gauge symmetry

 C� ! C� � @��; (E4)

which is a 1� 1-dimensional analog of (2). However, a
and C do not couple directly, but through the ‘‘intermedi-
ate’’ field �. In fact, @�a couples to the current @�� whose
divergence is set by F. So we expect that after integrating
out � we arrive at (the 1� 1-dimensional analog of) the
coupling (D1). This coupling should guarantee that axionic
‘‘walls,’’ which in 1� 1 dimensions are just particles,
acquire electric charges controlled by qeff . We shall now
check if this is indeed the case. The equations of motion are

 @2a� qeff@
2�� Va � 0; (E5)

 @2�� qeff@2a� V� �
�
2
F����� � 0; (E6)

 @�F�� � �@�����: (E7)

The last equation is solved by

 F�� � ������� �0� (E8)

where �o is some constant. Substituting this result in
Eq. (E9), we get the following effective equation for �:

 @2�� qeff@
2a� V� � �

2�� �2�0 � 0: (E9)

For the special choice of

 V� � ��2�� �2�0 (E10)

the system of equations is solved by

 � � �qeffa (E11)

where a satisfies the equation

 @2a�
1

1� q2
eff

Va � 0: (E12)

Because of the 2 periodicity of V�a�, the latter equation
always has an axionic domain wall solution, through which
a changes by 2. According to (E11) the corresponding
change in � is �� � �qeff2 and according to (E9) the
change in F is �F � �qeff�2. Thus, axionic walls in-
deed acquire an electric charge. However, such a behavior
is a peculiarity of the choice (E10). In fact, for no other
choice of V� may axionic walls have a charge proportional
to qeff . Indeed, the fields at infinity on both sides of the wall
must assume the constant values satisfying

 Va � 0 (E13)

and Eq. (E10). Unless the latter is identically zero, the
change of � through the wall will be determined by the
neighboring minima of (E10), which contains no reference
to qeff . Hence, the change of F will not be set by qeff either.

The reason why the choice (E10) is the only possible one
is easy to understand from the symmetry point of view. For
such a choice the Lagrangian can be rewritten as

 L � 1
2�@�a�

2 � 1
2�@�a�

2 � qeff@�a@��� V�a�

� 1
4������ � F���

2 (E14)

which has an exact shift symmetry

 C� ! C� � b���x
�; �! �� b=�: (E15)

Because of this symmetry, after integrating out F, the
action for � cannot be anything other than the one of a
scalar field with a vanishing potential.

The fact that in the model (E14) the existence of the
branes with electric charge / qeff requires a very special
choice of V��� can also be understood in the following
way. In the limit V�a� � V��� � 0 there are two continu-
ous shift symmetries,

 a! a� constant (E16)

and

 �! �� constant: (E17)

The corresponding currents are

 J�a � @�a� qeff@�� (E18)

and

 J�� � @��� qeff@�a; (E19)

respectively. Only the second shift symmetry is ‘‘anoma-
lous’’ and the corresponding current is not conserved,

 @�J�� �
�
2
F�����: (E20)

Hence, � is the only pseudo-Goldstone boson whose shift
is tied directly to F. But the shift of � is determined by
V��� which, in general, carries no information about qeff .
Only in the limit (E10), when the ‘‘bare’’ mass of � is
exactly canceled by the ‘‘anomaly’’ contribution, the shift
symmetry (E17) remains exact and the shift in � adjusts to
the minimal step of a suppressed by the small charge qeff .

It is useful to reformulate the above effect in fermionic
language. Indeed, for V��� � m2cos2 ����


p

�, the Lagrangian
(E14) is a bosonized version of the following fermionic
Lagrangian:
 

L � 1
2�@�a�

2 � V�a� � qeff@�a��� � �� � i � ��D� 

�m �  � 1
4F

2: (E21)

In the limit m! 0, V�a� ! 0 there are two continuous
axial symmetries (E16) and
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  ! ei�5� : (E22)

But only the second is anomalous, and the corresponding
pseudo-Goldstone boson is the fermionic composite, and
not a. The composite pseudo-Goldstone boson can be
related to an elementary scalar � via standard bosonization
[27],

 

� �� � ���@�
�����

p and m �  � m�cos2

����

p

�

(E23)

where � is a charge-related constant. The reason why the
axial U�1� symmetry cannot ‘‘see’’ a as its pseudo-
Goldstone boson has to do with the peculiarities of 1� 1
dimensions, and, in particular, the fact that the axial and
vector currents are related through

 ��� � �� � � ���5 : (E24)

Generalization of the model (E14) to four dimensions is
straightforward and the results are essentially unchanged.
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