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In a recent paper Jones and Mateo used operator techniques to show that the non-Hermitian
PT -symmetric wrong-sign quartic Hamiltonian H � 1

2p
2 � gx4 has the same spectrum as the conven-

tional Hermitian Hamiltonian ~H � 1
2p

2 � 4gx4 �
������
2g
p

x. Here, this equivalence is demonstrated very
simply by means of differential-equation techniques and, more importantly, by means of functional-
integration techniques. It is shown that the linear term in the Hermitian Hamiltonian is anomalous; that is,
this linear term has no classical analog. The anomaly arises because of the broken parity symmetry of the
original non-Hermitian PT -symmetric Hamiltonian. This anomaly in the Hermitian form of a
PT -symmetric quartic Hamiltonian is unchanged if a harmonic term is introduced into H. When there
is a harmonic term, an immediate physical consequence of the anomaly is the appearance of bound states;
if there were no anomaly term, there would be no bound states. Possible extensions of this work to ��4

quantum field theory in higher-dimensional space-time are discussed.
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I. INTRODUCTION

In this paper we consider the quantum system described
by the Hamiltonian

 H �
1

2m
p2 � gx4; (1)

where g is real and positive. The Hamiltonian (1) is of
particular interest because the corresponding ��4 quan-
tum field theory might be a good model for describing the
dynamics of the Higgs sector of the standard model. This is
because the ��4 theory is asymptotically free and thus
nontrivial [1–3]. Furthermore, the one-point Green’s func-
tion h0j�j0i is nonvanishing [4].

While the �x4 potential in (1) appears to be unbounded
below and the Hamiltonian H appears to be symmetric
under parity reflection, neither of these properties holds
because, as we will explain shortly, the eigenfunctions of
the Hamiltonian are required to vanish exponentially as
jxj ! 1 in a pair of Stokes’ wedges in the complex-x
plane. These wedges do not include the real-x axis.

The Hamiltonian (1) is not Hermitian in the conven-
tional Dirac sense, where Hermitian conjugation is defined
as combined matrix transposition and complex conjuga-
tion. Nevertheless, the eigenvalues En are all real, positive,
and discrete. This is becauseH possesses an unbroken PT
symmetry [5–7], which means that H and its eigenstates
 n�x� are invariant under space-time reflection. Here, P
denotes spatial reflection p! �p and x! �x, and T
denotes time reversal p! �p, x! x, and i! �i.

Even though H is not Dirac Hermitian, it is possible to
construct a state space having a positive inner product with
respect to which H is Hermitian and in this Hilbert space,
time evolution is unitary (probability conserving) [6]. This
positive inner product involves CPT -conjugation, where
C is a linear operator whose square is unity and which
commutes with the Hamiltonian. (These mathematical
properties are reminiscent of the charge conjugation op-
erator in particle physics.) Given the operator C, we can
construct the positive operator eQ � CP , which can in turn
be used to construct by means of a similarity transforma-
tion an equivalent Hamiltonian ~H � e�Q=2HeQ=2, where
~H is Dirac Hermitian [8].

Many quantum-mechanical Hamiltonians that are
PT -symmetric have been studied in the recent literature
[9]. However, the Hamiltonian (1) is especially interesting
because, unlike the PT -symmetric Hamiltonian 1

2p
2 �

ix3, for example, the boundary conditions on the eigen-
functions are not imposed on the real-x axis. Rather, these
boundary conditions hold in the interiors of wedges in the
complex-x plane. To identify these wedges we use a WKB
approximation to determine the possible asymptotic be-
haviors of the eigenfunctions. For large jxj the possible
exponential behaviors of the solutions to the Schrödinger
equation are given by

  n�x� � e
�i

�������
2mg
p

x3=3 �jxj ! 1�: (2)

This result shows that the eigenfunctions are purely oscil-
latory along six lines separated by 60	 angles. In particular,
the wave functions are oscillatory on the positive and
negative real-x axes. These six lines are the boundaries
of the six 60	 Stokes’ wedges in which the solutions in (2)
grow or decay exponentially.
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The eigenfunctions for the Hamiltonian (1) are required
to decay exponentially in the interiors of a pair of Stokes’
wedges in the lower-half x-plane. These wedges, which are
symmetrically placed with respect to the imaginary axis,
lie below the positive and negative real-x axes with the
upper edges of the wedges lying on the real axis.

Note that under space reflection x! �x, the original
two-wedge domain changes to the interior of a different
pair of 60	 wedges that lie in the upper-half plane.
Therefore, while H in (1) may appear to be parity sym-
metric, it obeys parity-violating boundary conditions. One
can also understand the parity violation of H in (1) in a
different way. In Ref. [10] it is shown that the real spectrum
of H in (1) can be obtained without having to impose
boundary conditions in the complex plane. The procedure
is simply to require that the�x4 potential be reflectionless.
Thus, an incoming plane wave from x � �1 propagates
past the potential and becomes an outgoing plane wave at
x � �1. This configuration is not parity invariant because
under parity reflection, the incoming plane wave at x �
�1 becomes an outgoing plane wave and the outgoing
plane wave at x � 1 becomes an incoming plane wave. In
short, the right-going flow of probability current becomes a
left-going flow. (Of course, this configuration is invariant
under combined P and T reflection.)

This violation of parity symmetry occurs only at the
quantum level. At the classical level, the equations of
motion are clearly parity symmetric:

 _x�t� �
1

m
p�t�; _p�t� � 4gx3�t�: (3)

In general, it is difficult to construct the operator C, and
in the past for nontrivial models this operator has only been
determined perturbatively [11]. However, recently Jones
and Mateo used perturbative operator methods to construct
C in closed form for the Hamiltonian in (1) [12]. They then
found the equivalent Hermitian Hamiltonian ~H, whose
potential has a positive quartic term and also a linear
term. (Using Rayleigh-Schrödinger perturbation theory,
Buslaev and Grecchi had already discovered this equiva-
lent Hamiltonian much earlier [13].)

The purpose of this paper is to examine the connection
between the PT -symmetric non-Hermitian Hamiltonian
(1) and the equivalent Hermitian Hamiltonian ~H, whose
potential has a positive quartic term and a linear term. In
Sec. II we demonstrate the equivalence between these two
Hamiltonians simply and directly by transforming the
Schrödinger equation for the former Hamiltonian into the
Schrödinger equation for the latter Hamiltonian. We show
that the linear term in ~H is proportional to @ and is thus a
quantum anomaly. This anomaly arises because the bound-
ary conditions on the PT -symmetric Hamiltonian violate
parity. As explained above, this parity violation is not a
feature of the classical equations of motion. In Sec. III we
generalize the Hamiltonian H in (1) to include a harmonic
(quadratic) term and show that the equivalent Hermitian

Hamiltonian has an anomaly of exactly the same form.
Furthermore, we show that an immediate consequence of
the anomaly is the appearance of bound states.

The Schrödinger-equation approach of Sec. II does not
readily generalize to quantum field theory, so in Sec. IV we
demonstrate the equivalence between H and ~H by using
path-integration techniques in which we treatH as defining
a quantum field theory in one-dimensional space-time. We
conclude in Sec. V by indicating how path-integral tech-
niques might be extended and used to identify the equiva-
lent Hermitian Lagrangian for a��4 quantum field theory
in higher space-time dimensions.

II. DIFFERENTIAL-EQUATION DERIVATION OF
THE ANOMALY

In this section we use straightforward differential-
equation techniques to establish the equivalence of H and
~H. Consider the one-dimensional Schrödinger eigenvalue
problem

 �
@

2

2m
 00�x� � gx4 �x� � E �x� (4)

associated with the non-Hermitian Hamiltonian (1), where
the boundary conditions on  �x� are that as
limjxj!1 �x� � 0 if � �

3 < argx < 0 and ��< argx <
� 2�

3 . These boundary conditions do not include the
real-x axis and they require that the differential equation (4)
be solved along a contour whose ends lie in the above
wedges in the complex-x plane (see Fig. 1). We will use
here the same complex contour that Jones and Mateo
employed in their operator analysis of the Hamiltonian
(1) [12]:

 x � �2iL
�������������������
1� iy=L

q
; (5)

where y runs from �1 to 1 along the real axis. This
contour is acceptable because as y! �1, argx ap-
proaches �45	 and �135	, so the contour lies inside the
Stokes’ wedges. In (5) L is an arbitrary positive constant

π
3

FIG. 1. Stokes’ wedges in the lower-half complex-x plane for
the Schrödinger equation (4) arising from the Hamiltonian H in
(1). The eigenfunctions of H decay exponentially as jxj ! 1
inside these wedges. Also shown is the contour in (5).
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having dimensions of length. In terms of the parameters of
H in (1) the fundamental unit of length is 
@2=�mg��1=6.
Thus,

 L � �
�
@

2

mg

�
1=6
; (6)

where � is an arbitrary positive dimensionless constant.
When we change the independent variable in (4) from x to
y according to (5), the Schrödinger equation (4) becomes
 

�
@

2

2m

�
1�

iy
L

�
�00�y� �

i@2

4Lm
�0�y�

� 16gL4

�
1�

iy
L

�
2
��y� � E��y�: (7)

Next, we perform a Fourier transform of (7). We define

 

~f�p� �
Z 1
�1

dye�iyp=@f�y�; (8)

so that the Fourier transform of f0�y� is ip~f�p�=@ and the
Fourier transform of yf�y� is i@~f0�p�. Then, the Fourier
transform of the Schrödinger equation (7) is
 

1

2m

�
1�

@

L
d
dp

�
p2 ~��p� �

@

4Lm
p ~��p�

� 16gL4

�
1�

@

L
d
dp

�
2

~��p� � E ~��p�: (9)

Expanding and simplifying this equation, we obtain
 

�16gL2
@

2 ~�00�p� �
�
�

@p2

2mL
� 32gL3

@

�
~�0�p�

�

�
p2

2m
�

3p@
4mL

� 16gL4

�
~��p� � E ~��p�: (10)

[Note that the variable p used here is not the same as the
variable p used in (1). Here, considered as an operator, p
represents �i@ d

dy , whereas in (1) p represents �i@ d
dx .]

This equation is not a Schrödinger equation because
there is a one-derivative term. However, we can eliminate
this term by performing a simple transformation:

 

~��p� � eQ�p�=2��p�: (11)

The condition on Q�p� for which the equation satisfied by
��p� has no one-derivative term is a first-order differential
equation whose solution is

 Q�p� �
2L
@
p�

1

96gmL3
@
p3: (12)

It is interesting that eQ�p� is precisely the operator found in
Ref. [12].1 Substituting this expression for Q gives the
Schrödinger equation satisfied by ��p�:

 

�16gL2
@

2�00�p��
�
�

@p
4mL

�
p4

256gm2L4

�
��p��E��p�:

(13)

Finally, we make the scaling substitution

 p � zL
������������
32mg

p
; (14)

to replace the p variable, which has units of momentum, by
z, which is a coordinate variable having units of length.
The resulting eigenvalue equation, posed on the real-z axis,
is

 �
@

2

2m
�00�z� �

�
�@

������
2g
m

s
z� 4gz4

�
��z� � E��z�: (15)

We emphasize that, while z has dimensions of length, it is
not a conventional coordinate variable because it is odd
under the discrete transformation of time reversal.

Observe that the eigenvalue problem (15) is similar in
structure to that in (4). [Eq. (15) is not dual to (4) because it
is still weakly coupled.] However, the potential has ac-
quired a linear term, and since this linear term is propor-
tional to @, we may regard it as a quantum anomaly. The
linear term has no classical analog because the classical
equations of motion are parity symmetric. The breaking of
parity symmetry occurs at large values of x where the
boundary conditions on the wave function  �x� are im-
posed. Because we have taken a Fourier transform to
obtain the Schrödinger equation (15), this parity anomaly
now manifests itself at small values of z.

The Hamiltonian ~H for which (15) is the eigenvalue
problem is

 

~H �
~p2

2m
� @

������
2g
m

s
z� 4gz4: (16)

This Hamiltonian is Hermitian in the Dirac sense and is
bounded below on the real-z axis. Furthermore, it is also
PT -symmetric. This is because at every stage in the
sequence of transformations above, PT symmetry is pre-
served. However, while z and ~p are canonically conjugate
operators satisfying 
z; ~p� � i, the new variable z behaves
like a momentum rather than a coordinate variable because
z changes sign under time reversal.

III. BOUND STATES—A DIRECT PHYSICAL
CONSEQUENCE OF THE ANOMALY

If we generalize the Hamiltonian (1) to include a har-
monic term in the potential,

 H �
1

2m
p2 �

�2

2
x2 � gx4; (17)

then the same differential-equation analysis used in Sec. II
straightforwardly yields the following equivalent
Hermitian Hamiltonian:

1Note that eQ�p� is not the CP operator that could, in principle,
be used in a similarity transformation to produce the Hermitian
Hamiltonian from the non-Hermitian PT -symmetric
Hamiltonian (1). One can only use eQ�p� to transform the non-
Hermitian Hamiltonian H to Hermitian form if H has first been
written in terms of the real variable y.
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~H �
~p2

2m
� @

������
2g
m

s
z� 4g

�
z2 �

�2

8g

�
2
: (18)

This result is given in Refs. [12,13]. Observe that for these
more general Hamiltonians the form of the linear anomaly
term remains unchanged from that in (15).

In an earlier paper [14] it was shown that the
Hamiltonian (17) exhibits bound states. In a particle phys-
ics model a bound state is defined as a state having a
negative binding energy. In the context of a quantum-
mechanical model we define bound states as follows: Let
the energy levels of the Hamiltonian be En (n �
0; 1; 2; . . . ). The renormalized mass is the mass gap; that
is, M � E1 � E0. The higher excitations must also be
measured relative to the vacuum energy: En � E0 (n �
2; 3; 4; . . . ). We say that the nth higher excitation is a bound
state if the binding energy

 Bn � En � E0 � nM (19)

is negative. If Bn is positive, then we regard the state as
unbound because this state can decay into n 1-particle
states of mass M in the presence of an external field.

It was observed numerically in Ref. [14] that for small
positive values of g the first few states of H in (17) are
bound. As g increases, the number of bound states de-
creases until, when g=�3 is larger than the critical value
0.0465, there are no bound states. In this paper a rough
heuristic argument was given to explain why there is such a
critical value. This argument is difficult to formulate be-
cause the non-Hermitian Hamiltonian is evaluated for x in
the complex plane. When x is complex, one cannot use
order relationships such as > or <, which only apply to
real numbers.

However, now that we have established that H in (17)
has the same spectrum as the Hermitian Hamiltonian in
(18), it is easy to understand the appearance of bound
states. Furthermore, as we will now show, the bound states
are a direct consequence of the linear anomaly term. To
probe the influence of the anomaly, let us generalize (18)
by inserting a parameter � that measures the strength of the
anomaly term:

 

~H �
~p2

2
� �@

������
2g

p
z� 4g

�
z2 �

1

8g

�
2
; (20)

where for simplicity we have set m � � � @ � 1.
If we take � � 0, then there is no anomaly term and the

potential is a symmetric double well. The mass gap for a
double well is exponentially small because it is a result of
the tunneling between the wells. Thus, the renormalized
mass M is very small. Therefore, Bn in (19) is positive and
there are no bound states. In Fig. 2 we display the double-
well potential and the first several states of the system for
the case g � 0:046 and � � 0. Note that the lowest two
states have a very small splitting.

If � � 1, the double-well potential is asymmetric and
the lowest two states are not approximately degenerate. As
a result, bound states can occur near the bottom of the
potential well. The higher-energy states eventually become
unbound because, as we know from WKB theory, in a
quartic well the nth energy level grows like n4=3 for large
n. As g becomes large, the number of bound states be-
comes smaller because the depth of the double well de-
creases. For sufficiently large g there are no bound states.
In Fig. 3 we display the potential for � � 1 for g � 0:046.
For this value of g there is only one bound state.

To display the bound states we simply plot the value of
the binding energy Bn as a function of n. For example, in
Fig. 4 we display the bound states for � � 1 and g �
0:008 333. Note that for these values there are 23 bound

-4 -2 2 4
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12.5
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17.5

FIG. 2 (color online). Potential of the Hermitian Hamiltonian
(20) plotted as a function of the real variable z for the case � � 0
and g � 0:046. The energy levels are indicated by horizontal
lines. Because � � 0 there is no anomaly, and the double-well
potential is symmetric. Therefore, the mass gap is very small
and, as a consequence, there are no bound states at all. The
occurrence of bound states can be attributed to the anomaly.
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FIG. 3 (color online). Asymmetric potential well plotted as a
function of the real variable z for the Hermitian Hamiltonian (20)
with � � 1 and g � 0:046. The energy levels are indicated by
horizontal lines. There is one bound state.
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states. Observe also that the binding energy Bn is a smooth
function of n.

It is interesting that the bound-state spectrum depends
sensitively on the anomaly term in the Hamiltonian (20). If
� is slightly less than 1, the first few states become un-
bound, as is shown in Fig. 5. In this figure g � 0:008 333
and � � 0:9.

If � is slightly greater than 1, the binding energy Bn is
not a smooth function of n for small n. In Fig. 6 we plot Bn
as a function of n for g � 0:008 333 and � � 1:1. Note that
for these values of the parameters there are 30 bound states.
Figs. 4–6 are strikingly different, and demonstrate the
extreme sensitivity of the bound-state spectrum to the
anomaly term.

IV. PATH-INTEGRAL DERIVATION OF THE
PARITY ANOMALY

A path integral is used to represent the partition function
of a quantum field theory. A path integral is much more
complicated than a Schrödinger equation, and thus the
elementary differential-equation methods applied in
Sec. II cannot be used directly for a quantum field theory.
To prepare for our study of a PT -symmetric ��4 field
theory in Sec. V, we need to establish the equivalence of H
in (1) and ~H in (16) by using path-integration methods.

For the Hamiltonian (1) the Euclidean functional inte-
gral for the partition function Z is

 Z �
Z
C
D� exp

�
�

1

@

Z
dt
�
m
2

_�2 � g�4

��
; (21)

where the normalization factor is understood. A functional
integral is an infinite product of ordinary integrals, one for
each lattice point in the discretized representation. The
g�4 term in the exponent would cause each of these
integrals to diverge if the integration path lay on the real
axis. To make these integrals converge, the contour of
integration at each lattice point must approach infinity
inside a pair of wedges having an angular opening of 45	

and centered about the angles �45	 and �135	 in the
lower-half complex plane. The subscript C on the func-
tional integral sign indicates that the path integral is taken
along a complex contour.

Our goal is to transform the functional integral (21) into
a conventional functional integral in which the contour of
integration runs along the real axis rather than in the
complex plane. We expect to find that the action in the
exponent will correspond to ~H in (16).

Our approach is as follows: First, in Sec. IVA we trans-
form the continuum functional integral in (21) directly
using (5). We discover that if we proceed formally without
recognizing that a functional integral is a subtle construct
involving the limit of a discrete product of ordinary inte-
grals, the resulting equivalent Hermitian Hamiltonian that

5 10 15 20 25 30 35

-0.2

-0.15

-0.1

-0.05

0.05

0.1

FIG. 4. Binding energies Bn � En � E0 � nM plotted as a
function of n for g � 0:008333 and � � 1. A negative value
of Bn indicates a bound state. Observe that there are 23 bound
states for these parameter values. Note that Bn is a smooth
function of n.

5 10 15 20 25

-0.1

-0.05

0.05

0.1

FIG. 5. Binding energies Bn plotted as a function of n for g �
0:008333 and � � 0:9. Note that the first five states have now
become unbound and Bn is not a smooth function of n for n � 6.
The next 12 states are bound, and in this region Bn is a smooth
function of n. A comparison of this figure with Fig. 4 shows that
the bound-state spectrum is exquisitely sensitive to the strength
of the linear anomaly term.

5 10 15 20 25 30 35

-0.3

-0.2

-0.1

FIG. 6. Binding energies Bn plotted as a function of n for g �
0:008 333 and � � 1:1. Note that there are 30 bound states and
that Bn is not a smooth function of n when n is small.
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we obtain does not contain the linear anomaly term in ~H in
(16). Thus, this derivation produces the classical (@! 0)
limit of ~H. Hence, this derivation is equivalent to the
geometrical-optics approximation (zeroth-order WKB).
To obtain the anomaly, we must discretize the functional
integral, and this discretization requires great care. We
explain and motivate the discretization procedure in
Sec. IV B and carry it out in Sec. IV C.

A. Formal derivation correct to order @
0

We begin by making a substitution analogous to that in
(5),

 ��t� � �2iL
�������������������������
1� i �t�=L

q
: (22)

This substitution introduces a functional Jacobian in the
form of a square root:

 D� �
D 

det
��������������������
1� i =L

p : (23)

The new functional integral over the  variable is
 

Z �
Z D 

det
��������������������
1� i =L

p exp
�
�

1

@

Z
dt
�
m
2

_ 2�t�
1� i �t�=L

� 16gL4

�
1� i

 �t�
L

�
2
��
: (24)

This is a conventional functional integral in the sense that
the field  �t� is real and the path of integration lies on the
real axis rather than in the complex plane.

Next, we exploit the functional-integral version of the
simple integral identity

 

1

A
�

1�������
2�
p

Z 1
�1

dte��1=2�A2�t�B�2 �ReA2 > 0� (25)

and obtain (apart from an overall normalization factor)
 

Z �
Z
D 

Z
D� exp

�
�

1

@

Z
dt
�

1� i �t�=L
2m

 ���t� � B�t��2 �
m
2

_ 2�t�
1� i �t�=L

� 16gL4�1� i �t�=L�2
��
: (26)

This integral converges because Re
1� i �t�=L� � 1,
which is positive. Both functional integrals in (26) are
conventional real integrals.

We eliminate the term containing the square of _ �t� by
choosing

 B�t� �
im _ �t�

1� i �t�=L
: (27)

With this choice the exponential in (26) simplifies to:

 

�
1

@

Z
dt
�

1

2m
�2�t��1� i �t�=L� � i��t� _ �t�

� 16gL4�1� i �t�=L�2
�
: (28)

Next, we integrate by parts in order to transfer the
derivative from  �t� to ��t� and in doing so discard the
surface term:

 �
Z
dt _ �t���t� �

Z
dt _��t� �t�: (29)

After interchanging orders of integration and completing
the square, we get
 

Z �
Z
D� exp

�
�

1

@

Z
dt
�

1

64gL2 _�2�t� �
1

256gm2L4 �
4�t�

� L _��t� �
1

64gmL3 �
2�t� _��t�

��


Z
D exp

�
�

16gL2

@

Z
dt
�
 �t� � iL

�
i

64gmL3 �
2�t� �

i

32gL2 _��t�
�

2
�
: (30)

We integrate the _��t� and �2�t� _��t� terms and ignore the
surface contributions.

Finally, we rescale � and  in analogy with (14):

 ��t� � L
������������
32mg

p
’�t�;  �t� �

1

L
������������
32mg
p p�t�; (31)

and evaluate the Gaussian integral over p. The result is

 Z �
Z
D’ exp

�
�

1

@

Z
dt
�
m
2

_’2�t� � 4g’4�t�
��
; (32)

which is the Euclidean functional integral for the classical
(anomaly-free) version of the Hamiltonian ~H in (16).

B. Discretization of the functional integral

Evidently, the analysis in Sec. IVA is not delicate
enough to recover the linear anomaly term of ~H in (16).
In order to obtain this anomaly term it is necessary to
discretize the functional integral (21). In order to do so,
we replace _��t� by the usual lattice expression ��n�1 �
�n�=a, where a is the lattice spacing. Furthermore, we
must replace ��t� by the average
1
2 ��n�1 ��n� to preserve the time independence of the
equal-time commutation relation in the underlying
quantum-mechanical theory. Our purpose in this subsec-
tion is to explain the reason behind this latter substitution.

Consider a one-dimensional quantum-mechanical
Hamiltonian of the form

 H �
1

2
p2 � V�q�: (33)

The Heisenberg equations of motion of the operators p�t�
and q�t� have the same form as the classical equations in
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(3):

 _x�t� � p; _p�t� � �V0
q�t��: (34)

To discretize the differential equations in (34), we write

 

xn�1 � xn
a

�
pn�1 � pn

2
;

pn�1 � pn
a

� �V 0
�
xn�1 � xn

2

�
;

(35)

where a is the lattice spacing.
One can verify that (35) is correct by following the

procedure introduced in Ref. [15]. The right side of the
first equation in (35) is a function of pn�1 � pn, so the
commutator of this equation with pn�1 � pn is

 
xn�1 � xn; pn�1 � pn� � 0: (36)

Also, the right side of second equation in (35) is a function
of xn�1 � xn. Thus, commuting xn�1 � xn with this equa-
tion gives

 
xn�1 � xn; pn�1 � pn� � 0: (37)

Adding (36) and (37) then gives

 
xn�1; pn�1� � 
xn; pn�: (38)

This establishes the crucial result that the equal-time com-
mutator is exactly preserved in time. Thus, the discretiza-
tion scheme in (35) is exactly unitary. If a discretization
scheme other than that in (35) had been used, there would
be a small violation of unitarity. Evidently, to avoid violat-
ing unitarity on the lattice it is essential to replace a local
function of x�t�, say f
x�t�� by f
12 �xn�1 � xn�� rather than
by f�xn�. Of course, the violation of unitarity vanishes in
the continuum limit a! 0, but we need to preserve uni-
tarity in the lattice version of the theory.

To discretize an action, we follow the same approach as
that used to obtain (35). Thus, for the Lagrangian L �
1
2 _x2�t� � V
x�t�� we discretize the action

R
dtL as follows:

 

X
n

�
1

2a
�xn�1 � xn�

2 � aV
�

1

2
�xn�1 � xn�

��
: (39)

To verify that this is the correct way to discretize the
action, we vary this discrete action with respect to xn to
obtain the lattice equations of motion:
 

1

a
�2xn � xn�1 � xn�1� �

a
2
V0
�

1

2
�xn�1 � xn�

�

�
a
2
V 0
�

1

2
�xn � xn�1�

�
� 0: (40)

To solve this equation, we substitute

 

xn�1 � xn
a

�
pn�1 � pn

2
; (41)

which is the first equation in (35). This reduces (40) to the
form

 bn � bn�1 � 0; (42)

where

 bn �
pn�1 � pn

a
� V0

�
xn�1 � xn

2

�
: (43)

The solution to (42) is

 bn � c��1�n; (44)

where c is an arbitrary constant. However, if c is nonzero,
then in the continuum limit where the lattice spacing tends
to 0 the solution in (44) becomes infinitely oscillatory. To
avoid the appearance of an infinite-energy solution, we
must require that c � 0. We therefore obtain the result
that bn � 0, and we have recovered the second equation
in (35). We have reproduced both equations in (35) and
hence conclude that the discretization scheme used in (39)
is correct. The lattice average used on the right sides of (35)
and in the second term of (39) is completely consistent
with Moyal ordering [16].

C. Derivation of the parity anomaly

Deriving the Hamiltonian ~H in (16) from the partition
function Z in (21) requires great care. First, we must
discretize the functional integral (21) representing Z by
following the procedure in Sec. IV B:
 

Z �
Y
n

Z
C
d�n exp

�
�
a
@

�
m

2a2 ��n�1 ��n�
2

�
g
16
��n�1 ��n�

4

��
; (45)

where a is the lattice spacing. For each of the one-
dimensional integrals in (45), the contour C begins in a
wedge in the lower complex plane centered about �135	

and terminates in the PT -symmetric wedge centered
about �45	 (see Fig. 7).

π
4

FIG. 7. Stokes’ wedges in the lower-half complex-�n plane for
each of the one-dimensional complex integrals used in (45). The
integrands of these complex integrals vanish exponentially fast
as j�nj ! 1 within these wedges. Also shown is the complex
contour in (46).
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For each of the complex integrals in (45) we make a
substitution analogous to that in (5):

 �n � �2iL
����������������������
1� i n=L

q
; (46)

where L is an arbitrary positive constant having dimen-
sions of length. At each lattice point this substitution
introduces a Jacobian in the functional integral;

 d�n �
d n����������������������

1� i n=L
p : (47)

Thus, an exact transcription of (45) is

 Z�
Y
n

Z 1
�1

d n���������������������
1� i n=L

p exp
�
�
a
@

�
m
2

_ 2
n

A2
n
�16gL4A4

n

��
;

(48)

where we use the shorthand notation

 

_ n �
1

a
� n�1 �  n� (49)

and

 An �
1

2
�
���������������������������
1� i n�1=L

q
�

����������������������
1� i n=L

q
�: (50)

Note that in (48) the path of integration of each of the
integrals lies on the real axis.

We now use the integral identity (25) to introduce the
conjugate auxiliary field �n at each lattice site n. To apply
this identity we choose

 A2 �
a
m@

A2
n; t � �n; B � Bn; (51)

where Bn is as yet unspecified. The result is
 

Z�
Y
n

Z 1
�1
d n

Z 1
�1
d�n

�������������
a

2�@m

r
An���������������������

1� i n=L
p

exp
�
�
a
@

�
A2
n

2m
��n�Bn�

2�
m
2

_ 2
n

A2
n
�16gL4A4

n

��
: (52)

Making no approximations, we simplify the Jacobian in
(52) as follows:

 

An����������������������
1� i n=L

p �

���������������������������
1� i n�1=L

p
�

����������������������
1� i n=L

p
2
����������������������
1� i n=L

p
� 1�

���������������������������
1� i n�1=L

p
�

����������������������
1� i n=L

p
2
����������������������
1� i n=L

p
� 1�

i� n�1 �  n�

4LAn
����������������������
1� i n=L

p
� 1� a

i _ n

4LAn
����������������������
1� i n=L

p : (53)

Next, we choose Bn:

 Bn �
im _ n
A2
n
: (54)

[Note that the choice of sign on the right side of (54) is
arbitrary. If we replace i by�i in this equation, then at the
end of the calculation the sign of the linear term in the
Hermitian Hamiltonian will be reversed. Reversing this
sign has no effect on the energy levels of the
Hamiltonian.] With this choice, we can approximate for
small lattice spacing a the Jacobian factor in the last line of
(53):

 1� a
i _ n

4LAn
����������������������
1� i n=L

p � 1�
aBn
4mL

� O�a2�: (55)

Next, we use the identity

 

Z 1
�1

d�n�n exp
�
�
aA2

n

2m@
��n � Bn�2

�

�
Z 1
�1

d�nBn exp
�
�
aA2

n

2m@
��n � Bn�2

�
; (56)

which holds because the exponent is an even function of
�n � Bn. This identity implies that (52) with the Jacobian
in (55) can be rewritten as
 

Z �
Y
n

Z 1
�1

d n
Z 1
�1

d�n

�������������
a

2�@m

r �
1�

a�n
4mL

� O�a2�

�

 exp
�
�
a
@

�
A2
n�

2
n

2m
� i�n _ n � 16gL4A4

n

��
: (57)

Next we promote the Jacobian factor to the exponent by
noting that for any number w, we have 1� aw � eaw with
an error of order a2. We also simplify terms in the exponent
by ignoring terms of order a2. The result is
 

Z�
Y
n

Z 1
�1
d n

Z 1
�1
d�n

�������������
a

2�@m

r
exp

�
�
a
@

�
�1� i n=L�

�2
n

2m

� i _�n n�16gL4�1� i n=L�
2�

@�n
4mL

�O�a�
��
; (58)

where we have performed a summation by parts to obtain
the i _�n n term.

Next, we perform a scaling like that in (31):

 �n �
������������
32mg

p
L’n;  n �

1������������
32mg
p

L
pn; (59)

and continue as we did in Sec. IVA. After completing the
square and integrating over pn, we obtain the final result
for the lattice version of the continuum functional integral:

 Z �
Z
D’ exp

�
�

1

@

Z
dt
�
m
2

_’2 � 4g’4 � @

������
2g
m

s
’
��
:

(60)
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This is precisely the functional integral for the theory
described by the Hermitian Hamiltonian ~H in (16).

V. GENERALIZATION TO QUANTUM FIELD
THEORY

The Euclidean functional integral for the partition func-
tion Z of a d-dimensional ��4 quantum field theory is

 Z �
Z
C
D� exp

�
�
Z
ddx

�
1

2
�r��2 � g�4

��
; (61)

where the normalization factor is understood and we have
adopted natural units where @ � 1. As in the one-
dimensional quantum field theory in (21), the contour of
integration at each space-time point must approach infinity
inside a pair of wedges having an angular opening of 45	

and centered about the angles �45	 and �135	 in the
lower-half complex plane. The subscript C on the func-
tional integral sign indicates that the path integral is taken
along a complex contour.

As in the quantum-mechanical case, our goal is to trans-
form the functional integral (61) into a conventional func-
tional integral in which the contour of integration runs
along the real axis rather than in the complex plane.
Following the procedures in Sec. IV we make the substi-
tution

 ��x� � �2i
��������������������
1� i �x�

q
; (62)

where we have set L � 1. This substitution introduces a
functional Jacobian in the form of a square root:

 D� �
D 

det
���������������
1� i 
p : (63)

The new functional integral over the  variable is
 

Z�
Z D 

det
�������������
1� i 
p exp

�
�
Z
ddx

�
�r �2

2�1� i �

�16g�1� i �2
��
: (64)

This is a conventional functional integral in the sense that
the field  �x� is real and the path of functional integration
lies on the real axis rather than in the complex plane.

From the form of the path integral in (64) we can see that
even though the complex number i appears in the inte-
grand, Z is real because the change of variable  ! � 
changes the sign of i. Thus, the ground-state energy density
is real.

This same argument implies that the 2n-point Green’s
functions are real and the (2n� 1)-point Green’s functions
are imaginary. The n-point Green’s function
Gn�x1; x2; x3; . . . ; xn� is constructed from the moments of
products of � fields:

 

h0j��x1���x2���x3� � � ���xn�j0i

�
Z
C
D���x1���x2���x3� � � ���xn�

 exp
�
�
Z
ddx

�
1

2
�r��2 � g�4

��
: (65)

After making the substitution (62), we can apply the above
symmetry argument to show that Gn is real when n is even
and imaginary when n is odd.

Even though we have shown that the partition function Z
in (64) is real, we are still unable to identify a Hermitian
field-theoretic Lagrangian that is equivalent to the ��4

non-Hermitian Lagrangian. This is because the functional
integral (64) has a Jacobian factor, and this factor is com-
plex. By following the procedure in Sec. IV, we were able
to eliminate this Jacobian factor for the case of a one-
dimensional quantum field theory. It is not obvious how to
proceed in the case of higher dimensions. We now propose
three possible approaches to solving this problem.

(1) The simplest approach is to follow Sec. IV and
introduce a new field ��x� by using the identity
(25). The advantage of this procedure is that, at least
at the classical level where we do not perform the
point-splitting described in Sec. IV C, the Jacobian
factor in the functional integral cancels. We obtain
the d-dimensional analog of (26):
 

Z �
Z
D 

Z
D� exp

�
�
Z
ddx

�
1� i 

2
��� B�2

�
�r �2

2�1� i �
� 16g�1� i �2

��
: (66)

There are now several possibilities for the choice of
B. The choice

 B�x� �
ir1 �x�

1� i �x�
(67)

eliminates the 
r1 �x��2 term from (66) but the
resulting action is nonpolynomial in  and thus
the integral over  cannot be evaluated analytically.
Furthermore, the resulting action is not manifestly
Lorentz covariant. The more symmetric choice

 B�x� �
i
�������������
�r �2

p
1� i �x�

(68)

eliminates the �r �2=�1� i � term completely, but
again the resulting action is nonpolynomial and it is
impossible to perform the  integral.

(2) A second approach is to introduce the
d-dimensional vector field �� �� � 1; . . . d�. Now,
using the identity (25) d times, we obtain an action
that is a quadratic polynomial in  . However, we
still cannot perform the  integration because the
Jacobian factor no longer cancels. Indeed, there are
now d� 1 functional determinant factors of
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���������������
1� i 
p

in the numerator. Furthermore, had we
kept the scale factor L in the change of variables
(62), the resulting Jacobian would have explicit L
dependence, even though the partition function is
clearly independent of L. Therefore, this integral
representation of the partition function is clumsy
and is likely to be intractable.

(3) We believe that the most promising approach is to
introduce a single scalar field ��x� by formally
rewriting Z in (64) as
 

Z �
Z
D 

det
�������������������������������
r��1� i �r�

q
det

���������������
1� i 
p


Z
D� exp

�
�
Z
ddx

�
1

2
�r��2�1� i �

� ir��r� � 16g�1� i �2
��
: (69)

The advantage of this representation of Z is that the

action is quadratic in  and is Lorentz covariant.
The Jacobian remains complicated, but it may be-
come analytically tractable if we introduce a
Grassmann integration variable � to promote the
functional determinant to the action. After integrat-
ing out the  field, the action will now depend on the
scalar boson field � and the fermion field �. The
resulting Hermitian action will bear a strong resem-
blance to supersymmetric actions. This is not sur-
prising because, even in the one-dimensional case,
the equivalent Hermitian Hamiltonian ~H in (16)
strongly resembles a supersymmetric quantum the-
ory. In a future paper we hope to present a thorough
analysis of this quantum theory.
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