
Generalizing the soldering procedure

D. Dalmazi,1 A. de Souza Dutra,1 and E. M. C. Abreu2
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We start this work by revisiting the problem of the soldering of two chiral Schwinger models of
opposite chiralities. We verify that, different from what one can conclude from the current literature, the
usual sum of these models is, in fact, gauge invariant and corresponds to a composite model, where the
component models are the vector and axial Schwinger models. As a consequence, we reinterpret this
formalism as a kind of degree of freedom reduction mechanism. This result has led us to discover a second
soldering possibility giving rise to the axial Schwinger model. This new result is seemingly rather general.
We explore it here in the soldering of two Maxwell-Chern-Simons theories with different masses.

DOI: 10.1103/PhysRevD.74.025015 PACS numbers: 11.15.�q, 11.10.Ef

I. INTRODUCTION

The study of chiral bosonic fields has arisen and prolif-
erate mainly due to its importance in the quantization of
strings [1] and other theoretical models [2]. This research
in chiral bosonization has begun many years back with the
seminal paper of W. Siegel [3]. Floreanini-Jackiw have
offered later some different solutions to the problem of a
single self-dual field [4] proposing a nonanomalous model.
The study of chiral bosons also plays an important role in
the studies of the quantum Hall effect [5]. The introduction
of a soliton field as a charge-creating field obeying one
additional equation of motion leads to a bosonization rule
[6]. The author of [7] has shown that the method of
coadjoint orbit [8], when applied to a representation of a
group associated with a single affine Kac-Moody algebra,
generates an action for the chiral WZW model [9], which is
a non-Abelian generalization of the Floreanini and Jackiw
(FJ) model.

The concept of soldering [7,10,11] has proved extremely
useful in different contexts. The soldering formalism es-
sentially combines two distinct Lagrangians manifesting
dual aspects of some symmetry to yield a new Lagrangian
which is destituted of, or rather hides, that symmetry. The
quantum interference effects, whether constructive or de-
structive, among the dual aspects of symmetry, are thereby
captured through this mechanism [11]. The formalism
introduced by M. Stone [7] could actually be interpreted
as a new method of dynamical mass generation [11]. This
technique parallels a similar phenomenon in two dimen-
sional field theory known as Schwinger mechanism [12]
that results from the interference between right and left
massless self-dual modes of chiral Schwinger model [13]
of opposite chiralities [11]. The result of the chiral inter-
ference shows the presence of a massive vectorial mode,
for the special case where the Jackiw-Rajaraman regulari-
zation parameter is a � 1 [13], which is the value where
the chiral theories have only one massless excitation in the
spectrum. This clearly shows that the massive vector mode
results from the interference between two massless modes.

It was shown lately [14], that in the soldering process of
two Siegel’s [3] modes (lefton and righton) coupled to a
gauge field [15], this gauge field has decoupled from the
physical field. The final action describes a nonmover field
(a noton) at the classical level. The noton acquires dynam-
ics upon quantization. This field was introduced by Hull
[16] to cancel out the Siegel anomaly. It carries a repre-
sentation of the full diffeomorphism group, while its chiral
components carry the representation of the chiral
diffeomorphism.

In the 3D case, the soldering mechanism was used to
show the result of fusing together two topologically mas-
sive modes generated by the bosonization of two massive
Thirring models with opposite mass signatures in the long
wave-length limit. The bosonized modes, which are de-
scribed by self and anti-self-dual Chern-Simons models
[17,18], were then soldered into the two massive modes of
the 3D Proca model [19]. In the 4D case, the soldering
mechanism produced an explicitly dual and covariant ac-
tion as the result of the interference between two Schwarz-
Sen [20] actions displaying opposite aspects of the elec-
tromagnetic duality [19].

In this work we revisit the problem of the soldering of
two chiral Schwinger models of opposite chiralities.
Verifying that the usual sum of these models is, in fact,
gauge invariant and corresponds to a composite model,
where the component models are the vector and axial
Schwinger models [21]. So, in this particular case, we
show that it is not really necessary to use the soldering
mechanism to accomplish the gauge symmetry as sup-
posed. As a consequence, we reinterpret it as a kind of
degree of freedom reduction mechanism. This idea is then
used in order to define other possible ways of performing
this soldering/fusion procedure.

II. A BRIEF DESCRIPTION OF THE SOLDERING
FORMALISM

The soldering formalism gives an useful bosonization
scheme for Weyl fermions, since a level one representation
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of LU(N) has an interpretation as the Hilbert space for a
free chiral fermion [22]. However, only Weyl fermions can
be analyzed in this way, since a 2D conformally invariant
QFT has separated right and left current algebras. In other
words, it is trivial to make a (free) Dirac fermion from two
(free) Weyl fermions with opposite chiralities. The action
is just the sum of two Weyl fermion actions. It seems,
however, nontrivial to get the action of the WZW model
from two chiral boson actions of opposite ‘‘chiralities’’,
because it is not the direct sum of two chiral bosons.

To solve this problem, Stone [7] introduced the idea of
soldering the two chiral scalars by introducing a nondy-
namical gauge field to remove the degree of freedom that
obstructs the vector gauge invariance [23]. This is con-
nected, as we said above, to the necessity that one must
have more than the direct sum of two fermions representa-
tions of the Kac-Moody algebra to describe a Dirac fer-
mion. In another way we can say that the equality for the
weights in the two representations is physically connected
with the necessity to abandon one of the two separate chiral
symmetries, and accept that a nonchiral gauge symmetry
should be kept. This is the main motivation for the intro-
duction of the soldering field which makes possible the
fusion of dualities in all space-time dimensions. This re-
striction will force the two independent chiral representa-
tions to belong to the same multiplet, effectively soldering
them together.

The basic idea of the soldering procedure is to raise a
global Noether symmetry of the self and anti-self-dual
constituents into a local one. The effective theory, consists
of the dual components and an interference term [23].

An iterative Noether procedure [23] is usually adopted
in order to promote global symmetries. Therefore, one
supposes that the symmetries in question are being de-
scribed by the local actions, invariant under a global trans-
formation. Then, trying to raise the symmetry to a local
one, notice that now under local transformations these
actions will not remain invariant, and Noether counter-
terms become necessary to reestablish the invariance,
along with appropriate auxiliary fields, the so-called sol-
dering fields which by construction should be nondynam-
ical ones.

For each the self and anti-self-dual system we have in
mind that this iterative gauging procedure is constructed
not to produce invariant actions for any finite number of
steps. However, if after N repetitions, the noninvariant
piece ends up being only dependent on the gauging pa-
rameters and Noether currents, then there will exist the
possibility of mutual cancelation if both self and antiself
gauged systems are combined with each other.

Finally, the auxiliary fields should be eliminated, for
instance, through its equations of motion, from the result-
ing effective action, in favor of the physically relevant
degrees of freedom. It is important to notice that after the
elimination of the soldering fields, the resulting effective

action will not depend on either self or anti-self-dual fields
but only on some collective field, defined in terms of the
original ones in a invariant way.

III. THE CHIRAL SCHWINGER MODEL

Let us begin by introducing the notation used here for
the light cone variables:

 x� �
1���
2
p �x0 � x1�; @� �

1���
2
p �@0 � @1�;

A� �
1���
2
p �A0 � A1�;

(1)

and now we can work out our model.
We can write down the interaction terms of the chiral

Schwinger model for both chiralities in its bosonized form
as:

 W� �
Z
d2x

�
@��@��� eA�@���

ae2

4
A�A�

�
; (2)

and

 W� �
Z
d2x

�
@��@��� eA�@���

be2

4
A�A�

�
; (3)

where a and b are the Jackiw-Rajaraman coefficients for
each chirality respectively [13]. Notice that W� and W�
are invariant under the following semilocal gauge trans-
formations respectively

 �A� � 0; �A� � @��R; �� � �ae�R=4 (4)

 �A� � @��L; �A� � 0; �� � �be�L=4 (5)

where �R � �R�x�� and �L � �L�x��. Performing a direct
sum of the actions we have:
 

WTOTAL � W� �W�

�
Z
d2x

�
@��@��� @��@��� eA�@��

� eA�@���
�a� b�e2

4
A�A�

�
; (6)

Notice that if a� b � 2, WTOTAL is invariant under �� �
� � ��; �A� � �2@�� where � � ��x�� is an arbitrary
function. In order to make this local gauge invariance
explicit, let us do the following rotation

 

���
2
p
� � �� ’ (7)

 

���
2
p
� � �� ’: (8)

Substituting in (6) and writing the result in a explicit
covariant way we have a vector plus an axial Schwinger
model:

 L � LVSM �LASM �
1

4
�a� b� 2�e2A2

� (9)
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with

 L VSM��;A�� �
1

2
�@���

2 � e"��@��A�;

LASM��;A�� �
1

2
�@���2 � eg��@��A� �

1

2
A2
�:

(10)

The gauge invariance for a� b � 2 is now explicit.
At this point we observe that, contrary to what one might

think based on the claims in [19,23], it is not really neces-
sary to perform the soldering of the two chiral bosons in
order to accomplish the full local gauge invariance. Since
the usual soldering procedure obtained after the addition of
an interference term, produces only the vector Schwinger
model, the result (9) suggests the existence of a second
soldering procedure giving rise to the axial Schwinger
model. Indeed, that is what we have found as we next show.

The actions W� and W� only depend on � and �
through derivatives and therefore are invariant under rigid
translations of these fields, the basic idea in the soldering
procedure is to join the actions W� and W� into a new one
while promoting this symmetry to a local form. Let us
suppose the local variations

 �� � ��x�; �� � 	��x�; (11)

where 	 is, at this point, an arbitrary constant. In the usual
soldering procedure one assumes 	 � 1. Under (11) we
have:

 ��W� �W�� �
Z
�J�@��� J�@���d

3x; (12)

with

 J� � @��� eA�; J� � 	�@��� eA��: (13)

Introducing two auxiliary fields B� such that

 �B� � �@��; (14)

we have
 

��L� �L� � B�J� � B�J�� � B�@��� 	2B�@��

� ���B�B�� � �1� 	
2�B��B�: (15)

Therefore, for 	 � �1 we can define a soldered
Lagrangian density, invariant under (11) and (14), which
is given by

 L �s�
	 � L� �L� � B�J� � B�J� � B�B�: (16)

Eliminating the auxiliary fields through their equations of
motion, we have

 L �s�
	 � L� �L� � J�J�

� @��@��� e�A�@��� 	A�@���

�
e2�a� b� 2	�

4
A�A�; (17)

where � � �� 	� is a field combination invariant under

(11). In both cases 	 � �1 and 	 � �1, if we choose a�
b � 2, we recover the vector and the axial Schwinger
models, respectively.

 L �s�
�1 �

1

2
�@���2 � e"��@��A�;

L�s��1 �
1

2
�@��� eA��2:

(18)

Thus, the new soldering found here for 	 � �1 gener-
ates the missing part in the rotated direct sum (9). In the
two cases 	 � �1, the soldering procedure has produced a
Lorentz covariant and local gauge invariant Lagrangian out
of two anomalous gauge models which possessed only a
semilocal gauge invariance. It is remarkable that in order to
prove gauge invariance of L�s��1 under �A� � @�� we also
need to vary the scalar composite field �� � �e� which
was invariant from the start under the transformation (11).
Even in the case of L�s��1 it is assumed in the soldering
approach [11] that �A� � 0 and one ends up with a local
gauge invariance with �A� � @�� � 0. Thus, the connec-
tion between the original soldering symmetry and the final
gauge symmetry is rather mysterious in both cases 	 �
�1. We will see later that the same phenomenon appears in
d � 3 dimensions. Regarding the choice a� b � 2 we
point out that it is in agreement with the unitarity bound
a � 1 and b � 1 of the chiral Schwinger models. As
argued in [11], the same result a � 1 � b could be found
by using a left/right symmetry (� $ 	), implying that
a � b in the chiral Lagrangian densities and the condition
a� b � 2, with no need of unitarity arguments. We re-
mark that although the models (18) are not equivalent, by
functionally integrating the soldering field � in (17) and
using a� b � 2 we obtain an 	-independent gauge in-
variant effective action which, after adding the Maxwell
Lagrangian density, describes a massive photon:

 L eff
A�� � �
1

4
F��
��� e2=
�

�
F��: (19)

It is important to point out that one of the motivations to
introduce the usual soldering procedure (	 � 1) is to offer
a systematic way of mixing two bosonized theories, see
[11], in agreement with the chiral factorization identity of
fermionic determinants below:

 det�i@6 � eA6 � � det�i@6 � eA6 �� det�i@6 � eA6 ��: (20)

Where A6 � � A6 P� with P� � �1� �5�=2. A trivial direct
sum of the two bosonized versions of the chiral determi-
nants gives rise to a sum of the axial and vector Schwinger
models and therefore does not reproduce the bosonized
version of the vector Schwinger model as expected from
the left-handed side of (20), while this is achieved by the
usual soldering procedure. On the other hand, by tracing
back the second soldering procedure (	 � �1) it is easy to
show that it is technically equivalent to the usual soldering
ofW� and W���e� where W���e� corresponds to change
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the sign of the charge in W�. Since we end up with the
axial Schwinger model, we expect the existence of the
factorization formula:

 det�i@6 � eA6 �5� � det�i@6 � eA6 �� det�i@6 � eA6 ��: (21)

Indeed, by splitting the fermions in chiral components it is
easy to derive the above identity. Therefore the second
soldering nicely patches the two chiral Schwinger models
in its bosonized form in agreement with the dual factoriza-
tion formula (21) for the fermionic determinant. This type
of relation between soldering and the factorization of
fermionic determinants may be specially useful in D � 3
where bosonization is much less developed.

Concluding, the generalized soldering procedure has
produced in D � 2 a self-consistent Lorentz covariant
theory with local gauge invariance for 	 � �1 in agree-
ment with our expectations based on the direct sum of the
two chiral Schwinger models.

IV. D � 3

Now let us explore the generalized soldering in the
higher dimensional case of two Maxwell-Chern-Simons
models with opposite sign masses in the presence of a
nonminimal interaction:

 W� �
Z
d3x

�
�

1

4
F2
���A� �

m�
2
�	��A

	@�A�

� ���	��J
	@�A�

�
; (22)

 W� �
Z
d3x

�
�

1

4
F2
���B� �

m�
2
�	��B

	@�B�

� ���	��J	@�B�
�
: (23)

The above theories have been considered before [24], with
J� � 0, in its dual form which corresponds to a self-dual
and an anti-self-dual model. In [24] the models (22) and
(23) have been soldered in the usual way (	 � 1) into a
Maxwell-Chern-Simons-Proca theory. The general case
m� � m� required the use of the equations of motion
during the soldering procedure while in the special case
m� � m� the whole method works off-shell. Such special
case naturally appears in the bosonization of QED3 with
two components fermions in the large mass limit. It has
been first considered from the soldering point of view in
[19] where it was shown that the parity noninvariant theo-
ries (22) and (23) are soldered into a parity invariant
Maxwell theory with a Proca term. The soldered theory
is a function of the composite field A� � B�. The non-
minimal couplings �� introduced here allow a general-
ization of [19,24] into an interacting theory. In this sense
J� play a role similar to the gauge field in the chiral
Schwinger models of last section. We have chosen a non-
minimal coupling with the current J� because it keeps the

theory invariant under rigid translations of the gauge field
which will play an important role in the soldering mecha-
nism. Besides, the nonminimal coupling naturally appears
when we search for the dual of U�1� matter minimally
coupled to the self-dual model as obtained in [25], see also
[26,27]. In fact, in that case we have �� � �e=m� where
e is the coupling appearing in the minimal coupling term.
Now we start our generalized soldering procedure by lift-
ing the rigid translation symmetry of (22) and (23) to the
local form:

 �A� � ��; �B� � 	�� (24)

which imply

 ��W� �W�� �
Z
d3xJ��@��� (25)

where
 

J�� � �F���A� � 	F���B� � �����m�A
� � 	m�B

��

� �	�� � �������J
� (26)

As usually one introduces auxiliary fields B�� such that

 �B�� � �@��� (27)

It is easy to derive:
 

��W� �W� �
Z
d3xB��J���

� �
�
�1� 	2�

2

Z
d3xB���B

�� � B���
�

�
Z
d3x�m� � 	

2m������B
���� (28)

Since �� can not be written as a local function of �B�� we
choose at this point

 	 � �

��������
m�
m�

s
(29)

Consequently we are able to build an invariant action under
the local translations (24). After the elimination of the
auxiliary fields B�� through their equations of motion the
reader can check that we arrive at:

 W�S�	 � W� �W� �
Z
d3x

J��J��
4�1� 	2�

�
Z
d3xL�S�	

(30)

where after some rearrangements we can write down:
 

L�S�	 � �
F2
���C�

4�1� 	2�
�
�m� �m��

2�1� 	2�
����C

�@�C�

�
1

2�1� 	2�

	m�C� � �	�� � ���J��

2

�
�	�� � ���

1� 	2 ����J
�@�C� (31)
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The composite soldering field C� � 	A� � B� is invari-
ant under the local transformations (24). Observe that no
use has been made of the equations of motion contrary to
[24]. In (31) we still have the two choices 	 �
�

�����������������
m�=m�

p
. Suppressing the interaction J� � 0 we re-

cover the same Maxwell-Chern-Simons-Proca of [24]. In
parallel with the d � 2 results of last section, the depen-
dence on 	 only appears through the interacting terms
which now contain a minimal coupling J 
 C, a Thirring
term J2 and a nonminimal coupling of the Pauli type
����J�@�C�. Besides the soldering symmetry (24), if we
think of J� as a dynamical field, the soldered Lagrangian
(31) is symmetric under:

 J� ! J� � @�� C� ! C� �
	
m�
�	�� � ���@��

(32)

For 	�� � �� � 0 the symmetry (32) is larger than the
originally envisaged soldering symmetry (24) in analogy
with the case 	 � �1 of last section. In the d � 2 example
the two soldering choices 	 � �1 have led to different
actions but the same effective action for the electromag-
netic field A�. Now in d � 3 if we Gaussian integrate over
the soldering field C� in the path integral we derive from
(31) the effective Lagrangian:

 L �S�
eff 
J� �

m���
2
� � �

2
��J

����m�m���
��J
�

�m� �m��
���m�m��
2 � �m� �m��

2��
�
m��m� �m���	�� � ���

2J2

2�m� �m��
2

�
m�J�
�m��2

� �m��2
����m�m��m��

2
� �m��2

�������@
�J�

�m� �m��
���m�m��2 � �m� �m��2��
(33)

where 
�� � g�� � @�@�=�. Thus, in general the two
possible choices for 	 lead us to inequivalent theories
due to the second term in (33) even after integration over
the soldering field. Only in the special case m� � m� �
m�	2 � 1� we have the same result for both choices 	 �
�1, although the Lagrangians before the integration over
the soldering field are different for 	 � 1 and 	 � �1. In
particular, for �� � ��� � � we have

 L �S�
	�1 � �

F2
��

8
�
m2C2

4
� �����J�@�C� (34)

 L �S�
	��1 � �

F2
��

8
�
m2C2

4
�m�J 
 C� �2J2 (35)

We see that a nonminimal coupling of the Pauli type for
	 � 1 is traded in a nonminimal coupling plus a Thirring
term for 	 � �1. It deserves a comment the fact that such
correspondence is known to appear in the dual theory of a
self-dual model minimally coupled to U�1� matter fields,
see [25–27], which corresponds to a Maxwell-Chern-
Simons theory nonminimally coupled to U�1�matter fields
plus a Thirring interaction. The similarity with the d � 2
case is remarkable. In that case the interaction term
e���@��A� has been traded in e@��A� � e2A2=2 as if
the complementary solderings 	 � 1 and 	 � �1 were
generating dual theories. This point certainly demands a
deeper investigation.

It is interesting to note that when we drop the spatial
dependence of the vector fields in (22) and (23) and set
�� � 0 we recover the Lagrangians L� � �1=2�
 _xi� �
!��ijxi� _xj�� where we have relabelled Ai ! xi�; Bi !
xi� and m� ! !�. The Lagrangians L� and L� describe
a right and left moving particle on a plane in the presence

of a constant magnetic field orthogonal to the plane and
pointing in opposite directions, respectively. Those
Lagrangians have been considered before in [19,28,29]
and soldered in [24] where use has been made of the
equations of motion for !� � !�. If we choose �xi� �
�i and �xi� � 	�i with 	2 � !�=!� we end up with a
soldered Lagrangian which represents a two dimensional
Harmonic oscillator in the presence of a residual magnetic
field which disappears for m� � m�, i.e., in terms of the
soldering field �i � �	xi� � xi��=

���������������
1� 	2
p

one has
L�S� � �1=2�
 _�2 � �!� �!���ij�i

_�j �!�!��2
i � in

agreement with the final result of [24] but we stress that
our generalized soldering procedure differently from [24]
does not require the use of equations of motion, except of
course for the auxiliary fields whose equations of motion
are actually mathematical identities without dynamical
content.

V. CONCLUSION

Chiral Schwinger models possess only a semilocal form
of gauge invariance. However, it is known that one can
recover full local gauge invariance by soldering two oppo-
site chirality chiral Schwinger models. In this case one
ends up with a vector Schwinger model. We have shown
here that a direct sum of both chiral models already fur-
nishes a local gauge invariant theory with no need of a
soldering procedure. After a simple rotation of the fields
the resulting theory becomes a vector plus an axial
Schwinger model so suggesting the existence of a second
(generalized) soldering procedure leading us to the vector
Schwinger model. Indeed, we have found here a general-
ization of the soldering mechanism leading either to the
axial or to the vector models depending on a constant
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parameter 	 � �1. The same twofold generalization oc-
curs in d � 3 when we solder two Maxwell-Chern-Simons
theories with opposite sign masses m� and �m�. In this
case we have 	 � �

�����������������
m�=m�

p
. By allowing 	 � 1 we

have been able to implement the soldering algorithm off-
shell even form� � m� so generalizing previous results in
the literature. Introducing a nonminimal interaction of the
Maxwell-Chern-Simons fields with a vector current we
obtain different soldered theories for the two different
choices for 	. However, in the special case 	 � �1 in
both d � 2 and d � 3 we have the same theory after
integration over the soldering field. Apparently, the cases
	 � 1 and 	 � �1 generate dual versions of the same
theory as we have argued in the last section. For the new
soldering found here (	 � �1) the resulting gauge sym-
metry is surprisingly larger than the originally imposed

soldering symmetry. In order to get a deeper understanding
of this and other aspects of such complementary solderings
we are now applying it to the cases of nonabelian gauge
theories in d � 2, models including coupling to 2d gravity
and electromagnetic duality in d � 4 which have all been
considered from the point of view of usual soldering �	 �
1�. Clearly, a better understanding of the generalized sol-
dering from the path integral point of view through a
possible master action approach would probably unravel
some of the interesting features of this mechanism.
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