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A three-dimensional effective theory for high temperature SU�3� gauge theory, which maintains the
Z�3� center symmetry of the full theory, is constructed. Such a Z�3� invariant effective theory should be
applicable to a wider temperature range than the usual effective theory, known as EQCD, which fails to
respect the center symmetry. This center-symmetric effective theory can reproduce domain wall and phase
transition properties that are not accessible in EQCD. After identifying a convenient class of Z�3� invariant
effective theories, we constrain the coefficients of the various terms in the Lagrangian using leading-order
matching to EQCD at high temperature, plus matching of domain wall properties in the full theory. We
sketch the expected structure of the phase diagram of the effective theory and briefly discuss the prospects
of numerical simulations and the addition of quarks.
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I. INTRODUCTION

The thermodynamics of high-temperature QCD with
various numbers of massless quarks has been widely
studied using the method of dimensional reduction, in
which one exploits the decoupling of the nonstatic degrees
of freedom to build an effective three-dimensional theory
known as electrostatic QCD (EQCD) [1]. This approach
has been used to derive the perturbative expansion of the
QCD pressure through order g6 lng, and to compute vari-
ous gluonic and mesonic correlation lengths [2–4]. It has
also led to improved understanding of the nonperturbative
dynamics on the ‘‘ultrasoft’’ g2T energy scale [5]. This
approach is applicable at asymptotically high temperatures
where the running coupling g2�T� is small. But closer to
the confinement/deconfinement transition, at temperatures
of a few times Tc, even nonperturbative simulations of
EQCD have failed to produce satisfactory results [6,7].
There have been attempts to build effective theories for
the Wilson line near the phase transition [8–11], but none
of these theories (which often come with very complicated
Lagrangians) provide any connection to the perturbative
regime at T � Tc.

Our goal is to formulate a simple three-dimensional
effective theory for hot QCD that can reproduce equilib-
rium properties at temperatures ranging from asymptoti-
cally large down to Tc. For simplicity, most of our
discussion will focus on the case of pure Yang-Mills the-
ory, although the addition of dynamical quarks will be
briefly discussed in the last section. The construction
of our theory relies on a separation between the inverse
correlation length and the lowest nonzero Matsubara
frequency, 2�T. In SU�3� Yang-Mills theory, there is a
parametrically large separation between these scales at

very high temperatures, and a modest separation near
Tc.

1

In pure SU�3� Yang-Mills theory, the confinement/de-
confinement phase transition is a symmetry-breaking
phase transition. The theory has a global Z�3� symmetry
corresponding to invariance of the action under gauge
transformations which are periodic in the temporal direc-
tion only up to a twist belonging to the center of the gauge
group. This Z�3� symmetry is spontaneously broken in the
deconfined phase where the Wilson line operator (which is
an order parameter for this symmetry) acquires a nonzero
expectation value. Close to the phase transition region,
fluctuations in the Wilson line become increasingly impor-
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1It is natural to distinguish the correlation lengths of time-
reflection even and odd operators. The Debye screening length
m�1
D is the longest correlation length of time-reflection odd

operators [12], such as the imaginary part of the trace of the
Wilson line. The longest correlation length of time-reflection
even operators, which we will denote by ��1, is longer than the
Debye length. In SU�3� Yang-Mills theory at asymptotically
high temperatures, mD=�2�T� approaches g�T�=�2�� while
�=�2�T� is approximately as 0:1g�T�2 [13]. (This is an estimate
based on the corresponding SU�2� result, plus the fact that �
should scale nearly linearly with Nc.) Correlators of purely
magnetic operators fall off like e��jxj at large distance, while
correlators of the real part of the trace of the Wilson line initially
decrease like e�2mDjxj but eventually fall more slowly as e��jxj.
The correlator of the imaginary part of the trace of the Wilson
line initially decreases like e�3mDjxj but switches to e�mDjxj at
large distance. As the temperature decreases, the ratio �=�2�T�,
as deduced from the Wilson line correlator, rises to about 0.5 at
T � 2Tc [14,15] and then falls to about 0.1 just above Tc [15].
The ratio mD=�2�T� on the other hand rises to near unity at T �
2Tc [14]. Because the confinement/deconfinement phase transi-
tion in SU�3� Yang-Mills theory is only weakly first order [16],
this ratio should decrease, similar to the behavior of �=�2�T�,
closer to the phase transition, but we are unaware of any
numerical simulations confirming this. Near Tc, correlations of
purely magnetic operators appear to fall exponentially with a
length scale near �6T��1 but should eventually switch to the
longer scale ��1 seen in the Wilson line correlator [14].
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tant and the Z�3� invariance of the Wilson line probability
distribution is an essential feature of the theory. Even in
full QCD with dynamical quarks it has been argued that the
Z�3� symmetry, although explicitly broken by the presence
of light quarks, may nevertheless play an important role in
the dynamics near Tc [8].

The standard high-temperature effective theory, EQCD,
cannot provide a smooth interpolation between asymptopia
and Tc. This is evident even without considering numerical
evidence, as the construction of EQCD violates one of the
central tenets of effective field theory—it does not respect
all the symmetries of the underlying theory. EQCD breaks
the Z�3� center symmetry explicitly, even in the absence of
quarks. Its leading-order Lagrangian is obtained by ex-
panding the one-loop effective potential of the Wilson
line [17] around one of its three degenerate minima.
Effects of the explicit Z�3� breaking are clearly visible in
the phase diagram of the effective theory [6].2

An effective theory that preserves the Z�3� symmetry
can capture the dynamics of thermal fluctuations (above
Tc) which create bubbles sampling all three degenerate
equilibrium states, and thus should have a phase structure
similar to that of the full four-dimensional theory. In
particular, its phase diagram should contain a quadruple
point, where all three deconfined phases coexist with the
confining phase, thereby extending the description of the
theory into a temperature range inaccessible to EQCD.

Our guide during the process of constructing a better
effective theory for Nf � 0 QCD is the requirement that
the new theory provide a smooth link between asymptoti-
cally high temperatures, where perturbation theory is valid,
and Tc, where a Z�3� symmetry restoring phase transition
occurs. At high temperatures, its predictions must repro-
duce those of EQCD (within its domain of applicability).
But a Z�3� invariant effective theory should also reproduce
the thermodynamics of domain walls which interpolate
between different equilibrium states related by the Z�3�
symmetry [18].

We begin in Sec. II with a brief review of the relevant
aspects of the thermodynamics of SU�3� Yang-Mills the-
ory, including dimensional reduction and the role of the
Wilson line as an order parameter for the confinement/
deconfinement phase transition. Section III presents the
general form of our effective theory. We perform lowest-
order matching to ordinary Nf � 0 EQCD at high tem-
peratures in Sec. IV, and also compute the semiclassical
domain wall profile in our effective theory. The expected
phase diagram of our theory is discussed in Sec. V, and
compared to that of EQCD. Possible future directions,

including the addition of quarks, are briefly discussed in
the concluding Sec. VI. Some details of the analysis of
Sec. III are relegated to the appendices.

II. THERMODYNAMICS OF SU�3� YANG-MILLS

A. Z�3� center symmetry

The functional integral representation for the partition
function of SU�3� Yang-Mills theory involves an integral
over all gauge fields which are periodic in (Euclidean) time
with period �. In addition to invariance under gauge trans-
formations which are periodic in time, the action and the
space of field configurations are invariant under gauge
transformations g which are only periodic in time up to a
‘‘twist’’ belonging to the Z�3� center of the gauge group,
 

A��x� ! s�x��A��x� � i@��s�x�
y; s�x� 2 SU�3�; (2.1a)

s�x� �êt� � zs�x�; z 2 Z�3�: (2.1b)

Under such a transformation, the trace of the Wilson line
(or Polyakov loop)

 tr ��x� � tr
�
P exp

�
i
Z �

0
d�A0��;x�

��
; (2.2)

transforms in the fundamental representation of Z�3�,

 tr ��x� ! z tr ��x�: (2.3)

The magnitude of the expectation value of tr ��x� may be
interpreted physically as the exponential of the change in
free energy due to the addition of an infinitely heavy
fundamental representation test quark at position x,

 jhtr��x�ij � e���Fq�x�: (2.4)

This expectation value vanishes in the confining low-
temperature phase, where the free energy cost to introduce
a single test quark is infinite, but the expectation value is
nonzero in the deconfined high-temperature phase, where
the free energy cost of a test quark is finite. Hence, the Z�3�
center symmetry is unbroken in the confining phase, but is
spontaneously broken in the deconfined phase, and the
expectation value of tr ��x� is an order parameter for the
Z�3� center symmetry.3

Symmetry considerations [19], as well as lattice simu-
lations [16], show that four-dimensional SU�3� Yang-Mills
theory belongs to the same universality class as the three-
dimensional three-state Potts model, and undergoes a weak
first order phase transition at the critical temperature. At
the phase transition, the theory has a quadruple point with
four coexisting equilibrium phases (the three spontane-
ously broken deconfined states, related by Z�3� transfor-
mations, plus the confining phase). No correlation lengths
diverge as T ! Tc.

2Even though it has been argued that a ‘‘partial dynamical
restoration’’ of the Z�3� symmetry takes place in EQCD [6], this
theory does not have three distinct, degenerate, and physically
equivalent equilibrium states which would signal a spontane-
ously broken Z�3� symmetry. These aspects will be discussed in
more detail in Sec. V.

3Unlike more typical symmetry-breaking phase transitions, the
low-temperature (confining) phase is the disordered phase, while
the high-temperature (deconfined) phase is the ordered phase.
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The transition from the deconfined plasma above Tc to
the confining glueball phase below Tc may occur through
two mechanisms: bubble nucleation or complete wetting.
In the former, bubbles of the confining phase are formed
via thermal fluctuations inside the (supercooled) decon-
fined matter just below T � Tc, and as the temperature is
lowered these bubbles grow, eventually filling all space.
Alternatively, complete wetting takes place if one begins
with domain walls separating deconfined phases with dif-
fering Z�3� ‘‘magnetization’’ (i.e., differing phases for
htr �i). Such a domain wall may be viewed as a thin film
of the confining phase residing between the two deconfined
phases. As the temperature is lowered below Tc, this film
widens and splits the ‘‘deconfined-deconfined’’ domain
wall into two ‘‘confined-deconfined’’ domain walls which
repel, leading to the expansion of the confining phase in the
direction perpendicular to the original domain wall.

Domain walls separating Z�3� rotated deconfined phases
are topologically stable, nonperturbative objects which
play an important role in the dynamics of quarkless QCD
at temperatures just above Tc. At sufficiently high tem-
peratures, their properties may be computed using semi-
classical techniques [18]. In hot QCD, the effective
potential for the Wilson line only arises at one-loop order
[17]. As a result, the Debye mass mD (which is determined
by the curvature of this potential at its minimum) is of
order g�T�T, while the energy density at the top of the
barrier separating Z�3� minima is O�T4� (not order
T4=g�T�2, as one might have expected for a semiclassical
object). The width of a domain wall is determined by the
Debye screening length. So high-temperature domain
walls have an O�T4� energy density over a distance of
order m�1

D , yielding a tension which scales as T3=g�T�.
This parametric dependence must be reproduced by any
effective theory that claims to capture the Z�3� symmetry-
breaking physics of hot Yang-Mills theory.

B. Dimensional reduction and EQCD

Because of the compact (Euclidean) temporal direction
in a finite-temperature field theory, all four-dimensional
fields may be decomposed into Fourier sums running over
Matsubara frequencies. Each Fourier component acts as a
three-dimensional field, with a mass (for bosonic fields)
given by an integer multiple of 2�T. At sufficiently high
temperatures, all nonstatic modes act like heavy fields and
decouple from dynamics on length scales large compared
to 1=T. The remaining static modes are the relevant de-
grees of freedom for physics on longer distance scales,
yielding an effective three-dimensional theory. To lowest
order, the form of the effective theory may be found by
integrating out the heavy fields explicitly [17]. At higher
orders, it is more efficient to start with the most general
form of the Lagrangian and adjust its parameters by de-
manding that the effective theory reproduce a minimal set

of physical quantities which are computable in both the
effective and underlying theories [1,20].

In the case of SU�3� Yang-Mills theory at high tempera-
ture, the degrees of freedom of the effective theory corre-
spond to the static components of the gluon field A�.
Integrating out nonstatic fluctuations generates an order
gT mass for the temporal component A0, due to Debye
screening. In addition, self-interaction terms are generated
for the A0 field. The resulting Lagrangian of Nf � 0
EQCD reads4

 L EQCD � g�2
3 f

1
2 trF2

ij � tr	�DiA0�
2
 �m2

E tr�A2
0�

� �E tr�A4
0�g � �LE; (2.5)

with g3 � g�T�
����
T
p

the three-dimensional gauge coupling
and Di � @i � i	Ai; �
 an adjoint representation covariant
derivative. The final term �LE stands for higher dimension
operators whose effects, on length scales large compared to
T�1, are subleading and only affect the thermodynamics at
order g7. The operators in �LE will be irrelevant for our
purposes.

A straightforward way to obtain the form of the above
Lagrangian, plus the leading-order values of its parame-
ters, is to consider the one-loop effective potential for the

Wilson line ��x� � Pei
R
�

0
d�A0��;x� in the full theory. The

resulting potential [17] has three degenerate minima re-
lated by transformations belonging to the Z�3� center of
SU�3�. Choosing to work around the minimum where the
Wilson line expectation value is real and positive (and
subtracting from the potential an A3

0 contribution originat-
ing from fluctuations in the static gauge field, which are not
to be integrated out in the present case), one obtains
Eq. (2.5) as the resulting effective potential for A0 together
with the lowest-order values for the effective theory pa-
rameters,

 m2
E � g�T�2T2; �E �

3
4g�T�

2=�2: (2.6)

To lowest order, the mass parameter mE is the same as the
physical Debye mass mD.

This derivation also reveals the major shortcoming of the
effective theory: when constructing the EQCD Lagrangian,
one has chosen to work in the neighborhood of A0 � 0,
corresponding to a real, positive Wilson line, and thus loses
the Z�3� invariance of the original theory. The other Z�3�
minima correspond to eigenvalues of A0 near 
 2

3�T, and
are outside the domain of validity of the effective theory.
At asymptotically high temperatures this is of little con-
sequence for most physical quantities, as the probability of
thermal fluctuations crossing the barriers separating differ-
ent minima is exponentially small [with an exponent scal-

4This form of the effective theory is valid for SU�2� and
SU�3�. With four or more colors, there is an additional �trA2

0�
2

term. But for both SU�2� and SU�3�, the two fourth-order terms
are not independent, as �trA2

0�
2 � 2 tr�A4

0�.
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ing as 1=g�T�]. But fluctuations between the different
minima become crucial for the dynamics closer to Tc,
and hence a non-Z�3�-invariant effective theory cannot
properly describe physics near the confinement/deconfine-
ment phase transition.

III. Z�3� INVARIANT EFFECTIVE THEORY

A. Degrees of freedom

To build a three-dimensional Z�3� invariant effective
theory, the minimal degrees of freedom are the spatial
gauge field A�x� and the Wilson line ��x�. But because
��x� is a unitary matrix, a theory with polynomial inter-
actions for the Wilson line will not be perturbatively re-
normalizable. For an effective theory which is only
intended to be valid below a UV cutoff, this is not a
fundamental problem. However, it is a serious practical
nuisance. It complicates perturbative matching to the
underlying fundamental theory, as well as matching be-
tween lattice and continuum regulated versions of the
effective theory.

Therefore, we take as our goal the construction of an
effective theory whose short distance behavior is as benign
as possible. To do so, we will replace the unitary matrix
��x� by an unconstrained 3� 3 complex matrix Z�x�.
This should be viewed as analogous to the relation between
nonlinear and linear sigma models (or between an Ising
model and a double-well �4 field theory). One may view
the complex field Z�x� as the result of applying a block-
spin renormalization group transformation which averages
��x� over a small spatial region, producing a result which
is no longer unitary.

An arbitrary complex matrix may always be decom-
posed into a product of unitary and Hermitian matrices,
so we may write Z�x� � ��x�H�x� with H�x� � H�x�y.
One may regard the matrix H�x� as containing unphysical
degrees of freedom (not present in the underlying Yang-
Mills theory) which we have chosen to ‘‘integrate in’’ in
order to construct an effective theory with good short
distance behavior. We will arrange for these extra degrees
of freedom to be ‘‘heavy’’—to have masses large com-
pared to the inverse correlation length.

We require that the effective theory Lagrangian be in-
variant under three-dimensional SU�3� gauge transforma-
tions,

 Z �x� ! s�x�Z�x�s�x�y;

A�x� ! s�x��A�x� � ir�s�x�y;
(3.1)

for s�x� 2 SU�3�, as well as global Z�3� phase rotations,

 Z �x� ! e2�in=3Z�x�; (3.2)

for integer n.
Instead of using the polar decomposition of Z�x� men-

tioned above, it will be more convenient for our purposes to
decompose this field into a traceless part and its trace

(times a unit matrix). Therefore, we define

 L�x� � trZ�x�; (3.3)

and

 M�x� � Z�x� � 1
3 trZ�x�1; (3.4)

so that

 Z �x� � M�x� � 1
3L�x�1: (3.5)

B. Effective Lagrangian

The Lagrange density for the effective theory will have
standard derivative terms plus a potential for the complex
scalar Z,

 L � g�2
3 f

1
2 trF2

ij � tr�DiZ
yDiZ� � V�Z�g; (3.6)

withDi � @i � i	Ai; �
 and Fij � @iAj � @jAi � 	Ai; Aj
.
5

The Z�3� invariant potential V�Z� will consist of two
pieces,

 V�Z� � V0�Z� � g2
3V1�Z�; (3.7)

with

 V0�Z� � c1 tr	ZyZ
 � c2�det	Z
 � det	Zy
�

� c3 tr	�ZyZ�2
; (3.8)

and

 V1�Z� � ~c1 tr	MyM
 � ~c2�tr	M3
 � tr	�My�3
�

� ~c3 tr	�MyM�2
: (3.9)

We will refer to V0�Z� as the ‘‘hard potential’’ and V1�Z� as
the ‘‘soft potential.’’ This terminology is appropriate at
high temperatures where g2

3=T is small, in which case the
effective masses arising from V0�Z� will be large com-
pared to those arising from g2

3V1�Z�.
The hard potential V0�Z� is composed of the three

lowest-dimension operators which (in addition to being
Z�3� invariant) are invariant under the SU�3� � SU�3�
transformation

 Z �x� ! AZ�x�B; (3.10)

for arbitrary A, B 2 SU�3�. Note that the free tr�@iZ
y@iZ�

kinetic term is also invariant under this transformation. A
short exercise, presented in Appendix A, shows that V0�Z�
has extrema when Z � �� for � any element of SU�3�
and � a real root of 2c3�3 � c2�2 � c1� � 0. The coeffi-
cient c3 must be positive for stability. We will require that
c2 < 0 and c2

2 > 9c1c3. These conditions ensure that the

5The freedom to make multiplicative rescalings of Z is used to
fix the coefficient of tr�DiZ

yDiZ� in the Lagrangian (3.6). One
could also add a jr�trZ�j2 term, as this preserves all the required
symmetries. But this additional term may be eliminated with a
Z! Z� ��trZ�1 field redefinition.

A. VUORINEN AND LAURENCE G. YAFFE PHYSICAL REVIEW D 74, 025011 (2006)

025011-4



global minimum corresponds to the largest positive real
root which we will write, for later convenience, as � � 1

3v
with

 v �
3

4

��c2 �
�����������������������
c2

2 � 8c1c3

q
c3

�
: (3.11)

Therefore, V0�Z� is minimized when Z equals an arbitrary
SU�3� matrix times v=3.6

The coupling constants in the soft potential V1�Z� will
be required to satisfy the inequalities ~c3 > 0 and ~c1~c3 > ~c2

2.
As shown in Appendix A, these conditions ensure that
V1�Z� is strictly positive for nonzero M. Hence, the soft
potential V1�Z� is minimized whenM � 0, or equivalently
when Z is proportional to the identity matrix. The overall
factor of g2

3 multiplying the soft potential is designed to
mimic the fact, noted earlier, that the effective potential for
the Wilson line in high-temperature Yang-Mills theory
only arises at one-loop order.

We have only included in the soft potential the three
lowest-dimension Z�3� invariant terms which can be built
just from the traceless field M. There are more Z�3� invari-
ant terms, with the same dimensions, which we could have
added—for example, terms including factors of the trace
L. However, if Z is restricted to the manifold of minima of
the hard potential V0, and so is proportional to an SU�3�
matrix, then there are only three independent operators
which are gauge invariant, Z�3� invariant, and at most
fourth order in the field. The three terms we have included
in the potential (3.9) are a convenient choice for these three
independent terms. As shown in the next section, these
terms will be sufficient for matching with the EQCD
Lagrangian.7

The soft potential V1�Z� lifts the continuous degeneracy
at the minimum of V0�Z�, leaving three discrete minima
related by the Z�3� symmetry. If Z equals v

3 times an
element of the center of SU�3�, then it will simultaneously
minimize both the hard and soft potentials, and hence will
trivially minimize the combined potential V�Z� �
V0�Z� � g2

3V1�Z�.
The theory defined by Eqs. (3.6), (3.7), (3.8), and (3.9) is

a superrenormalizable three-dimensional field theory. The
only renormalizations required (in addition to vacuum
energy subtraction) are one- and two-loop adjustments of
the coefficients c1 and ~c1 of the quadratic terms.

To carry out perturbative matching, as discussed in the
next section, we will need the expansion of the Lagrangian
(3.6) about the minima of the potential. In the vicinity of
the minimum at v3 e

2�in=3, we may decompose Z as

 Z � e2�in=3

�
1

3
v1� g3

�
1���
6
p ��� i	�1� �h� ia�

��
;

(3.12)

where � and 	 are real numbers, while h and a are trace-
less Hermitian matrices. We will also rescale the three-
dimensional gauge field A! g3A to switch to conven-
tional perturbative normalization of the gauge field. Note
that the fluctuation fields �, 	, h, and a, as well as the
gauge field A, will now have canonical dimension 1=2, as
appropriate for a three-dimensional theory. Expressed in
terms of these fluctuation fields, the effective theory
Lagrangian has the form

 

L � Vmin �
1
2 trF2

ij �
1
2	�@i��

2 �m2
��

2


� 1
2	�@i	�

2 �m2
		

2
 � tr	�Dih�
2 �m2

hh
2


� tr	�Dia�
2
 � Vint��;	; h; a�; (3.13)

where Di � @i � ig3	Ai; �
 and Vmin is the value of
V0�Z�=g2

3 at its minimum.
The interaction terms in Vint are suppressed by one or

more powers of g3, and come from the soft potential plus
the parts of the hard potential which involve more than two
fluctuation fields. These terms are displayed explicitly in
Appendix B. The leading-order masses induced by the hard
potential are

 m2
� � �2c1 �

1
3vc2; m2

	 � �vc2;

m2
h � �2c1 �

4
3vc2;

(3.14)

with v given in Eq. (3.11). The field a stays massless at this
lowest order. Note that m2

h � m2
	 �m

2
�, so this mass is not

independent of the other two. The relations between the
couplings in V0�Z� and the tree-level masses (and v) may
be inverted to give

 c1 �
1
6�m

2
	 � 3m2

��; c2 � �m
2
	=v;

c3 �
3
4�m

2
	 � 3m2

��=v
2:

(3.15)

The tree-level heavy masses m� and m	, plus the value of
v, should be regarded as arbitrary parameters for now,
subject to the condition that m� >

1
3m	. This is equivalent

to the inequality c2
2 > 9c1c3 which ensures that the global

minima of the hard potential V0�Z� lie at 1
3ve

2�in=3. The
value of the potential (divided by g2

3) at these minima is
Vmin � �

v2

108 �9m
2
� �m

2
	�=g2

3.

6Note that sending the coefficients ci to infinity, while holding
their ratios fixed, would cause V0�Z� to act like a delta-function
constraint forcing the matrix Z to equal an SU�3� element (up to
a scale factor). The resulting effective theory would be a gauged
nonlinear sigma model for the Wilson line ��x�. But this limit
would return us to a nonrenormalizable effective theory, which
we wish to avoid.

7Had we chosen to work with a gauge group SU�4� or higher,
we would need to include a quartic double trace term in Eq. (3.9)
in order to reproduce the EQCD Lagrangian. This is unnecessary
for SU�3�, due to the identity mentioned in footnote 4.
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IV. PARAMETER MATCHING AT HIGH
TEMPERATURE

A. Reduction to EQCD

We now want to deduce the constraints on the coeffi-
cients ~ci in the soft potential V1�Z� which must be satisfied
if the effective theory is to reproduce the long distance
dynamics of SU�3� Yang-Mills theory at asymptotically
high temperature. In this regime, fluctuations on the scale
of the temperature T [as well as on the Debye scale g�T�T]
are weakly coupled, so perturbative matching techniques
may be used. The most efficient way to carry this out is to
start with our Z�3� invariant effective theory and integrate
out the heavy fluctuation fields �, 	, and h. This will
produce a non-Z�3� invariant effective theory only involv-
ing the light field a (and the three-dimensional gauge
field), which may be directly compared to EQCD.

To lowest nontrivial order, the result of integrating out
the heavy fields is a ‘‘light’’ effective theory with Lagrange
density8

 L light �
1
2 trF2

ij � tr	�Dia�2 �m2
aa2 � ~�a4
: (4.1)

Except for the trivial rescaling A! g3A of the gauge field,
and renaming A0 ! g3a, this has the same form, and
identical derivative terms, as the EQCD Lagrangian (2.5).

The effective light mass m2
a, and the quartic coefficient

~�, can have contributions arising solely from the hard
potential V0�Z�, as well as having contributions which
involve the soft potential V1�Z�. The lowest-order contri-
butions generated by the hard potential are illustrated in
Fig. 1. Using the coefficients of the various terms in the
expansion of V0 about its minima, as given in Eq. (B3), one
may easily evaluate these diagrams explicitly. However,
this is not necessary—the diagrams shown in Fig. 1, at
zero external momentum, sum to zero. This is a conse-
quence of the SU�3� � SU�3� invariance (3.10) which the
effective theory would have in the absence of the soft
potential V1�Z� and the static gauge field. An infinitesimal
SU�3� � SU�3� transformation acts as a shift on the light
field a. Integrating out the heavy fields, without the soft
potential, must produce a result which respects this invari-
ance, and thus can only involve derivative interactions for
the light field a.

Consequently, the light mass m2
a and the quartic cou-

pling ~� in the Lagrangian (4.1) can arise only from con-
tributions involving the non-SU�3� � SU�3� invariant soft

potential V1�Z�. To lowest order, one may simply read off
their values from the soft terms in the shifted potential
(B3), giving

 m2
a � ~c1g

2
3; ~� � ~c3g

4
3: (4.2)

Demanding that these coefficients coincide with the corre-
sponding terms in the EQCD Lagrangian (2.5) (after iden-
tifying A0 ! g3a) fixes

 ~c 1 � T �O�g2
3�; (4.3)

and

 ~c 3 �
3

4�2T
�O

�
g2

3

T2

�
; (4.4)

while ~c2 is left undetermined.
Integrating out the heavy fields beyond leading order

will, of course, produce corrections to the coefficients
(4.2), suppressed by additional powers of g2

3 divided by a
heavy mass, as well as induce additional higher dimension
operators in the light effective Lagrangian (4.1). The first
new operators, involving six powers of the light field a,
will have a coefficient of order �g2

3=mheavy�
4.

B. Domain wall properties

Having ensured that our theory reproduces the perturba-
tive physics of SU�3� Yang-Mills theory at very high
temperature, we are left with two undetermined parame-
ters, v and ~c2 (in addition to the deliberately introduced
heavy masses m� and m	). As we will show, these two
parameters may be fixed by demanding that our effective
theory reproduce the tension and width of domain walls
separating different Z�3� minima.

Consider a domain wall lying in the x-y plane, which
interpolates between the state with htrZi � v at z � �1
and htrZi � e2�i=3v at z � �1. To find the domain wall
profile and evaluate its tension, we need to minimize the
free energy for configurations of the scalar field Z�z�which
depend on a single coordinate z and satisfy the boundary
conditions

(a) + +

(b) + + + + +

+ + +

FIG. 1. (a) Tree-level diagrams originating from the hard
potential V0 which contribute to the quartic interaction vertex
for the light field a. (b) One-loop diagrams produced by V0

which contribute to the mass of the field a. Solid, dotted, wavy,
and curly lines denote the propagators of the �, 	, h, and a
fields, respectively.

8We omitted the unit operator from the original effective
theory Lagrangian (3.6), as well as from (4.1), for simplicity
of presentation. The coefficient of the unit operator gives the
short distance contribution to the free energy density (divided by
T). To match this contribution to the free energy, the coefficient
of the unit operator in our effective theory must differ from the
corresponding coefficient in EQCD by �Vmin �

1
12� �

�m3
� �m

3
	 � 8m3

h�, up to higher order corrections suppressed
by powers of g2

3 divided by a heavy mass.
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L�z � �1� � v; L�z � 1� � e2�i=3v; (4.5a)

M�z � �1� � 0; M�z � 1� � 0: (4.5b)

To evaluate the (leading-order) domain wall tension in the
high temperature or weak coupling limit it will be neces-
sary to include:

(1) The contribution of the hard potential, T
g2

3
�R

dzV0�Z�z��.
(2) The gradient energy, T

g2
3

R
dz trjDzZ�z�j2.

(3) The contribution of the soft potential,
T
R
dzV1�Z�z��.

(4) The one-loop contribution from fluctuations in the
gauge and scalar fields.

Our task is greatly simplified by the hierarchical structure
of the potential. Because of their overall factors of g�2

3 , one
might expect the first two contributions to be most impor-
tant. However, a translationally noninvariant domain wall
configuration can minimize V0�Z�, everywhere in space,
provided Z�z� equals v=3 times some (spatially varying)
SU�3� matrix. And the gradient energy will be comparable
to the energy due to the soft potential, and not parametri-
cally larger, if the width of the domain wall is inversely
proportional to g3. Because the soft potential is multiplied
by an explicit factor of g2

3 in the Lagrangian (3.6), its
contribution is comparable to the effects due to fluctuations
in the fields. Hence, the one-loop contribution cannot be
neglected.9

Using gauge invariance, we may diagonalize Z�z� and
write it as

 Z �z� � diag�f1�z�; f2�z�; f3�z��; (4.6)

with
 

f1�z� �
v
3
e�2�i=3�	��z��3��z�
; (4.7a)

f2�z� �
v
3
e�2�i=3�	��z��3��z�
; (4.7b)

f3�z� �
v
3
e��4�i=3���z�: (4.7c)

Here � and � are real functions of z that satisfy the
boundary conditions
 

��z � �1� � 0; ��z � 1� � 1; (4.8a)

��z � �1� � 0; ��z � 1� � 0: (4.8b)

Note that shifting (�, �) by any integer multiple of ( 3
2 ,


 1
2 ) leaves Z�z� invariant (up to a permutation of its

diagonal elements).
It will be convenient to introduce a dimensionless re-

scaled coordinate �z and Wilson line expectation value �v via

 �z � g3

����
T
p

z; �v �
v
T
: (4.9)

The gradient and soft potential contributions to the domain
wall free energy (per unit area) then become

 Fgrad � Fsoft � g�1
3 �� �vT�2

�
2

3

����
T
p �

3 Z 1
�1

d�zf��0�2

� 3��0�2 �U1��;��g; (4.10)

with �0 � @�=@�z, etc., and

 U1��;�� �
1

4�2 f3� cos�4��� � 2 cos�2��� cos�2���g

�
�v~c2

18�2 f6� cos�4��� � 3 cos�4���

� 2 cos�2���	cos�6��� � 3 cos�2���
g

�

�
�v

12�2

�
2
f9� cos�8��� � 2 cos�4���

� 	cos�4��� � 2
 � 8 cos�2��� cos�2���g:

(4.11)

Fluctuations of the fields in the effective theory, at one-
loop order, produce functional determinants depending on
the background domain wall profile Z�z�. The width of the
domain wall will be parametrically large compared to 1=v,
and therefore one may use a gradient expansion in the
evaluation of the resulting functional determinants. It is
sufficient to keep just the first term, leading to10

 

Ffluc

T
� ln det��@2 � 	Zy; 	Z; �

�=�Area�

�
X
ij

Z
dz
Z d3k

�2��3
ln�k2 � jfi�z� � fj�z�j2�

� �
Z dz

3�
�jf1 � f2j

3 � jf2 � f3j
3 � jf3 � f1j

3�

� g�1
3 �2 �v2T

�
2

3

����
T
p �

3 Z 1
�1

d�zU2��;��; (4.12)

with
 

U2��;�� � �
�v

3�3 fj sin�2���j3 � j sin����� ���j3

� j sin����� ���j3g: (4.13)

Combining the three contributions gives

9This parallels the computation of the leading-order domain
wall tension in the full theory [18].

10The evaluation of this one-loop contribution is similar to the
calculation in Ref. [18]. One may neglect the soft potential
V1�Z�. Transverse fluctuations of A acquire an effective mass
due to the background value of the scalar field, and yield the
above functional determinant. If one uses the gauge fixing term
tr�@iAi�

2 and lets Z�x� � �1� g3
�x�� �Z, with �Z the back-
ground value of the scalar field, then the longitudinal part of
A mixes with the traceless anti-Hermitian part of 
 (which
receives no tree-level mass from the hard potential V0). The
resulting functional determinant is independent of �Z, and equals
one with dimensional regularization. Fluctuations of the trace
and traceless Hermitian parts of 
 are also independent of �Z, and
produce an irrelevant constant (given in footnote 8).
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Fdw	�;�
 � Fgrad � Fsoft � Ffluc

� g�1
3 �� �vT�2

�
2

3

����
T
p �

3 Z 1
�1

d �z	��0�2 � 3��0�2

�U1��;�� �U2��;��
: (4.14)

This is the excess free energy density due to a domain wall
(relative to the spatially constant equilibrium free energy
density). Note that all three contributions are parametri-
cally the same size, as anticipated. Minimizing this func-
tional, subject to the boundary conditions (4.8), will yield
the leading-order domain wall tension.

The combined potential U1��;�� �U2��;�� is plotted
in Fig. 2. From the general form of the potential it is easy to
see that for positive ~c2, and all values of �, there is a local
minimum in the �-direction at � � 0. This suggests, and
further inspection confirms, that one may simply set � � 0
in the search for the minimum. This reduces the computa-
tion to the minimization of

 Fdw	�; 0
 � g�1
3 �� �vT�2�23

����
T
p
�3
Z 1
�1

d �z	��0�2 � ~U���
;

(4.15)

with

 

~U��� �
1

�2 sin2���� �
2 �v

3�3 sin3����

�
�v2 � 4�2 �v~c2

9�4 sin4����: (4.16)

Solutions to the equation of motion produced by varying
the functional (4.15) conserve the ‘‘energy’’ E � �@�z��

2 �
~U���, and the domain wall boundary conditions (4.8)
imply that E � 0. The free energy functional (4.15) is
invariant under the transformation ���z� ! 1� ����z�,
which is a combination of parity, charge conjugation, and
a Z�3� symmetry transformation. The minimal energy do-

main wall solution should have the same invariance, im-
plying that ���z � 0� � 1

2 . Hence, the appropriate solution
to the zero energy equation of motion @�z� � ~U���1=2 is
given by

 

Z ���z�

1=2
d� ~U����1=2 � �z; (4.17)

while the resulting domain wall tension is

 � � Fdw	�; 0
 � g�1
3 �4� �vT�2

�
1

3

����
T
p �

3 Z 1

0
d� ~U���1=2:

(4.18)

We will define the width �z of the domain wall as the ratio
of the first moment of the domain wall free energy density
divided by the tension,11 or

 �z �
�4� �v�2�13T�

3

g2
3�

Z 1
�1

d �zj �zj ~U����z��

�
2�4� �v�2�13T�

3

g2
3�

Z 1

1=2
d�1

~U��1�
1=2

�
Z �1

1=2
d�2

~U��2�
�1=2: (4.19)

None of the integrals (4.17), (4.18), and (4.19) are ana-
lytically tractable but evaluating them numerically, or in-
tegrating the equation of motion @�z� � ~U���1=2, for
particular values of ~c2 and �v is straightforward. The result-
ing tension and width may then be compared to the corre-
sponding results in the underlying Yang-Mills theory. The
(leading-order) domain wall free energy density in high-

-1 -0.5 0 0.5 1 1.5 2
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β
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0.4
0.6
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0
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0.04
0.06
0.08

0
0.2

0.4
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0.8

β
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U1 + U2

FIG. 2 (color online). The potential U1��;�� �U2��;�� plotted for the optimal values of �v and ~c2 given in Eq. (4.23). In the
contour plot on the left, minima correspond to the dark regions. A fundamental domain, representing all configurations of Z which are
inequivalent under conjugation by SU�3�, is given by the triangle with vertices at ��;�� � �0; 0�, (1, 0) and (1=2, 1=2)—which
represent the three distinct minima related by Z�3� transformations. The 3d plot on the right shows the region between the two minima
at ��;�� � �0; 0� and (1, 0).

11Alternative definitions of the domain wall width could, of
course, be chosen, but make little difference. For example,
defining the width from the second moment of the domain
wall free energy density changes the resulting optimal parame-
ters (4.23) by about 0.1% for �v and 2.6% for ~c2.
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temperature SU�3� Yang-Mills theory is [18]

 F YM�z� �
�2T4

3cosh4��z�z�=2�
: (4.20)

The resulting domain wall tension is

 �YM �
Z 1
�1

dzF YM�z� �
8�2

9

T3

g�T�
; (4.21)

and the (first moment) domain wall width equals

 �zYM � ��1
YM

Z 1
�1

dzjzjF YM�z� �
ln�4� � 1

2

g�T�T
: (4.22)

A straightforward calculation shows that the effective
theory reproduces the domain wall tension and width of the
underlying Yang-Mills theory when

 �v � 3:005 868; ~c2 � 0:118 914: (4.23)

[Note that this value for �v, almost equal to 3, makes the
minima of the potential lie almost exactly at T times an
element of Z�3�.] In Fig. 3 we plot ���z� for these values of
the parameters, and in Fig. 4 we compare the resulting
domain wall free energy density in the effective theory,
given by

 F eff�z� � �4� �vT2�2�13�
3 ~U����z�z���; (4.24)

with the full theory result (4.20). The agreement is rather
remarkable.

C. Discussion

Perturbative matching with EQCD, plus comparison of
domain wall properties, has determined (to leading order)
all parameters of the effective theory [leading to Eqs. (4.3),
(4.4), and (4.23)] except the two heavy masses m� and m	.
These heavy masses are arbitrary, as long as they are
parametrically of order T (or v), and satisfy m� >

1
3m	.

It may seem surprising that domain wall properties can
be used to fix parameters of the effective theory which

were left undetermined by the perturbative matching to
EQCD. Correct matching with EQCD should imply that
our effective theory reproduces all physics of hot Yang-
Mills theory on energy scales small compared to T. Fields
in the domain wall only vary on the Debye screening length
scale 	g�T�T
�1 which, for asymptotically high tempera-
tures, is parametrically large compared to T�1. So why
does matching to EQCD not yield an effective theory that
automatically reproduces the correct domain wall struc-
ture, without any further tuning of parameters?

The resolution of this puzzle involves the realization that
the inverse domain wall width is not the only relevant
energy scale in a domain wall. As seen in the fluctuation
contribution (4.12) to the tension, near the center of the
domain wall off diagonal components of the static gauge
field receive effective masses which are order v in the
effective theory, and order T in the underlying Yang-
Mills theory.12 Hence, the O�T� value of v, which deter-
mines the magnitude of the scalar field in our effective
theory, is a physically relevant scale in the domain wall.
Equivalently, the excess free energy density (4.24) near the
center of the domain wall isO�T4�, and thus comparable to
the O�T4� equilibrium free energy density due to fluctua-
tions on the scale of T.

The symmetry structure of the effective theory guaran-
tees that it will have domain walls interpolating between
different Z�3� minima, and the matching to EQCD guar-
antees that these solutions will have the correct exponential
decay, proportional to e�mDjzj, far from the domain wall.
However, the precise value of the domain wall tension, and
its width, are sensitive to physics on the scale of T. This is
why reproducing these observables in the effective theory
requires tuning of parameters beyond the perturbative
matching to EQCD. If one were to demand that the effec-
tive theory exactly reproduce all moments of the domain
wall energy density (4.20), then it would be necessary to
add an infinite number of additional higher dimension
operators to the effective theory, with appropriately tuned
coefficients. But from Fig. 4, it is evident that near perfect
agreement is achieved, without introducing any higher
dimension operators, just by suitably adjusting those low
energy parameters (v and ~c2) of our superrenormalizable
effective theory which were left undetermined by the
matching to EQCD.

-6 -4 -2 2 4 6

0.2

0.4

0.6

0.8

1

z̄

α (z̄ )

FIG. 3. The function ���z� plotted for the optimal values of �v
and ~c2 given in Eq. (4.23).

12An alternative way to see this is to consider the electric field
contribution to the Yang-Mills action, tr�D0Ai�

2 � tr�@0Ai �
ig	A0; Ai
�

2. A background value of A0 effectively shifts the
Matsubara frequencies from 2�nT to 2�nT minus the eigenval-
ues of gA0 (in the adjoint representation). Near the center of a
domain wall, the eigenvalues of A0 (in a gauge where A0 is
static) are of order �T=g—since this corresponds to an order
one change in the phase of the Wilson line �� eig�A0 .
Consequently, near the center of a domain wall there is no
separation of scales between the effective frequencies of the
static and nonstatic modes.
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To conclude this section, let us briefly review the differ-
ent sources of corrections to the Lagrangian and parame-
ters of the effective theory. These will become important if
one aims at next-to-leading-order (NLO) accuracy in the
determination of various physical quantities through the
effective theory, such as bulk equilibrium thermodynamics
or the Z�3� domain wall tension and width.

Integrating out the heavy fields, with vertices originating
from the hard potential V0�Z�, will produce corrections to
the scalar and gauge field kinetic terms. At first nontrivial
order, the former involves determining the leading momen-
tum dependence of the two-point graphs of Fig. 1(b), and
will yield an order g2 correction to the normalization of the
scalar kinetic term in the Lagrangian of Eq. (4.1).13 These
corrections amount to multiplicative wave function re-
normalizations for the fields in question.

Integrating out heavy fields at NLO will also generate
corrections to the values of the parameters in the light
theory (4.1), whose matching to EQCD will require
O�g2� relative adjustments to the couplings in the soft
potential V1�Z�. For the parameters ma and ~�, one-loop
contributions involving one soft vertex will produce O�g4�
and O�g6� corrections, respectively. For bulk thermody-
namics, the NLO correction to m2

a is more important than
the leading-order value of ~�.

Because the SU�3� � SU�3� invariance of V0 is not
respected by the soft potential V1, or by the coupling of
the scalar fields to the gauge field, integrating out the heavy
fields may also produce entirely new operators involving A
and a of dimension three or higher. The first such new

operators to appear include tr a6 and tr�a2�Dia�2�, and are
suppressed by g8

3.14

Ensuring that the domain wall properties of our theory
agree with corresponding results in full Yang-Mills theory
beyond leading order would, in addition to the above,
require extending the derivative expansion of the one-
loop fluctuation contribution Ffluc to next-to-leading order,
as well as evaluating the two-loop effective potential for Z.
The analogous NLO calculation in the full Yang-Mills
theory is discussed in more detail in Ref. [21]. The required
analysis in the effective theory should be very similar.

V. PHASE DIAGRAMS

A. EQCD

The lack of Z�3� center symmetry in EQCD has been a
primary motivation for the work presented in this paper.
The consequences of this explicit breaking of the Z�3�
symmetry are particularly apparent if one studies the phase
diagram of EQCD for arbitrary values of its parameters, as
done in Refs. [6,22]. One can form two dimensionless
ratios from the parameters (g2

3, m2
E, and �E) of EQCD,

conventionally chosen to be15 x � 1
2�E and y � m2

E=g
4
3.

Parameter values which result from matching to hot SU�3�
Yang-Mills theory correspond to the curve

 xy �
3

8�2 �
9

16�2 x�O�x2�; (5.1)

where the next-to-leading order correction, proportional to

1 2 3 4 5

0.2

0.4

0.6

0.8

1

z̄

(z̄ )/ π 2T 4
3

2 4 6 8

-0.01
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0.03
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z̄

∆ (z̄ ) / (z̄)

FIG. 4. Left: The domain wall free energy densities F ��z�, divided by 1
3�

2T4, in the effective theory and underlying Yang-Mills
theory, plotted versus �z � g�T�Tz. The two curves are nearly indistinguishable, differing by less than 1.5% at the center of the domain
wall. Right: The relative difference of the two curves, �F eff��z� �F YM��z��=F YM��z�.

13Terms involving powers of the external momentum, which
correspond to higher derivative terms in the Lagrangian, will be
proportional to inverse powers of the heavy masses and are thus
suppressed by additional factors of g when evaluated on mo-
mentum scales of order gT which are relevant in the effective
theory.

14For tr a6, one factor of g2
3 comes from the necessary inclusion

of one soft vertex from V1. For tr�a2�Dia�
2�, the multiplicative

coupling constant is of order g6
3, but the covariant derivatives

contribute additional factors of g3 —either explicitly or via
spatial derivatives applied to gT scale physics. The same is
true for other higher dimension operators involving derivatives.

15Our definition of �E differs from that of Ref. [6] by a factor of
2=g2

3.
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x, has been included. Increasing temperature corresponds
to decreasing values of x (proportional to g�T�2).

For sufficiently small values of m2
E (or y) one finds that

the A0 ! �A0 symmetry, which is a remnant of time-
reflection symmetry in the original 4-d theory, is sponta-
neously broken. Within the broken phase, there are two
degenerate equilibrium states, with opposite (and nonzero)
expectation values for trA3

0. The phase transition line sep-
arating the symmetric phase (with vanishing htrA3

0i) from
this symmetry-broken phase is first order for small values
of x and second order for large values, with a tricritical
point at x � 0:26. This is illustrated in Fig. 5. On the first
order part of the transition line there are three coexisting
extremal equilibrium states, distinguished by positive,
negative, and zero values of the order parameter htrA3

0i.
Near the first order transition line, these three equilib-

rium states with differing values of htrA3
0imay be regarded

as deformed remnants of the three equilibrium states of hot
SU�3� gauge theory (which are related by the center sym-
metry). But in EQCD, there is no threefold symmetry
relating these states, only a Z�2� symmetry interchanging
the two symmetry-broken states. The states with nonzero
htrA3

0i have, for example, energy densities and correlation
lengths which differ from the symmetric htrA3

0i�0 state
[6].

Only the symmetric phase corresponds to the physics of
the underlying hot Yang-Mills theory. However, as indi-
cated in Fig. 5, the dimensional reduction line (5.1) lies
inside the broken phase. This line intersects the phase

transition curve at x � 0 (or T � 1), but for any nonzero
value of x (or finite temperature T), matching with hot
Yang-Mills theory requires studying the symmetric phase
on the wrong side of the phase transition—that is, studying
a metastable ‘‘supercooled’’ phase. For sufficiently small
x, this is feasible. The lifetime of the metastable phase is so
long that transitions to the stable symmetry-broken phase
are never seen in practical numerical simulations. But this
is surely a less-than-satisfying feature of EQCD.

As one increases x (or lowers the temperature) in EQCD,
there is no region where a new ‘‘confining’’ phase appears,
and no quadruple point where four equilibrium states
coexist, analogous to the transition temperature Tc in real
SU�3� Yang-Mills theory, where the three spontaneously
broken Z�3� deconfined states and the Z�3� symmetric
confining state all coexist.

B. Z�3� invariant effective theory

Viewed as a superrenormalizable three-dimensional
field theory with no constraints on its coupling constants
(besides stability), our Z�3� invariant effective theory (3.6),
(3.7), (3.8), and (3.9) depends on a total of seven parame-
ters, which may be taken to be one overall scale v, the
ratios of the heavy masses to this scale (m2

�=v
2 and

m2
	=v

2), a dimensionless gauge coupling g2
3=v, and three

dimensionless ‘‘soft’’ couplings (~c1=v, ~c2, and ~c3v).
Exploring the resulting phase diagram via numerical simu-
lations, as all six dimensionless ratios are varied, is obvi-
ously impractical. However, it is inevitable that the
parameter space of this theory contains (i) a region in
which the Z�3� symmetry is spontaneously broken, and
(ii) a region in which the Z�3� symmetry is unbroken.16

There are two ways in which one can easily imagine
changing the parameters of the theory so as to move from
the symmetry-broken (deconfined, high-temperature)
phase to the unbroken (confining, low-temperature) phase.
If the heavy masses are varied and m� becomes less than
1
3m	, then the global minimum of the potential V0�Z�
switches from Z � v1 (times a cube root of unity) to the
symmetric point Z � 0.17 If the theory is kept weakly
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0.00
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xy

tricritical point

2nd order 

1st order 

pert. theory

broken symmetry phase

symmetric phase

pert. theory

4d matching line

FIG. 5. The phase diagram of EQCD (from Ref. [6]) parame-
trized by x � 1

2�E and y � m2
E=g

4
3. The phase with spontaneous

symmetry breaking of the A0 ! �A0 symmetry lies in the lower
left region of the diagram; the upper region is the unbroken
symmetry phase. The dotted ‘‘4d matching line’’ is the slice of
the phase diagram which satisfies relation (5.1) giving the result
of next-to-leading order matching with hot SU�3� Yang-Mills
theory.

16Gauge symmetries are, of course, never truly spontaneously
broken. In addition to the global Z�3� symmetry, our effective
theory is also invariant under Z! Z� (for real values of the
couplings). Hence, the global symmetry group is really Z�3� �
Z�2�. The Z�3� broken phase is a phase in which this Z�3� � Z�2�
global symmetry spontaneously breaks to a Z�2� subgroup. For
real values of the couplings, we do not believe that any other
symmetry-breaking pattern (such as Z�3� � Z�2� ! nothing) is
possible.

17Within a mean field approximation, m� and m	 are the
inverse correlation lengths for the real and imaginary parts of
the trace of the Wilson line, respectively. A ratio of three for
m	=m� at the point where the tree-level potential undergoes
symmetry restoration is in accord with the mean field analysis of
Dumitru and Pisarski [23] for a Z�3� symmetric model involving
only the trace of the Wilson line (with up to quartic interactions).
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coupled, so that g2
3=v� 1, then this tree-level (or mean

field) analysis is reliable, and the resulting transition will
generically be a strong first order transition.

Alternatively, if m� remains greater than 1
3m	 but the

theory becomes sufficiently strongly coupled, so that g2
3=v

is no longer small, then this should drive a fluctuation
induced phase transition in which the entropy-driven ef-
fects of fluctuations overwhelm the symmetry-breaking
influence of the potential. This is analogous to symmetry
restoration in nonlinear sigma models.

The confining/deconfining phase transition in SU�3�
Yang-Mills theory is known to be a relatively weak first
order transition, and near the transition fluctuations of the
Wilson line, or the static gauge field, are not weakly
coupled. Consequently, we expect that the second regime
of fluctuation induced phase transitions is the more appro-
priate model for SU�3� gauge theory near its confinement
transition.

An interesting two-dimensional slice of the parameter
space of our effective theory which would probe both of
the above regimes, as well as the portion of parameter
space which corresponds to asymptotically high-
temperature Yang-Mills theory, is given by varying g2

3=v
and m2

�=v
2 while fixing the soft couplings at the values

determined from the high-temperature matching in the
previous section, namely

 ~c 1=v�0:332683; ~c2�0:118914; ~c3v�0:228419;

(5.2)
and choosing m2

	=v2 to equal, say, unity. Within this two-
dimensional slice, there will be a region of unbroken Z�3�
symmetry, a region of spontaneously broken Z�3� symme-
try, and a phase transition line separating these regions.
The entire phase transition line is expected to be first order
(for the same reasons discussed in Ref. [19]), and every-
where on the transition line there will be four coexisting
equilibrium states—just as in the full SU�3� gauge theory.

Exploring this two-dimensional parameter space via
numerical simulations is surely feasible. As a warm-up,
one could focus on a single line with a fixed value m2

�=v
2,

and only vary g2
3=v. It would be very interesting to see if

the behavior of physical observables (such as the ratios of
correlation lengths in different symmetry channels) along
such a line closely mimics the behavior in hot SU�3� gauge
theory as the temperature varies from below Tc to far
above.

VI. CONCLUSION

We have formulated a three-dimensional Z�3�-invariant
effective theory which can reproduce properties of hot
SU�3� Yang-Mills theory both at asymptotically high tem-
peratures, and near the confinement/deconfinement transi-
tion. Lowest-order perturbative matching plus comparison
of domain wall properties was used to fix the parameters of
the effective theory at high temperatures. The form of the

effective theory ensures that as one increases the dimen-
sionless gauge coupling g2

3=v (which increases the size of
fluctuations), or decreases the heavy mass m� (which
changes the shape of the tree-level potential), the theory
will undergo a first order phase transition from a decon-
fined phase with spontaneously broken Z�3� symmetry to a
confining phase with unbroken Z�3� symmetry. This repro-
duces, by design, the qualitative behavior of hot SU�3�
Yang-Mills theory near Tc. Numerical simulations of the
effective theory will be needed to determine the tuning of
parameters that makes the effective theory, near its phase
transition, most closely reproduce quantitative properties
of hot Yang-Mills theory near the confinement transition.
As discussed in the previous section, just varying g2

3=v
while holding the other parameters fixed at the values
determined by high-temperature matching will give a the-
ory that reproduces the correct high-temperature behavior
at small gauge coupling, together with a fluctuation in-
duced phase transition at a critical value of g2

3=v. This, we
hope, will be an accurate effective theory for quarkless
QCD for temperatures ranging from near Tc to asymptoti-
cally large. We look forward to numerical simulations
testing this hypothesis.18

In the case of a positive result, it will be interesting to
investigate generalizations of our effective theory to other
values of Nc, or to QCD with dynamical quarks. For
sufficiently heavy quarks, it is known that a weakly first
order finite-temperature phase transition persists, even
though fundamental representation quarks break the Z�3�
center symmetry and no local order parameter for the
transition is available. Therefore, dynamical quarks may
be viewed as adding soft Z�3� symmetry-breaking terms to
the effective theory. Such terms will lift the degeneracy of
the minima of the potential, leaving the minimum with a
real expectation value for the trace of the Wilson line as the
unique global minimum. Matching, at high temperature, to
EQCD with a nonzero number of quark flavors should be
straightforward. The resulting effective theory should cap-
ture some of the Z�3� physics postulated to be important in
the full theory even at nonzero Nf [8]. Pursuing this gen-
eralization will be left for future work.
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APPENDIX A: MINIMIZING THE POTENTIAL

The variation of the hard potential V0�Z�, defined in
Eq. (3.4), is

18Such simulations are currently underway [24].
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 �V0 � tr	�Zfc1Z
y � c2Z

�1 detZ� 2c3Z
yZZyg
 � H:c:

(A1)

and this vanishes when Z satisfies

 c1Z
yZ� c2 detZ� 2c3�Z

yZ�2 � 0: (A2)

Subtracting this equation from its Hermitian conjugate
shows that detZ must be real at extrema. For c2 < 0, which
we have assumed, one may see directly from the potential
(3.8) that the minimum of V0�Z� will occur for matrices
with positive determinant.

Let �2 denote a (positive, real) eigenvalue of the
positive-definite matrix ZyZ. To satisfy relation (A2),
these eigenvalues must obey

 2c3�4 � c1�2 � c2 detZ � 0: (A3)

For c2 < 0< c3, and a positive determinant of Z, this has a
unique positive root,

 �2 �
�c1 �

����������������������������������
c2

1 � 8c2c3 detZ
q

4c3
: (A4)

Therefore, all eigenvalues of ZyZ are equal, implying that
this matrix is proportional to the unit matrix. Consequently,
Z must equal a special unitary matrix times �. So detZ �

�3 and condition (A4) becomes �2 � 	�c1 �����������������������������
c2

1 � 8c2c3�3
q


=�4c3�. The solutions of this equation are
� � 0 and � � �
 where

 �
 �
�c2 


�����������������������
c2

2 � 8c1c3

q
4c3

: (A5)

These nonzero roots are real if c2
2 > 8c1c3. Evaluating V0

at its three possible extrema, one finds that the root ��
corresponds to a global minimum provided c2 < 0 and
c2

2 > 9c1c3. Assuming c2 satisfies these conditions,
V0�Z� is minimized when Z � ��� for arbitrary � 2
SU�3�. When c1 > 0 there is a local minimum at Z � 0
and the condition c2

2 > 9c1c3 implies that c2 must be less
than �3

���������
c1c3
p

. But if c1 < 0 then Z � 0 is a local maxi-
mum and c2 must merely be negative. If c1 > 0 and
8c1c3 < c2

2 < 9c1c3, then Z � 0 is the global minimum
of the potential and Z � ��� is only a local minimum.

To analyze the soft potential V1�Z�, given in Eq. (3.9), it
is convenient to insert the singular value decomposition
M � LmRy. Here L and R are unitary matrices, while m is
diagonal, real, and positive. Only the cubic terms in V1�Z�
depend on the unitary matrices L andR, and it is easy to see
that ~c2�tr	M3
 � tr	�My�3
� is minimized for L � R if ~c2 <
0, or L � �R if ~c2 > 0. Therefore, it is sufficient to
minimize V1�Z� for M a diagonal real matrix. This gives

 V1�Z� �
X
i

�~c1�
2
i � 2~c2�

3
i � ~c3�

4
i �; (A6)

where f�ig are the real eigenvalues ofM. Solving for zeros
of this expression, one finds that V1�Z� vanishes only at
M � 0, and is strictly positive for all nonzero M, provided
~c1 and ~c3 are positive and ~c1~c3 > ~c2

2, which we assume.
Nontrivial minima of the hard potential V0�Z� [i.e.,

Z=�� 2 SU�3�] coincide with minima of the soft potential
V1�Z� [i.e., configurations satisfying Z / 1 so thatM � 0]
when Z equals �� times an element of the center of SU�3�.
So the global minima of the complete potential V0�Z� �
g2

3V1�Z� (when c2
2 > 9c1c3) lie at

 Z � e2�in=3��1; n 2 f0; 1; 2g: (A7)

Using the decomposition (3.12) of Z and the resulting
relations (3.15) between the coefficients in V0�Z� and the
tree-level heavy masses, one may translate the above con-
ditions on the coefficients into equivalent conditions onm�

and m	 (which are the tree-level masses for fluctuations in
the magnitude and phase of trZ, respectively). The results
may be summarized as follows.

(1) If m2
	 > 0 and m2

	 � 3m2
� > 0 then c2 < 0< c3.

These conditions are required so that V0�Z� is
bounded below, and favors matrices with positive
determinant.

(2) Ifm2
� >m2

	=3 then c1 is negative and there is a local
maximum at Z � 0 and three degenerate global
minima at Z � ��e2�in=31.

(3) If m2
	=9<m2

� < m2
	=3 then c1 > 0 and c2 <

�3
���������
c1c3
p

, implying that there is a local minimum
at Z � 0 and three degenerate global minima at
Z � ��e

2�in=31.
(4) If 0<m2

� < m2
	=9 then c1 > 0 and �3

���������
c1c3
p

<
c2 <�

������������
8c1c3

p
, in which case there is a global mini-

mum at Z � 0 and three degenerate local minima at
Z � ��e

2�in=31.

APPENDIX B: EXPANSION IN SHIFTED FIELDS

Expressing the potential (3.7) in terms of the shifted
fields (3.12) which describe fluctuations away from the
minimum gives

 g�2
3 V�Z� � Vmin �

1
2m

2
��

2 � 1
2m

2
		2 �m2

h tr�h2�

� Vint��;	; h; a�; (B1)

with

 Vmin �
1

54�9c1 � vc2�v
2=g2

3; (B2)

and
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Vint��;	; h; a� � �
g3���
6
p
v

��
3c1 �

2

3
vc2

�
�3 � �3c1 � 2vc2��	2 � �6c1 � vc2�� tr�a2� � �18c1 � 7vc2�� tr�h2�

� �12c1 � 2vc2�	 tr�ah� �
���
6
p
�6c1 � 4vc2� tr�a

2h� �
���
6
p �

6c1 �
4

3
vc2

�
tr�h3�

�

�
g2

3

v2 �3c1 � vc2�

�
1

8
��2 � 	2�2 �

1

2
�2 tr�a2 � 3h2� � 2�	 tr�ah� �

1

2
	2 tr�3a2 � h2�

� 2� tr�a2h� h3� � 2	 tr�a3 � ah2� �
3

2
tr�a4 � 4a2h2 � 2�ah�2 � h4�

�
� g2

3f~c1 tr�a2 � h2�g

� g3
3f2~c2 tr�3a2h� h3�g � g4

3f~c3 tr�a4 � 4a2h2 � 2�ah�2 � h4�g; (B3)

Here c3 has been expressed in terms of v using Eq. (3.11).
The tree-level masses are

 m2
� � �2c1 �

1
3vc2; m2

	 � �vc2;

m2
h � �2c1 �

4
3vc2:

(B4)

Expressed in terms of these masses, Vmin � �
v2

108 �9m
2
� �

m2
	�=g2

3. This shows directly that m2
� >

1
9m

2
	 is necessary

for the global minima to lie at the nontrivial Z�3� extrema.
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[4] M. Laine and M. Vepsäläinen, J. High Energy Phys. 02

(2004) 004.
[5] K. Kajantie, M. Laine, K. Rummukainen, and Y. Schröder,
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