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Complete one-loop parametrization of the linear sigma model is performed and the phase boundary
between first order and crossover transition regions of the m� �mK-plane is determined using the
optimized perturbation theory as a resummation tool of perturbative series. Away from the physical point
the parameters of the model were determined by making use of chiral perturbation theory. Along the
diagonal m� � mK of the mass plane we estimate mc

� � 110� 20 MeV. The location of the tricritical
point on the m� � 0 axis is estimated in the interval mTCP

K 2 �1700 1850� MeV.
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I. INTRODUCTION

In an attempt to understand the restoration of chiral and
axial U�1� symmetries, chiral effective models are actively
investigated (see e.g. [1–3] for some recent works).
Effective models indicate a very rich structure for the
strongly interacting matter as function of quark masses
and various chemical potentials [4,5]. The effective treat-
ment represents a complementary approach to the lattice
QCD field theory which, however based on first principles,
has difficulties mainly related to the computational power
in going towards the chiral limit mu � md � ms � 0.
These effective models are constructed to share the same
global symmetries as the massless QCD. It is expected that
the lowermu,md,ms quark masses are (or alternativelym�
and mK) the better they work. Universal arguments [6]
predict a first order phase transition for the chiral limit.
Lattice simulations with staggered quarks with a pion to
rho mass ratio tuned to its physical value demonstrate a
crossover type transition [7].

In QCD the critical line separating first order transitions
from the crossover region in the mu;d �ms-plane is not
precisely mapped because of the difficulties of simulating
dynamical fermions. There are several lattice studies with
degenerate quarks mu � md � ms, which show that the
value of the pion mass on the boundary between the cross-
over and first order phase transitions drops substantially
when finer lattices and improved actions are used from the
initial estimates ofmc

� � 290 MeV [8] ormc
� � 270 MeV

[9] to mc
� � 67�18� MeV [10]. In view of such low values

one hopes that the boundary of the phase transition can be
investigated reliably using effective chiral models.

Although in principle it is simpler to solve an effective
model than QCD, an exact solution cannot be given.

Finding a good parametrization and an adequate method
of approximation are the key issues when dealing with
them. Attempts to physically parametrize the linear sigma
model (L�M) date back to the early 70’s when in a series
of papers Haymaker and collaborators performed it at tree-
level and started to calculate one-loop corrections at zero
temperature (see [11] and references therein). Recently
other parametrizations were proposed in the literature
[12,13] (see also [14]). It turned out that at tree-level it is
not possible to fix the parametrization of the model using
only the well-known pseudoscalar masses, information is
also needed from the less known scalar sector. Moreover,
the consequence of performing a tree-level parametrization
is that one omits the effect of zero temperature vacuum
fluctuations which logarithmically depend on the renor-
malization scale. At finite temperature in the broken sym-
metry phase, the omitted terms have an additional implicit
dependence on the temperature through the masses which
depend on the order parameter. If the effective model is
solved in an approximation which is not renormalization
scale invariant, then the renormalization scale appears as
any other parameter of the theory and it has to be included
in the process of parametrization in which some quantities
calculated at quantum level are matched against their
experimentally measured physical values. The effect of
the renormalization scale turns out to be both quantita-
tively and qualitatively important. It can have an effect on
the pole structure of the scalar Green’s function in the
complex plane, as it happened in Ref. [15]. It influences
the temperature dependence of the vacuum expectation
value and it can happen that above some temperature there
is no solution to the equation of state (see e. g. [16]). The
renormalization scale can even change the order of the
phase transition. All this reflects the approximate nature
of the solution. A good idea is to choose a range of the
renormalization scale where its variation affects the other
parameters of the theory and the physical quantities less
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(e.g. trying to achieve approximate renormalization scale
independence).

Because of the effects of the renormalization scale men-
tioned above, it seems customary in the literature to solve
the model in a statistical mechanics inspired finite tem-
perature quasiparticle approximation by omitting the zero
temperature quantum fluctuations and ignoring the issue of
the renormalization. Recently much effort has been put in
the renormalization of self-consistent resummation
schemes of finite temperature quantum field theories
[17–21]. In view of these results it is important to solve
the renormalized version of the model. In the present paper
we want to go beyond the tree-level treatment of the model
and its quasiparticle thermodynamics as it was treated in
[14], and investigate the challenges of solving the renor-
malized version of the model by taking into account the
logarithmic corrections. In particular, we want to investi-
gate the extent they influence the location of the phase
boundary in the pion-kaon mass plane.

In Sec. II we present the one-loop parametrization of the
model in the m� �mK-plane. It turned out that it is rather
hard to find a unique parametrization which works in the
relevant region. The thermodynamics and the influence of
the logarithmic terms are discussed at the physical point in
Sec. III. In Sec. IV we describe our results on the phase
boundary and we conclude in Sec. V.

II. PARAMETRIZATION OF THE MODEL AT ONE-
LOOP LEVEL

The Lagrangian of the SUL�3� � SUR�3� symmetric
linear sigma model with explicit symmetry breaking terms
is given by

 

L�M� �
1

2
Tr�@�M

y@�M��2MyM� � f1�Tr�MyM��2

� f2 Tr�MyM�2 � g�det�M� � det�My��

� �x�x � �y�y; (1)

where the mixing sector is written in the nonstrange (x)-
strange (y) basis instead of the original 0–8 basis, by
performing an orthogonal transformation on the fields as
in [14] (see Appendix A). The complex 3� 3 matrix M
defined by the scalar (�) and pseudoscalar (�) fields can be
written as

 M �
1���
2
p

X7

i�1

��i � i�i��i �
1���
2
p diag��x � i�x; �x

� i�x;
���
2
p
��y � i�y��; (2)

where �i: i � 1 . . . 7 are the Gell-Mann matrices. Isospin
breaking is not considered, therefore in the broken phase
only the scalar fields �x and �y have nonzero expectation
values: x :� h�xi, y :� h�yi. After shifting the fields in the
Lagrangian by their expectation values with a little bit of
algebra one can perform the traces. Details can be found in
[11,13]. Requiring that the sum of terms linear in the
fluctuations vanishes we obtain two equations of state.
They are given explicitly in Sec. III. The coefficients of
the quadratic terms are the tree-level masses (see Table I),
while the third and fourth order terms give the three- and
four-point interaction vertices.

In what follows, a set of nonlinear one-loop equations
will be given which determines at T � 0 the 8 parameters
of the Lagrangian: the couplings �, f1, f2, g, the conden-
sates x, y and the external fields �x, �y. Many ways of
selecting these equations can be envisaged, see [11] for
alternatives. We use as input the low lying pseudoscalar
mass spectrum, namely, the pion, kaon and eta meson
masses and the decay constants of the pion and kaon
because they are the best known theoretically.

In the broken phase a resummation is needed, in order to
avoid the appearance of negative mass squares in the finite
temperature calculations of one-loop quantities. This can
be done for instance using the Optimized Perturbation
Theory (OPT) of Chiku and Hatsuda [16]. In the OPT
the mass parameter ��2 of the Lagrangian, which in the
broken phase could be negative, is replaced with an effec-
tive (temperature-dependent) mass parameter m2 which is
determined using the criterion of fastest apparent conver-
gence (FAC). The mass term of the Lagrangian reads:

 Lmass �
1

2
m2 TrMyM�

1

2
��2 �m2�TrMyM

	
1

2
m2 TrMyM�

1

2
�m2 TrMyM; (3)

where the finite counterterm �m2 is taken into account first
at one-loop level.

This resummation method replaces��2 by the effective
mass square m2 in the tree-level masses (see Table I), and
preserves all the perturbative relations upon which

TABLE I. The squared masses of the (pseudo)scalar nonet appear in the (first) second column. The last three rows represent the
mixing sectors. They can be written in the conventional basis using the formulas of Appendix A.

m2
� � m2 � 2�2f1 � f2�x

2 � 4f1y
2 � 2gy m2

a0
� m2 � 2�2f1 � 3f2�x

2 � 4f1y
2 � 2gy

m2
K � m2 � 2�2f1 � f2��x

2 � y2� � 2f2y
2 �

���
2
p
x�2f2y� g� m2

� � m2 � 2�2f1 � f2��x
2 � y2� � 2f2y

2 �
���
2
p
x�2f2y� g�

m2
�xx � m2 � 2�2f1 � f2�x

2 � 4f1y
2 � 2gy m2

�xx � m2 � 6�2f1 � f2�x
2 � 4f1y

2 � 2gy
m2
�yy � m2 � 4f1x

2 � 4�f1 � f2�y
2 m2

�yy � m2 � 4f1x
2 � 12�f1 � f2�y

2

m2
�xy � �2gx m2

�xy � 8f1xy� 2gx
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Goldstone’s theorem relies [16]. The renormalization is
achieved both in the symmetric and the broken phase by
the following counterterms

 ��2 �
�5f1 � 3f2��

2

�2 �
�5f1 � 3f2�m

2 � g2

�2 ln
�2

l2
;

(4)

 �g �
3g�f1 � f2�

2�2 ln
�2

l2
; (5)

 �f1 �
13f2

1 � 12f1f2 � 3f2
2

2�2 ln
�2

l2
; (6)

 �f2 �
3f1f2 � 3f2

2

�2 ln
�2

l2
; (7)

where � is the 3d regularization cutoff, and l is the
renormalization scale. Note that only the mass counterterm
differs from its standard expression [11]. In the present
form this counterterm is temperature-dependent through
the effective mass, but this temperature dependence is
canceled by higher-loop terms [16,22]. In what follows,
all quantities and equations are renormalized without any
change in the notations.

The above mentioned FAC criterion, which determines
the effective mass square m2, is realized in the present case
by the requirement that the pole and the residue of the one-
loop pion propagator

 D��p� �
iZ�1

�

p2 �m2
� � ���p2; mi; l�

; (8)

stay equal to their tree-level values. Here we anticipated
that we also need a finite wave function renormalization in

order to make the residuum equal to 1, and rescaled the
pion fields as �! Z��1=2�

� �.
According to this FAC criterion the inverse of the finite

wave function renormalization constant is

 Z�1
� :� 1�

@���p2; mi; l�

@p2

��������p2�M2
�

: (9)

The one-loop pion pole mass
 

M2
� � ��

2 � �4f1 � 2f2�x
2 � 4f1y

2

� 2gy� Ref���p2 � M2
�;mi; l�g (10)

has to be equal to its tree-level value (M��
! m�).

Therefore, using the expression of the tree-level pion
mass of Table I, the following ‘‘gap’’ equation can be
obtained for the effective mass:

 m2 � ��2 � Ref���p2 � m2
�;mi�m2�; l�g; (11)

where the m2-dependence of the self-energy (through the
tree-level masses) is explicitly shown. The different con-
tributions to the self-energy are depicted in Fig. 1.

The effective mass can be replaced by the pion mass by
expressing it from its tree-level formula. Then (11) can be
interpreted as a zero temperature gap equation for the pion
mass:
 

m2
� � ��2 � �4f1 � 2f2�x2 � 4f1y2

� 2gy� Ref���p2 � m2
�;mi�m��; l�g; (12)

where the tree masses of all mesons are expressed through
the pion mass. A similar gap equation will be used in the
thermodynamical calculations for the temperature depen-
dence of the pion mass. At T � 0, the task is ‘‘reversed’’:
the pion mass is known and (12) belongs to the set of

FIG. 1. The physical content of the one-loop pseudoscalar self-energies.
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equations, which determines the parameters. We choose to
express the effective mass m2 from the tree-level mass
formula of the pion because the pion has the smallest
mass, and positive solutions of (12) ensure the positiveness
of all the other masses. To fix the remaining parameters we
use the kaon and eta masses, the relations of the Partially
Conserved Axial-Vector Current (PCAC) for the pion and
kaon at one-loop order, and the two equations of state.

The one-loop kaon propagator is the following:

 DK�p� �
iZ�1

K

p2 �m2
K ��K�p2; mi; l�

: (13)

Z�1
K and the one-loop pole mass of the kaon MK can be

calculated similarly as in the case of the pion:

 Z�1
K :� 1�

@�K�p2; mi; l�

@p2

��������p2�M2
K

; (14)

and
 

M2
K � ��

2 � 2�2f1 � f2��x2 � y2� � 2f2y2

�
���
2
p
x�2f2y� g� � Ref�K�p2 � M2

K;mi; l�g: (15)

The description of the � and �0 mesons is slightly more
complicated because of the mixing in the x� y sector (0–8
in the conventional basis). The propagator is a 2� 2
matrix, and pole masses are defined as the real part of
the solutions of the following equations

 det
p2 �m2

�xx � ��xx�p
2; mi; l� �m2

�xy � ��xy�p
2; mi; l�

�m2
�xy ���xy�p

2; mi; l� p2 �m2
�yy ���yy�p

2; mi; l�

 !��������p2�M2
�;M�0

� 0: (16)

This yields two equations for the mass eigenvalues M�, M�0 :
 

M2
� �

1

2
Refm2

�xx � ��xx�p
2 � M2

�;mi; l� �m
2
�yy � ��yy�p

2 � M2
�;mi; l�

�
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�m2

�xx ���xx�p
2 � M2

�;mi; l� �m2
�yy � ��yy�p

2 � M2
�;mi; l��2 � 4�m2

�xy � ��xy�p
2 � M2

�;mi; l��2
q

g; (17)

 

M2
�0 �

1

2
Refm2

�xx � ��xx�p
2 � M2

�0 ; mi; l� �m2
�yy � ��yy�p

2 � M2
�0 ; mi; l�

�
��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�m2

�xx � ��xx�p
2 � M2

�0 ; mi; l� �m
2
�yy � ��yy�p

2 � M2
�0 ; mi; l��

2 � 4�m2
�xy � ��xy�p

2 � M2
�0 ; mi; l��

2
q

g: (18)

The definitions (10), (15), (17), and (18) of the pole masses
give the correct one-loop masses only when the self-energy
is not complex. We note that if the tree-level masses are
close to their experimental values, then by looking at the
various thresholds of the T � 0 self-energy contributions
of pion and kaon in Fig. 1, one can recognize that they have
no imaginary part for p2 � m2

� and p2 � m2
K, respectively.

This is also true in the case of the � self-energy. It turns out
that the �0 self-energy has an imaginary part at the pole-
mass determined as the zero of the real part of the self-
energy except the narrow range of 1820 MeV< l <
1880 MeV. For this reason we decided not to include the
one-loop equation forM�0 into the set of equations used for
the parametrization.1 We make up for the missing equation
by extending FAC criterion to the one-loop kaon mass too.
This condition reads:

 M2
K�

!
m2
K � m2

� � 2gy� 4f2y2 �
���
2
p
x�2f2y� g�: (19)

Two more equations are provided by the one-loop PCAC
relations which according to [11] reads as

 f� � Z��1=2�
�

�iD�1
� �p � 0�

M2
�

x; (20)

 fK � Z��1=2�
K

�iD�1
K �p � 0�

M2
K

x�
���
2
p
y

2
: (21)

As shown in Appendix C, these equations can be rewritten
in an explicitly renormalization scale-independent form.

Finally, the last two parameters, the two symmetry
breaking external fields �x and �y are determined by the
one-loop equations of state, with the help of zero tempera-
ture chiral Ward identities (Appendix B):

 �x � Z�1
� ��iD�1

� �p � 0��x; (22)

 

�y � Z�1
K ��iD

�1
K �p � 0��

�
x���
2
p � y

�

� Z�1
� ��iD�1

� �p � 0��
x���
2
p : (23)

One can notice that, since OPT preserves Ward identities
at tree and at one-loop level as well, the above parametri-
zation, in which the tree-level masses of pion and kaon

1Had we included the one-loop equation for M0� we would
have found solutions for the set of equations used for parame-
trization only for values of m0� which differ at least by 2–5%
from the physical value, and in this way we would have intro-
duced unwanted additional uncertainties in the process of pa-
rametrization even at the ‘‘physical point’’.
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equal the one-loop masses, ensures at zero temperature the
validity of Goldstone’s theorem for both pion and kaon.

A. Parametrization at the physical point

The parameters were determined as follows. From (10)
and (19) one can express �2 and g, respectively. Next,
from the system of 4 nonlinear Eq. (15), (17), (20), and
(21) one can numerically determine f1, f2, x, and y as
functions of the renormalization scale l. Going back to (10)
and (19) one can compute �2 and g, respectively.
Substituting these parameters into (22) and (23) one can
determine �x and �y. Unlike the tree-level parametrization
case [14], now all scalar masses are predicted.

The numerical solution for different renormalization
scales l is presented in Fig. 2(a) for the physical point,
where m� � 138 MeV, mK � 495:6 MeV, m� �

547:8 MeV, f� � 93 MeV, and fK � 113 MeV. In figure
Fig. 2(b) one can see the renormalization scale (l) depen-
dence of the nonstrange (x) and strange (y) vacuum expec-
tation values and of the finite wave function
renormalization constants Z� and ZK. They have a plateau
for l < 1400 MeV, and the tree-level m�0 [see Fig. 2(c)] is
the closest to its physical value in the region l 2
�1000 1400� MeV, where the variation of the tree-level
scalar masses [see Fig. 2(d)] is the mildest too. We decided
to use in our thermodynamical investigation this range of
the renormalization scale in which the tree-level masses
entering into the propagators of Fig. 1 are reasonably close
to their experimentally measured values. In Fig. 2(c) and
2(d) we present an estimation of the predicted one-loop
pole-masses based on the real parts of the corresponding

self-energies. This is a good approximation in the case of
�0, a0 and f0 since the zeros of the inverse propagators
correlate well with the location of the well-defined peak in
the corresponding spectral functions. The one-loop mass
Mf0

, which is not shown in the figure, has a rather large
value in the present range of the renormalization scale
(decreasing from Mf0

� 2000 MeV for l � 1000 MeV to
Mf0
� 1400 MeV for l � 1400 MeV). The shapes of the

spectral functions of � and � (see Fig. 2 for 	�) are more
complicated, they have a threshold dominated peak with
large width, and are very sensitive to the renormalization
scale. In this case, it would be more appropriate to define
the mass and width of a decaying particle as the real and
imaginary part of a complex pole. In theO�N�model in the
large N approximation [23], this continuation into the
second Riemann sheet was performed in the sigma channel
and the poles of the propagators were determined. In this
model the continuation of the propagators into the complex
plane would be more difficult due to the appearance of
many decay thresholds and is beyond the scope of the
present investigation.

B. Parametrization in the m� �mK-plane

Since we are interested in the phase boundary on the
m� �mK-plane, we have to take into account the variation
of the parameters with m� and mK. A method for the
parametrization away from the physical point was pro-
posed in [14], which relies on the formulas provided by
the Chiral Perturbation Theory (ChPT) [24]. Because our
present parametrization does not use the �0 meson, we
make use of the SU�3� ChPT describing the chiral dynam-
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FIG. 2. The renormalization scale dependence of various quantities at the physical point: the parameters (a), the nonstrange (x) and
strange (y) vacuum expectation values and the finite wave function renormalization constants Z� and ZK (b), the pseudoscalar masses
(c), and the scalar masses (d). m denotes the tree-level mass while M the one-loop pole-mass.
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ics of the pseudoscalar octet. In the large Nc limit, the
formulas for the pion and kaon mass dependence of the
decay constants and of the � mass up to O�1=f2� read as
[25]:

 f� � f
�
1� 4L5

m2
�

f2

�
; (24)

 fK � f
�
1� 4L5

m2
K

f2

�
; (25)

 m2
� �

4m2
K �m

2
�

3
�

32

3
�2L8 � L5�

�m2
K �m

2
��

2

f2 ; (26)

where L5 and L8 are two low energy constants and f is the
decay constant in the chiral limit. All the parameters of the
large Nc limit of the SU�3� ChPT can be determined at the
physical point from the equations above. Their values,
L5 � 2:0152 
 10�3, L8 � 8:472 
 10�4 and f �
91:32 MeV, are fixed for all values of m� and mK.

For low values of m� and mK the sensitivity to the
renormalization scale of the L�M is bigger than the un-
certainties coming from the omission of the chiral loga-
rithms. As an effect of these chiral logarithms, for large
values of mK, the formula of the SU�3� ChPT yields a
decreasing value for m� for increasing mK. If we use (26),
the same behavior occurs at a larger value, which is around
mK � 1300 MeV. This is nonphysical as both the kaon
and the eta particles have to decouple in order to arrive at
the O(4) model for mK ! 1. This shows the failure of the
ChPT at high values of the kaon mass. In view of the bad
behavior of m� determined using large Nc ChPT, we used
as an alternative the following mass formula by Veneziano
[26]:

 m2
� � m2

K �
1

2
�m2

�0 �
1

2

�

�����������������������������������������������������������������������������
2m2

K � 2m2
� �

1

3
�m2

�0

�
2
�

8

9
�m4

�0

s
: (27)

�m2
�0 is the nonperturbative gluonic mass contribution in

the singlet channel of the mixing �� �0 sector, related to
the axial U�1� dynamics. Using the values of the masses at
the physical point in (27) one can fix the value of the extra
mass contribution: �m2

�0 � 2:3 GeV2. This parametriza-
tion gives for m� values which are almost identical to the
values coming from the formula of ChPT in the large Nc
limit, up to values ofmK for which ChPT breaks down. We
note, that in the original paper �m2

�0 was determined using
the trace of the 2� 2 matrix of the mixing �� �0 sector.
We indulged in modifying the procedure in order to make
contact with the ChPT in the largeNc limit, asm� obtained
form (27) with the original parametrization is always
smaller than the value given by the large Nc ChPT.

The continuation onto the m� �mK-plane of f�, fK,
and m�, based on the formulas of this subsection, allow us
to determine the parameters as described in II A in a wide
region of the mass plane, except for high values ofmK, near
the m� � 0 axis.

III. COMPLETE 1-LOOP THERMODYNAMICS OF
THE L�M

With the aim of determining the order of the phase
transition in the pion-kaon mass plane we have to monitor
the order parameters as functions of temperature. They are
obtained from a set of three equations: two equations of
state for x and y and a gap equation for the pion mass. The
temperature dependence of the order parameters at finite T
can be obtained from the equations of state:
 

��x �m
2x� 2gxy� 4f1xy

2 � �4f1 � 2f2�x
3

�
X
i

Jitxi I�l;mi�T�; T� � �m2x � 0; (28)

 

��y �m2y� gx2 � 4f1x2y� 4�f1 � f2�y3

�
X
i

Jit
y
i I�l;mi�T�; T� � �m2y � 0; (29)

where in the tadpole integral I�l; mi�T�; T� we explicitly
displayed the implicit temperature dependence of the tree-
level masses, expressed with the pion mass determined by
the gap equation
 

m2
� � ��

2 � �4f1 � 2f2�x
2 � 4f1y

2 � 2gy

� Re���p
2 � m2

�;mi�m��; l�

� Re�T
��! � 0; mi�m���: (30)

The sum goes over all mass eigenstate meson fields with
isospin multiplicity factor Ji: J�;a0

� 3, JK;� � 4, and
J�;�0;�;f0

� 1. The coefficients txi and tyi appearing in (28)
and (29) are listed in Appendix C of [14]. The standard
one-loop integrals appearing in the formulas above can be
found for instance in [16]. In the present study we use the
one-loop bubble integrals appearing in (30) for jpj � 0,
corresponding to particles at rest. As in zero temperature
case, at finite temperature OPT guarantees through the gap
equation the validity of Goldstone’s theorem for the pion.

Following Ref. [16], Re�T
�, the the real part of the

thermal part of the self-energy, is taken not on the mass-
shell, but instead at ! � 0. This is done because above a
given temperature �T

��! � m��T�; 0� becomes complex,
and the real solution of the gap equation ceases to exist
(actually it becomes complex for any ! � 0).2 At the
physical mass-point this temperature is typically below
the value of the pseudocritical temperature, invalidating
the study of the phase transition. The imaginary part is

2We will further comment on this in the Conclusion where we
discuss the effect an alternative gap equation has on the result.
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produced by one-loop bubble integrals where two unequal
masses m1 and m2 appear, when the relation ! � m� <
jm1 �m2j is satisfied. It has the consequence that we can
not regard the pion gap equation as the equation determin-
ing the ‘‘true’’ one-loop mass of the pion. Because of the
imaginary part of the self-energy the most adequate way of
determining the pion mass would be to look for a complex
pole of the pion propagator. Still, in the present work we
content ourselves with the study of the spectral function in
the pion channel, which, as we will see, in certain tem-
perature ranges also provides information on the pion
mass.

A. Influence of the logarithmic terms

In order to estimate the influence of the logarithmic
terms on the solution of the equations of state we per-
formed the following check. We took the parameters de-

termined with the one-loop parametrization presented in
Sec. II, and modified the value of�2 such as to incorporate
the zero temperature logarithmic terms. Then, at finite
temperature, we solved the gap equation and the two
equations of state without taking into account the logarith-
mic terms, which implicitly depend on the temperature
through the masses. The difference between these expec-
tation values and the ones calculated with the logarithmic
terms (and with the original, unmodified value of �2) is
only due to the temperature dependence of the logarithmic
terms. This can be seen in Fig. 3: without the logarithmic
terms the pseudocritical temperature is lower by about
20%. The variation of strange condensate with the tem-
perature is significantly different in the two cases. We
notice that at high temperature the solution obtained with
logarithmic term included ceases to exist, as was also
observed in [16] and within the Hartree approximation of
the CJT-formalism [27] in [28]. This is a nonphysical
phenomenon, it happens before the restoration of chiral
symmetry completes. We consider the solution reliable up
to temperature values which are below the turning point in
x and y.

B. The solution at the physical point

At the physical point and in the investigated range of the
renormalization scale, the behavior of the nonstrange order
parameter shows a smooth restoration of the SU�2� chiral
symmetry. The pseudocritical temperature moderately de-
pends on the renormalization scale. The strange order
parameter varies less and it is approximately scale-
independent until the solution is reliable, see the left panel
of Fig. 4. The right panel shows that the tree-level SU�2�
mass partners tend towards degeneracy as the temperature
increases. Unfortunately the solution falls dead before the
restoration of the complete SU�3� symmetry, due to the
effect of the logarithmic terms (see III A).
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FIG. 3. Comparison of the temperature dependence of strange
(y) and nonstrange (x) condensates with and without the inclu-
sion of the logarithms for l � 1200 MeV.
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Figure 5 illustrates the temperature dependence of the
spectral functions in the pseudoscalar and scalar channels
and the behavior of the zeros of the real part of the inverse
pion and sigma propagators. At low temperature the spec-
tral function in the pion channel develops a peak whose
location is close to the physical mass value of the pion.
Close to the pseudocritical temperature there are signifi-
cant changes in the peak structure. In this temperature
range, based on the spectral function, one can not deter-
mine the true pion pole-mass. In this range, the tree-level
pion mass, which is the solution of the gap-equation (12)
interpolates between various zeros of the inverse propaga-
tor, see the left panel of Fig. 5. At high temperature the
spectral function has a well-defined peak again, whose
location correlates with the zero of the inverse pion
propagator.

At low temperature the spectral function in the sigma
channel has a large width and the zeroes of the real part of
the inverse propagator are very sensitive to the renormal-
ization scale, therefore the sigma pole mass can not be
estimated. We can define the pole mass only at high
temperature, where the spectral function develops a well-
defined peak, correlated with the zero of the inverse sigma
propagator. Increasing the temperature its location ap-
proaches the location of the peak in the pion channel and
eventually they become degenerate. This shows that at high
temperature the one-loop masses of the pion and sigma
also reflect the restoration of the SU�2� chiral symmetry.

IV. THE PHASE BOUNDARY ON THE m� �
mK-PLANE

The main result of our work is the determination of the
boundary between the region where a crossover transition
occurs with a smooth variation of the order parameters and
a first order phase transition region, which is signaled by
the multivaluedness of the order parameters. For various
values of the renormalization scale the phase boundary is

presented in Fig. 6. It is remarkable, that at large values of
the kaon mass, the boundary proves to be independent of
the renormalization scale.3 For large values of mK the
existence of a scaling region belonging to a tricritical point
(TCP), with mean-field exponent can be confirmed. This is
a new feature of the complete QFT treatment, it was not
observed using tree-level parametrization! From mean-
field studies (see e.g. [29]) it is known that near the TCP
the boundary of the edge of the first order region deviates
from the mu;d � 0 axis of the quark mass plane according
tomu;d � �mTCP

s �ms�
5=2. Using the tree-level formulas of

ChPT for m2
� and m2

K, namely m2
� � 2m̂B0, m2

K � �m̂�
ms�B0 with m̂ � 1

2 �mu �md�, one can easily translate this
into a relation between the critical values of mK and m�:
m2
K � m2

KjTCP �
m2
�

2 � 
m
4=5
� . Because of the failure of our

parametrization at very high values of mK, and near the
m� � 0 axis we use this formula to extrapolate the upper
edge of the phase boundary to the mK-axis. Using the
formulas of the ChPT in the large Nc approximation for
parametrization we obtain mTCP

K � 1718 MeV, while us-
ing the Veneziano formula (27) we getmTCP

K � 1838 MeV.
Both fits are of very good quality suggesting the radius of
the scaling region to be �mc

� � 40 MeV. In terms of the
strange quark mass our estimate corresponds to mTCP

s �
13–15�ms. This result can be compared to the recent
lattice result of [30], where it was estimated that mtric

s �
3ms. In case of [30] the piece of the phase boundary used in
the extrapolation to mTCP

s was much closer to the physical
point and the location of the TCP was estimated using
points with ms � mphys

s . We consider that the lattice esti-
mate for the location of TCP would improve if points could
be simulated closer to the scaling region.
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FIG. 5. The spectral function of the pion (l.h.s.) and sigma (r.h.s.) for various values of the temperature and l � 1200 MeV. The
zeros of the real part of the inverse pion/sigma propagators and the corresponding tree-level masses are also depicted, as lines in the
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3It can be seen after some straightforward calculation, that as
the kaon mass increases, the relative weight of the terms con-
taining log�l� are becoming negligible in the equations used for
parametrization as well as in those used for thermodynamical
calculations.
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In the present treatment the critical pseudoscalar mass
for degenerate quarks was obtained in the range mc

� 2
�90 130� MeV. The spread is the result of the renormaliza-
tion scale dependence. This range of mc

� is significantly
above the one previously obtained in [14] using a tree-level
parametrization, which eventually led to mc

� 2
�20; 60� MeV. We have to mention that the result on the
diagonal of the mass plane should be regarded as an
estimate because our parametrization can not be trusted
on the diagonal where the two PCAC relations and the
equation of pion and kaon masses become degenerate
while the number of parameters remain unchanged. It is
interesting to note, that the boundary lies to the right from
the fitted curves which describe the scaling behavior near
TCP.

V. CONCLUSION

In this paper we studied the phase boundary of the linear
sigma model in the m� �mK plane. In a resummed per-
turbation theory we found a set of renormalized equations
based on which complete one-loop parametrization of the
model is possible not only at the physical point but in a
large region of the mass plane as well. We allowed for the
variation of the parameters with m� and mK when moving
away from the physical point, and used formulas of the
ChPT for the continuation of certain physical quantities
into the mass plane.

With the one-loop solution of the model the location of
the tricritical point on the m� � 0 axis of the mass plane
was estimated at a rather high value of the kaon mass
mTCP
K 2 �1700 1850�. We shown evidence for the existence

of a scaling region around it. These had not been observed
previously in the quasiparticle approximations to the
model. For the same values of mK the phase boundary
line lies at higher values of pion masses than in the case

of the tree-level parametrization of the model and without
the inclusion of the vacuum fluctuations. For degenerate
pseudoscalar masses the phase boundary was obtained in
the range mc

� 2 �90 130� MeV.
In Sec. III we also discussed the limitation of the opti-

mized perturbation theory, related to the fact that one looks
for real solutions of the gap equation for the resummed
mass in temperature ranges where the self-energies also
develop imaginary parts. To obtain solutions for the gap
equation we had to evaluate the thermal part of the one-
loop pion self energy at ! � 0. This prescription look
arbitrary and questions the validity of the result on the
phase boundary since it is not clear how this influences its
determination.

In order to study to what extent we are in control of the
result obtained we modified the gap equation used for
parametrization Eq. (12) and for the thermodynamical
investigation, too, Eq. (30). At zero temperature we relaxed
the condition that the tree-level pion mass is equal to
138 MeV and used a different prescription for the determi-
nation of the effective mass square m2, namely: D�1

� �! �
0�jtree � D�1

� �! � 0�jone�loop:All the other equations used
for parametrization were kept unchanged. This change of
the gap equation has a very small influence on the values of
the parameters obtained, while the effect on the phase
boundary is comparable to or smaller than the uncertainties
coming from the renormalization scale dependence.

In order to test this result a solution of the model with a
different method is needed. It would be interesting to study
the phase boundary using a self-consistent approximation
based on the exact propagator, like the 2-PI approximation.
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APPENDIX A: CONNECTION BETWEEN (0–8)
AND (X� Y) BASIS

From the x� y basis used in Sec. II one can obtain, with
the help of an orthogonal transformation, the mixed scalar-,
pseudoscalar and the external fields in the conventional (0–
8) basis as:

 

�0

�8

� �
:� O

�x
�y

� �
;

�0

�8

� �
:� O

�x
�y

� �
;

�0

�8

� �
:� O

�x
�y

� �
; where O :�

1���
3
p

���
2
p

1
1 �

���
2
p

 !
:

(A1)
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FIG. 6. Phase boundary of L�M obtained using a one-loop
parametrization at T � 0 and the formulas of large Nc ChPT for
continuation on the m� �mK-plane. For large values of mK we
also used the Veneziano formula for m� cf. II B.
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The transformation of the mass matrices, and the mass
eigenvalues are

 

m2
�00

m2
�08

m2
�08

m2
�88

 !
� O

m2
�xx m2

�xy

m2
�xy m2

�yy

 !
O; and

m2
�0;� �

m2
�xx �m

2
�yy �

�������������������������������������������������
�m2

�xx �m
2
�yy�

2 � 4m4
�xy

q
2

:

(A2)

Similar expressions also hold for the scalar fields.

APPENDIX B: WARD IDENTITIES

From (8) and (13), the inverse pion and kaon propagators
at zero external momenta are

 � iZ�1
� D�1

� �p � 0� � m2
� � ���p � 0� ��m2 (B1)

 � iZ�1
K D�1

K �p � 0� � m2
K � �K�p � 0� ��m2; (B2)

where the finite counterterms of OPT are now explicitly
indicated. Comparing the expressions of tree-level masses
(Table I) with the tree-level part of the equations of state
(28) and (29), one can obtain the corresponding tree-level
Ward identities �x � m2

�x and �y � m2
K�

���
2
p
=2x� y� �

m2
�

���
2
p
=2x. The diagrams for the self-energies are shown

in Fig. 1. They include both tadpole and bubble diagrams,
and the latter ones can be decomposed for nonequal propa-
gator masses and zero external momenta into the difference
of two tadpoles:

(B3)

1
m2

1 m2
2

Therefore, the pseudoscalar self energies at p � 0 can be

represented as a linear combination of tadpole contribu-
tions whose weights are complicated expressions of the
tree-level masses and the corresponding four- and three-
point couplings (see [11]). In the case of pion and kaon
these weights simplify to

 ���p � 0� �

P
Jit

x
i I�mi; l� � x�m2

x
; (B4)

 �K�p � 0� �

P
Ji�txi �

���
2
p
tyi �I�mi; l� � �x�

���
2
p
y��m2

x�
���
2
p
y

;

(B5)

where I�mi; l� is the T � 0 tadpole integral and the sum
goes over all mass eigenstate meson fields with isospin
multiplicity Ji. Substituting these and the corresponding
tree-level Ward identities into the expressions (8) and (13),
one can obtain the equations of state (28) and (29), which
determine the external fields at zero temperature in the
parametrization process. The relations (22) and (23) are
also valid at finite temperature and ensure the fulfillment of
Goldstone’s theorem at one-loop order.

APPENDIX C: PCAC RELATIONS

The one-loop order PCAC relations for the pion and
kaon are given in [11] by

 f�M
2
� �

������
Z�

p
�x; fKM

2
K �

�������
ZK
p

�y���
2
p �

������
Z�

p
�x: (C1)

With the help of (22) and (23) the external fields can be
eliminated and one can obtain the expressions (20) and
(21), which appear renormalization scale-dependent.
However, one can rearrange the pion self-energies appear-
ing in (20) as follows:

 f� �
m2
� � ���p � 0; l�

M2
�

Z��1=2�
� �

m2
� � ���p

2 � M2
�; l� � ����p � 0; l� ����p

2 � M2
�; l��

M2
�

Z��1=2�
�

�

�
1�

~���p
2 � M2

��

M2
�

�
Z��1=2�
� : (C2)

In the last step above we used the fact, that m2
� ����p

2 � M2
�� is just the definition of the pole mass M2

�. The
p-dependent part of the self energy, ~�, like the wave function renormalization constant, does not depend on the
renormalization scale and in consequence (C2) is actually scale-independent. The PCAC equation for the kaon can be
analyzed in a similar way.
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