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We consider the standard model (SM) extended by the flavor symmetry D5 and search for a minimal
model leading to viable phenomenology. We find that it contains four Higgs fields apart from the three
generations of fermions whose left-handed and left-handed conjugate parts do not transform in the same
way under D5. We provide two numerical fits for the case of Dirac and Majorana neutrinos to show the
viability of our low energy model. The fits can accommodate all data with the neutrinos being normally
ordered. For Majorana neutrinos two of the right-handed neutrinos are degenerate. Concerning the Higgs
sector we find that all potentials constructed with three SM-like Higgs doublets transforming as 1� 2
under D5 have a further unwanted global U�1� symmetry. Therefore we consider the case of four Higgs
fields forming two D5 doublets and show that this potential leads to viable solutions in general, however it
does not allow spontaneous CP violation (SCPV) for an arbitrary vacuum expectation value (VEV)
configuration. Finally, we discuss extensions of our model to grand unified theories (GUTs) as well as
embeddings of D5 into the continuous flavor symmetries SO�3�f and SU�3�f.
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I. INTRODUCTION

Gauge interactions and charge quantization of quarks
and leptons can successfully be described by the mathe-
matical concept of Lie groups, e.g. in the framework of
grand unified theories (GUTs). Albeit the number of fer-
mion generations, the diverse masses and mixing parame-
ters of quarks and leptons remain free parameters. It is
tempting to assume that these properties can also be ex-
plained by some (flavor) symmetry Gf. For several reasons
Gf is chosen to be discrete and non-Abelian in many
models. In the literature the permutation symmetries S3

[1], A4 [2], and S4 [3], the single- and double-valued
dihedral groups such as D4 [4] and D02 [5] and groups
Dn, D0n with larger index n [6–8] have been discussed.
Furthermore the two-valued group T0 [9] and subgroups of
SU�3�, ��48�, and ��75� [10], belonging to the series of
��3n2� and ��6n2� with n 2 N have been studied. Most of
these groups have been used to maintain a certain fermion
mass texture. However, proceeding in this way does not
answer the question which fundamental group structure of
a discrete symmetry is favorable for describing nature and
which is not.

In order to investigate the generic features of a certain
group structure it is enough to discuss the smallest group
which reveals this structure. Therefore we choose the
flavor symmetry to be D5 which is the smallest group
with two irreducible (faithful) inequivalent two-
dimensional representations. This group is used in [6] to
produce certain mass textures for the lepton sector, but

mass matrices for the quarks as well as the Higgs sector are
not discussed. Apart fromD5 only the discussed groupsDn

for n � 6, D0n for n > 2, and T0 have more than one
irreducible two-dimensional representations. However, in
general the groups differ in the product structure.

Our starting point is thus the SM gauge group extended
by the flavor group D5. Both groups are broken only
spontaneously at the electroweak scale. We require a par-
tial unification for left-handed and left-handed conjugate
fields, i.e. both should transform as 1� 2 underD5 where 1
and 2 do not need to be the same for both. Since we do not
want to give up the idea of unified gauge groups we further
require that our model is embeddable into the Pati-Salam
group SU�4�C � SU�2�L � SU�2�R, SU�5�, SO�10�, or
E�6�. The resulting mass matrices should allow a viable
fit of all data which will be demonstrated by numerical
examples. For this and for the spontaneous breaking ofD5,
we have to take at least three SU�2�L doublet Higgs fields
which transform nontrivially under D5. Since there exist
strong bounds on flavor changing neutral currents
(FCNCs), the number of Higgs fields should be as small
as possible and they should be sufficiently heavy.
Furthermore we discard the possible existence of SU�2�L
triplet and standard model (SM) gauge singlet (scalar)
fields. Taking all these constraints and the requirement
that there are no leftover massless Goldstone bosons com-
ing from accidental symmetries of the Higgs potential we
will show that we need at least four Higgs fields. With these
it turns out to be favorable to have different transformation
properties of left-handed and left-handed conjugate fermi-
ons under D5. The neutrinos can be either Dirac or
Majorana particles. In the second case two of the right-
handed neutrinos are degenerate, since there are no SM
gauge singlets in the theory. We contrast this minimal D5
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invariant model with the corresponding one invariant under
the flavor symmetry D3 which is isomorphic to S3 and
considered very often in the literature [1].

We also discuss the three Higgs potential in detail and
show the existence of an accidental global U�1� symmetry
in the potential. Furthermore we study the phenomenology
of the four Higgs sector analytically and numerically and
demonstrate that the VEV configurations chosen in the
numerical examples of the fermion mass matrices cannot
be minima of the potential, if CP is only spontaneously
violated. In the case of explicit CP violation a numerical
analysis indicates the possibility that the chosen VEV
configurations can be minima of the general D5 invariant
potential. TheD5 invariant three Higgs sector as well as the
four Higgs sector are compared with the corresponding
Higgs sectors invariant under the dihedral groups D3, D4,
and D6. Thereby we show the importance to classify the
symmetries according to their product structure rather than
to pick one freely.

Finally, we briefly mention the possible embeddings of
our minimal model into GUT groups and continuous flavor
groups.

The paper is organized as follows: Sec. II contains the
group theory of the dihedral symmetries. Our minimal
model is presented in Sec. III and the numerical analysis
in Sec. IV. Section V is dedicated to the Higgs sectors ofD5

and the differences to D3, D4, and D6. Section VI contains
possible extensions of our model from a low to a high
energy theory. Finally, we conclude in Sec. VII and com-
ment on nontrivial subgroups of D5. Clebsch Gordan co-
efficients and embeddings of D5 are delegated to
Appendix A. Appendix B lists the numerical solutions
for the Yukawa couplings and Higgs VEVs and
Appendix C contains the used experimental data.

II. GROUP STRUCTURE OF DIHEDRAL GROUPS

A. General properties of dihedral groups Dn
The groups Dn are well known in solid state and mo-

lecular physics. Their double-valued counterparts are the
groupsD0n. Since n 2 N, there are infinitely many of them.
Apart from the two trivial groups with n � 1, 2 all groups
Dn are non-Abelian. They only contain real one- and two-
dimensional irreducible representations. If its index n is
even, the group Dn has four one- and n

2� 1 two-
dimensional representations and for n being odd Dn has
two one- and n�1

2 two-dimensional representations. The
order of the group Dn is 2n. The four smallest non-
Abelian discrete groups can be found among the family
of the dihedral symmetries: D3, D4, D02, and D5.
Generators of the two-dimensional representations can be
given for all n [11]:

 A �
e��2�i�=n	j 0

0 e���2�i�=n	j

 !
; B �

0 1
1 0

� �
(1)

with j � 1; . . . ; n2� 1 for n even and j � 1; . . . ; n�1
2 for n

odd. They fulfill the relations:

 A n � 1; B2 � 1; ABA � B: (2)

The corresponding character tables can also be found in
[11]. Note that we have chosen complex generators for the
two-dimensional representations. Since these are real,
there exists a unitary matrix U which links their generators
to its complex conjugates:

 U �
0 1
1 0

� �
:

For any

 

a1

a2

� �

 2

the combination

 U
a?1
a?2

� �
�

a?2
a?1

� �
transforms as 2 instead of

 

a?1
a?2

� �
;

as it would be the case for real generators A and B.

B. The group D5

D5 is of order ten and has two one- and two two-
dimensional irreducible representations, since its index is
odd. They are denoted as 11, 12, 21, and 22. Both two-
dimensional representations are faithful. Their characters
�, i.e. the traces of their representation matrices, are given
in the character table, shown in Table I. There we use the
following notations: Ci with i � 1; . . . ; 4 are the four
classes of the group, �Ci is the order of the ith class, i.e.
the number of distinct elements contained in this class, �hCi
is the order of the elements R in the class Ci, i.e. the

TABLE I. Character table of the group D5. � and � are given
as � � 1

2 ��1�
���
5
p
� � 2 cos�2�5 � and � � 1

2 ��1�
���
5
p
� �

2 cos�4�5 � and therefore �� � � �1. For further explanations
see text.

Classes
C1 C2 C3 C4

G 1 B A A2

�Ci 1 5 2 2

�hCi 1 2 5 5

11 1 1 1 1
12 1 �1 1 1
21 2 0 � �
22 2 0 � �
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smallest integer (> 0) for which the equation R
�h

Ci � 1

holds. Furthermore the table contains one representative
for each class Ci given as product of the generators A and B
of the group. The elements belonging to the classes Ci are:
C1 � f1g, C2 � fB;BA;BA2;BA3;BA4g, C3 � fA;A4g,
and C4 � fA

2;A3g. With the help of the character table
the Kronecker products can be calculated. They are 1i �

1j � 1�i�j�mod2�1, 1i � 2j � 2j for fi; jg 2 f1; 2g and 21 �

22 � 21 � 22, and �2i � 2i	 � 11 � 2j, f2i � 2ig � 12 for
i � j where [���] is the symmetric part of the product
��� and f���g the antisymmetric one. Note further
that �� � � ��� for all representations � and �.
Taking n � 5 in Eqs. (1) and (2) gives the generators A
and B and their relations for D5. They are required for the
calculation of the Clebsch Gordan coefficients being
shown in Appendix A. They actually coincide with the
matrices chosen in [6]. The embedding of D5 into continu-
ous groups is very interesting with respect to grand unified
model building. Therefore we show how D5 can be em-
bedded into SO�3� and SU�3� in Appendix A. We will
discuss this in more detail in Sec. VI.

III. MINIMAL MODEL

Here we present a minimal model which leads to viable
mass spectra and mixing parameters for quarks as well as
leptons with the Higgs potential being free from accidental
symmetries (see Sec. V). We assign the left-handed quarks
Qi � �ui; di�TL and their conjugates ucLi, d

c
Li of the ith

generation to:

 Q1 
 11;
Q2

Q3

� �

 22;

ucL1; d
c
L1 
 11; and

ucL2

ucL3

� �
;
dcL2

dcL3

� �

 21:

The left-handed lepton doublets Li � ��i; ei�TL and their
conjugates ecLi and �cLi transform in a similar way, i.e.:

 L1 
 11;
L2

L3

� �

 22;

ecL1; �
c
L1 
 11; and

ecL2

ecL3

� �
;
�cL2

�cL3

� �

 21:

The four Higgs fields �i and  i which are SU�2�L doublets
with hypercharge Y � �1 (like the Higgs field in the SM)
transform as

 

�1

�2

� �

 21

and

 

 1

 2

� �

 22

under D5.

The fermion mass matrices arise from the coupling
yijL

T
i ��Lc

j for down-type quarks (Li � Qi, Lc
i � dcLi) and

charged leptons (Li � Li, Lc
i � ecLi) and yijLTi �~�Lc

j for up-
type quarks (Li � Qi, Lc

i � ucLi) and neutrinos (Li � Li,
Lc
i � �cLi). Thereby, the Higgs field � is �T � ��0; ���T

and its complex conjugate ~� is ~� � ��? with � being the
antisymmetric 2-by-2 matrix in SU�2�L space and the star
? denotes the complex conjugation.

The resulting Dirac mass matrices are:

 M u;� �
0 �u;�2 h�1i

? �u;�2 h�2i
?

�u;�3 h 1i
? �u;�1 h 2i

? �u;�0 h�1i
?

�u;�3 h 2i
? �u;�0 h�2i

? �u;�1 h 1i
?

0@ 1A;
Md;l �

0 �d;l2 h�2i �d;l2 h�1i

�d;l3 h 2i �d;l1 h 1i �d;l0 h�2i

�d;l3 h 1i �d;l0 h�1i �d;l1 h 2i

0B@
1CA;

(3)

where h�i denotes the VEV of the field � �  i; �i. The
VEVs and the Yukawa couplings �u;d;l;�j are in general
complex. The (1, 1) element of the mass matrices is zero,
since there is no Higgs field transforming trivially under
D5. Even though there are more parameters in our model
than observables to fit, this is a rather nontrivial task, since
apart from the number of free parameters also the structure
of the mass matrices plays an important role in fitting the
observables.

The number of parameters could obviously be reduced,
if some of the Yukawa couplings were assumed to be equal.
Since our flavor symmetry D5 cannot explain this, we do
not use such assumptions. Another way to reduce the
number of parameters could be to set some of the VEVs
to be equal or zero. For two VEVs being zero we either
have two massless quarks or cannot generate CP violation,
since J CP / det��MuM

y
u ;MdM

y
d 	� [12] vanishes.

Furthermore some of these configurations lead to the ap-
pearance of accidental symmetries in the Higgs potential
(see Sec. V B). For one VEV being zero or two VEVs being
equal we cannot find an obvious reason to exclude these
assumptions, but one does not gain much in doing so, since
most of the free parameters in our model come from the (in
total) 16 Yukawa couplings which have to be compared
with the 20 (22) observable masses and mixing parameters
in the quark and lepton sector for Dirac (Majorana) neu-
trinos. Therefore we do not make such assumptions in the
following numerical study.

We have chosen a structure which is similar to a mass
texture which has already been discussed in the literature
[13]. It actually arises from our mass matrix for real
parameters and in the limit that all VEVs are equal in
Eq. (3) together with �i2 � �i3 for i � u; d; l; � or for
h�1i � h�2i, h 1i � h 2i and �u;�3 � h�2i

?

h 2i
? �u;�2 , �d;l3 �

h�2i
h 2i

�d;l2 . Then all mass matrices are invariant under the
interchange of the second and third generation which al-
ways leads to mixing angles 	13 � 0 and 	23 �

�
4 with
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unconstrained 	12. In the leptonic sector this is called ��

 interchange symmetry [14].

Here we assume that the first generation transforms as 11
and the second and third one as 2i under D5. This choice is
inspired by the observation that the masses of the particles
which belong to the first generation are much smaller than
the masses of the ones of the second and third one and by
the fact that the mixing in the 2-3 sector of the leptons is
large, possibly maximal. In general there are six possibil-
ities to assign the three generations {1, 2, 3} to 1i � 2j:
{[1], [2, 3]}, {[1], [3, 2]}, {[2], [1, 3]}, {[2], [3, 1]}, {[3],
[1, 2]}, and {[3], [2, 1]} where [.] forms the one-
dimensional representation and [. , .] the two-dimensional
one under D5. If the left-handed fields are permuted by P:
Pf�1	; �2; 3	g � f�P1 � �1; 2; 3�

T	; �P2 � �1; 2; 3�
T; P3 �

�1; 2; 3�T	gwith Pi being the ith row of the matrix P and the
left-handed conjugate fields by Q, the mass matrix M

changes to fM � PMQT , since all permutations are or-
thogonal. As one can see these permutations change nei-
ther the eigenvalues of the mass matrix, i.e.
det�MMy �� diag�1; 1; 1�� � 0 remains invariant, nor
the mixing matrices VCKM and UMNS. If the mass matrix
of the up-type quarks Mu is diagonalized by Uu fulfilling
UyuMuM

y
uUu � diag�m2

u; m
2
c; m

2
t � and the same holds forfMu and ~Uu, then Uu and ~Uu are connected by ~Uu � PUu.

Similarly one gets for the down-type quarks ~Ud � PUd
1

and therefore, for example, VCKM � ~UT
u

~U?
d �

UT
uPTP?U?

d � UT
uU?

d , such that VCKM is not affected by
this permutation. For the mass matrix texture it seems to be
most convenient to have a vanishing (1, 1) element instead
of, for example, a (2, 3) or (3, 3) one.

Apart from permuting the three generations among each
other one can interchange the transformation properties of
the left-handed and left-handed conjugate fields. This leads
to matrices which are transposed to the ones shown in
Eq. (3). Furthermore one can ask whether there is a con-
siderable change, if the first generation is not assigned to
11, but to 12. The answer is no, since it only introduces a
relative sign between the (1, 2) and (1, 3) and (2, 1) and (3,
1) elements of the mass matrix.

Our choice for the assignment of fermion generations
allows an embedding into the Pati-Salam gauge group,
where all left-handed fields are unified into one represen-
tation as well as all left-handed conjugate fields into the
conjugated one. One can also attempt to embed the model
into SO�10�, but then all fermions have to transform in the
same way under D5. In doing so one arrives at mass
matrices which have two additional texture zeros in the
(2, 3) and (3, 2) element (and one Yukawa coupling less
than the matrices shown above). In the case of Hermitian
matrices such a texture is excluded for quarks [15]. This
does not strictly apply in our case, because our matrices are

in general not Hermitian, but we believe that this does not
change the result of [15]. For an embedding into SU�5�, the
generations Qi and ucLi would have to transform in the
same way under D5, since these fields are unified into the
10-plet of SU�5�. Then again the mass matrix for the up-
type quarks has to have three texture zeros in the positions
(1, 1), (2, 3), and (3, 2) combined with a mass matrix for the
down-type quarks with one zero in the (1, 1) element, since
Qi and dcLi do not belong to the same SU�5� representation
and therefore can transform differently under D5.
Generally, such a structure is not excluded, but taking
into account the various relations among the nonvanishing
matrix elements, it seems to be unfavorable. Therefore we
do not discuss this possibility here. Concerning the number
of possible different assignments for quarks and leptons the
Pati-Salam group has an advantage over SU�5�, since the
16 fermions of one generation (i.e. the right-handed neu-
trino is always included in our considerations) are unified
into two and not into three representations of the gauge
group. Its disadvantage is the fact that the three SM gauge
factors are not unified into a single group, but rather in a
product one.

If neutrinos are Majorana particles, the Majorana mass
matrix for the right-handed neutrinos looks very simple,
since our model does not include SM gauge singlets trans-
forming nontrivially under D5:

 M RR �

M1 0 0
0 0 M2

0 M2 0

0@ 1A: (4)

The resulting mass matrix for the light neutrinos is then
given through the type I seesaw [16] formula

 M� � ���M�M
�1
RRM

T
�: (5)

As one can see, two of the right-handed neutrinos are
degenerate at tree level. This can be used for resonant
leptogenesis [17].

An important aspect of our symmetry driven discussion
is that different from the usual assumption in papers treat-
ing a certain texture of the mass matrices (like [13]) the
Majorana mass matrix for the right-handed neutrinos
strongly differs from the structure of the Dirac masses.
Therefore also the effective mass matrix for the light
neutrinos is in general distinct from the (Dirac) mass
matrices of the other fermions. The reason for this simply
lies in the fact that Majorana and Dirac masses do arise
from completely different mechanisms with different sym-
metry aspects: first the Dirac masses connect different
fields whereas Majorana masses connect the same field
with itself and second Dirac masses arise through the
coupling of SU�2�L doublet Higgs fields with hypercharge
Y � 
1 unlike Majorana masses which are direct mass
terms for right-handed neutrinos and are mediated by
SU�2�L Higgs triplets for left-handed ones.

1The permutations have to be both P, since uL and dL trans-
form in the same representation of the SM.
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D5 has two distinct two-dimensional representations
instead of only one like D3. The differences in the mass
matrices which follow from this fact will be studied next.
In [18] the authors assigned the fermion generations and
three Higgs fields to 11 � 2 under D3. We observe that we
cannot use the same representation structure in the Higgs
sector in our D5 model for a realistic theory due to an
accidental U�1� symmetry in the potential (see Sec. VA). If
we do so anyway, we can distinguish two cases in D5: both
fermion generations and Higgs fields transform as 11 � 2i
underD5 or the fermions are in 11 � 2i and the Higgs fields
are in 11 � 2j with i � j. In the first case the D5 invariance
leads to a mass matrix with two zeros on its diagonal, i.e.
the (2, 2) and (3, 3) element vanish, since 2i � 2i does not
contain 2i for i � 1, 2 in contrast to 2� 2 3 2 inD3. In the
latter case the first generation transforming trivially under
D5 is decoupled from the two other ones forming a two-
dimensional representation, since 11 � 2i � 2i for i�1, 2.

Thus the existence of two two-dimensional representa-
tions in the flavor group has two main consequences on the
structure of the mass matrices: on the one hand it tends to
reduce the number of allowed Yukawa couplings and so
maintaining texture zeros becomes easier, on the other
hand it leaves the freedom of assigning the three genera-
tions of fermions to different two-dimensional representa-
tions (as done here).

IV. PHENOMENOLOGICAL ANALYSIS

One appropriate example for a starting point of our
numerical analysis is given by

 M start �

0 0 0
0 a b
0 b a

0@ 1A: (6)

With this matrix one can already fit the masses of the
second and third generation fermions by fixing a and b.
The eigenvalues of Mstart are (0, a� b, a� b). The mass
of the third generation can be taken to be a� b and the one
of the second one a� b. It is clear then that sign�a� �
�sign�b�. The mass of the third generation determines the
absolute values of a and b and the second generation the
difference of jaj and jbj. The vanishing eigenvalue of
Mstart also explains the smallness of the first generation
compared to the two other ones. Such a matrix is closely
connected to the mass matrix of the light neutrinos for b �

0 [14,19] where it leads to maximal atmospheric mixing.
Although it contains this large mixing angle we can use it
for the description of quarks, because taking this form for
up-type as well as down-type quark mass matrices makes
the two large mixing angles cancel such that the angle 	23

can be arbitrarily small in this sector.
The matrix in Eq. (6) arises from Eq. (3) for h�1i �

h�2i, h 1i � h 2i, and �i2;3 � 0 for i � u; d; l; �. As ar-
gued in Sec. V B one can arrange the Higgs potential to
have an extremum for VEVs being pairwise equal. Since

the difference of jaj and jbj is determined by the mass of
the second generation, jaj � jbj holds. This can be main-
tained if all VEVs are nearly equal and j�i0j � j�

i
1j. As

shown in Sec. V B also this is allowed by the minimization
conditions. Note that D5 does not restrict the Yukawa
couplings �ji . Therefore j�i0j � j�

i
1j is not favored by the

flavor symmetry. Also our assumption j�i2;3j � j�
i
0;1j is

not guaranteed by any symmetry of the model. In order to
achieve this, one could, for example, introduce a U�1�FN

factor acting nontrivially in flavor space to implement the
Froggatt Nielsen (FN) mechanism [20]. We could assign a
nonvanishing charge �q to the first generation and let the
second and third generation be neutral under this U�1�FN.
We then gain a suppression factor of �q with � � h	i

M for the
matrix elements of the first row and column compared to
the others. h	i is the VEVof the scalar SM gauge singlet 	
having charge�1 underU�1�FN andM is the mass of some
vectorlike fermions. These fields are assumed to be very
heavy and therefore actually decouple from our low energy
theory. Note that the second and third generation of fermi-
ons have to transform in the same way under the U�1�FN,
since otherwise the U�1�FN would not commute with our
flavor symmetry D5. Note further that the zero in the (1, 1)
element is independent of the FN mechanism, since it
comes from our assignment of fermions and Higgs fields
under D5.

Next we present our numerical examples for Dirac and
Majorana neutrinos. As already stated above, the mass
matrices contain in general too many parameters to make
predictions. In order to reduce the number of free parame-
ters we restrict ourselves to real Yukawa couplings and
allow the VEVs h�1;2i and h 1i to have nonvanishing
(complex) phases. We show the numerical values of the
Yukawa couplings and VEVs in Appendix B. With these
the best fit values of the measured quantities shown in
Appendix C can be accommodated within the given error
bars. Interestingly, all phases of the VEVs turn out to be
small. Although the Yukawa couplings are chosen to be
real, spontaneous CP violation (SCPV) is excluded, since
the parameters in the Higgs sector have to be complex in
order to allow the shown VEV configurations to be minima
of the potential. This fact will be explained in detail in
Sec. V B. The mass ordering of the (light) neutrinos is
normal in both examples. This is not a general feature of
our model, but rather chosen by us for simplicity. As we
can fit all measured quantities, we only discuss the results
for the unmeasured ones.

In the case of Dirac neutrinos the sum of the neutrino
masses is 0.2255 eV. This is below the current bound
obtained from cosmology, even if the Lyman � data are
included [21]. However, it will be measurable in the next
five to ten years [22]. s2

13 is about 0.012 and hence a factor
of 3 below the current CHOOZ bound, but detectable quite
soon in the next generation of reactor experiments [23].
The Dirac phase � is 
3:6 radian. The quantity m� mea-
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sured in beta decay experiments is 0.07 eV. This is below
the current limit of 2.2 eV [24] and also a factor of 3 below
the one of the planned KATRIN experiment [25].

Before presenting the corresponding results in the case
of Majorana neutrinos, we comment on the generic prob-
lem of Dirac neutrinos. As one can see in Appendix B the
Yukawa couplings of the neutrinos ��i have to be sup-
pressed by nine to 12 orders of magnitude compared to
the other fermions to ensure that the neutrinos have masses
of the order 1 eV. Clearly, our flavor symmetryD5 does not
explain this, but an additionalU�1�FN family symmetry can
do so. If the right-handed neutrinos have a charge 
qf �
10 under U�1�FN where qf is the charge of any other
fermion under U�1�FN, the neutrino couplings can be sup-
pressed by an additional factor �10. For �
 0:1 this gives
the right order of magnitude for the neutrino masses.
However, then the model cannot be embedded into the
Pati-Salam group.

Next we consider the neutrinos to be Majorana particles.
In this case the type I seesaw [16] explains the smallness of
the neutrino masses without an extra suppression of their
Yukawa couplings ��i . The masses for the light neutrinos
are (0.1146, 0.1149, 0.1242) eV. The sum of their masses is
therefore still below the current bound, but could be mea-
sured by the planned experiments. The scale of the right-
handed neutrino masses is about 1014 GeV, but it can be
rescaled by proper redefinition of the neutrino Yukawa
couplings ��i . Interestingly, s2

13 is around the 2� limit
of the CHOOZ experiment. The CP phases which are
not constrained by experiments are ��;’1; ’2� 

�3:9; 0:74; 0:33� radian. m� is—similar to the Dirac
case—a factor of 2 smaller than the bound which can be
obtained by the KATRIN experiment. jmeej which is mea-
sured in neutrinoless double beta decay is about 0.1 eV.

This is an order of magnitude below the upper bound [26],
but can be measured in the next five to ten years [27].

The smallness of m� and jmeej is due to the normal
ordering of the (light) neutrinos. Finally, we summarize all
mentioned quantities in Table II.

V. MINIMAL HIGGS POTENTIALS IN D5

A. Three Higgs potential

In this subsection we discuss the potential arising from
the three Higgs fields
,  1, and  2 where 
 transforms as
any one-dimensional representation and

 

 1

 2

� �
forms any doublet under D5. The potential reads:

 V3�
; i� � ��2
1

y
��2

2

X2

i�1

 yi  i � �s�

y
�2

� �1

�X2

i�1

 yi  i

�
2
� �2� 

y
1 1 �  

y
2 2�

2

� �3j 
y
1 2j

2 � �1�
y
�
�X2

i�1

 yi  i

�
� f�2�


y 1��

y 2� � H:c:g

� �3

X2

i�1

j
y ij2; (7)

where only �2 is complex. It can be made real by appro-
priate redefinition of the field 
, for example. We want to
show that there exists an accidental U�1� symmetry in this
potential apart from the gauge symmetryU�1�Y . In order to
see this let the Higgs fields 
 and  i transform as

 
! ei�
;  1 ! ei� 1;  2 ! ei� 2: (8)

The only nontrivial condition for the phases �, �, and �
arises from the term �2:

 2�� �� � � 0; (9)

i.e. � can be expressed as 1
2 ��� �� while � and � can

have any value. Consequently, there exist two U�1� sym-
metries, called U�1�� and U�1��, under which the three
fields have the charges: Q�
;�� � Q�
;�� � 1

2 ,
Q� 1;�� � 1, Q� 1;�� � 0 and vice versa for  2:
Q� 2;�� � 0, Q� 2;�� � 1. Taking the two linear inde-
pendent combinations of the charges Q��;Y� �
��Q��;�� �Q��;��	 and Q��;X��Q��;���Q��;��
for � � 
; 1;  2 one recovers the U�1�Y and a further
U�1�X under which the two fields  i transform with oppo-

TABLE II. Numerical values for the unmeasured quantities of
the leptonic sector. The Majorana phases ’1;2 are given by the
convention: UMNS � ~VCKM � �e

i’1 ; ei’2 ; 1� with 0 � ’1;2 � �.

Quantity Dirac neutrinos Majorana neutrinos

m1 [eV] 0.0701 0.1146
m2 [eV] 0.0706 0.1149
m3 [eV] 0.0848 0.1242P
imi [eV] 0.2255 0.3537

MR1 [GeV] 0 1:878� 1014

MR2;3 [GeV] 0 2:011� 1014

s2
13 0.0119 0.0303
� [rad.] 3.5775 3.8619
’1 [rad.] 0 0.7396
’2 [rad.] 0 0.3312

m� [eV] 0.0704 0.1150

jmeej [eV] 0 0.1002
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site charges and 
 remains invariant. Alternatively, the
U�1�X could be defined such that Q�
;X� � �Q� i;X�
and Q� j;X� � 0 with i � j. Taking the first definition of
the U�1�X charges one sees that any nonvanishing VEV for
a field  i leads to the spontaneous breaking of the U�1�X
and therefore to the appearance of a massless Goldstone
boson which is phenomenologically unacceptable. There
are two ways to circumvent this: first introduce terms in the
potential which explicitly break U�1�X, but also the D5

symmetry2 or second leave U�1�X unbroken. The first
possibility increases the number of parameters by at least
four and is not explained in terms of any (further) symme-
try while the second one cannot be realized, if our model
should accommodate the fermion masses at tree level
without further fields. Hence we abandon this three
Higgs potential which actually contains the minimal set
of Higgs fields needed for the construction of viable mass
matrices.

The accidental U�1� symmetry found here becomes
obvious in the basis where the generators A and B of D5

are taken to be the ones shown in Eq. (1). If one chooses,
for example, real representation matrices (found in [11]),
the resulting potential still contains the extra U�1�, but it is
rather nontrivial to show this.

If one sets �2 � 0, the symmetry of the potential is
further increased to U�1�3, since then the condition
Eq. (9) is no longer valid. The U�1�2 which then exists in
the ( 1,  2) space can be enhanced to a SU�2� by setting
�3 � 4�2. Then the terms �2 and �3 can be written asP
a��

y
a��2 with � � � 1;  2�
T and 
a are the Pauli

matrices, i.e. it equals the invariant arising from �2�
2�2 3 3� 3 3 1 in SU�2�. �2 � 0 and/or �3 � 4�2 can
be enforced by the VEV conditions. One example for this
is given by the configuration where the VEVs of 
 and  1

are unequal to zero and h 2i � 0.
Let us comment on the origin of this accidental U�1�.

For this we compare our D5 invariant Higgs potential to
one being invariant under D3 and D4, respectively. The D3

invariant version of our potential has already been dis-
cussed in the literature [28]. Apart from the terms con-
tained in the D5 invariant potential it allows a further term,
namely: f
��
y 1�� 

y
2 1� 
 �


y 2�� 
y
1 2�	 � H:c:g with

� for 

 11 and � for 

 12 (under D3). This term is
D3 invariant, since the product 2� 2 contains the repre-
sentation 2 itself and therefore 2� 2� 2� 1i 3 11 for
i � 1, 2. In D5 the corresponding coupling is of the form
2i � 2i 63 2i for both i � 1, 2. Clearly, the 
 term does not
allow for a further U�1� symmetry, since it enforces the
relations 2�� �� � � 0 and 2�� �� � � 0 for the
phases �, �, and �. This term has to vanish, if the potential
should be invariant under the reflection symmetry 
!
�
 and  1;2 !  1;2 as mentioned in [29]. Then there

exists an accidental U�1� which was already realized in
[30].

To compare our potential to the one being invariant
under D4 one has to notice that the product 2� 2 decom-
poses into

P4
i�1 1i there. Hence the quartic coupling �3 has

to be replaced by

 �3� 
y
1 2 �  

y
2 1�

2 � ~�3� 
y
1 2 �  

y
2 1�

2: (10)

The rest of the potential remains the same. Thereby the
field 
 can transform as any one-dimensional representa-
tion of D4. �3 and ~�3 lead to � � � such that � � � � �
is enforced. The accidental U�1� can be restored, if ~�3 �
��3 is chosen, since then Eq. (10) simplifies to
�4�3j 

y
1 2j

2.
Since D6 has also been mentioned as flavor symmetry in

the literature and is the next smallest Dn symmetry after
D5, we briefly comment on D6 invariant three Higgs
potentials. If the three fields transform as faithful two-
dimensional and as trivial representation, their potential
incorporates an accidental U�1� symmetry. However, using
instead one of the two further one-dimensional representa-
tions of D6 which are not present in D5 one can get rid of
thisU�1�. Products of the faithful representation with these
have the structure 1� 2 � 20 and therefore lead together
with 2� 2 � 11 � 10 � 20 to a potential which coincides
with the one obtained from D3.

This demonstrates that a thorough discussion of the
Higgs potential is always necessary to ensure the validity
of the model as a whole. A more complete discussion about
the possible potentials arising from Dn flavor symmetries
and also D0n symmetries will be given elsewhere [31].

B. Four Higgs potential

In this subsection we consider a potential containing
four Higgs fields. There exist two possible choices. First
we can augment our three Higgs potential with a further
Higgs field � transforming as a one-dimensional represen-
tation. If 

 1i then � should transform as 1j with i � j.
Writing down all possible D5 invariant couplings shows
that they cannot break the U�1�X symmetry. Therefore we
will consider a four Higgs potential with fields �i and  i,
i � 1, 2. Each pair forms a doublet under D5, without loss
of generality:

 

�1

�2

� �

 21

and

 

 1

 2

� �

 22:

The potential then has the following form:
2This is similar to the soft breaking terms invoked in the

minimal supersymmetric standard model (MSSM).
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 V4��i;  i� � ��2
1

X2

i�1

�yi �i ��
2
2

X2

i�1

 yi  i � �1

�X2

i�1

�yi �i

�
2
� ~�1

�X2

i�1

 yi  i

�
2
� �2��

y
1�1 � �

y
2�2�

2 � �3j�
y
1�2j

2

� ~�2� 
y
1 1 �  

y
2 2�

2 � ~�3j 
y
1 2j

2 � �1

�X2

i�1

�yi �i

��X2

j�1

 yj  j

�
� �2��

y
1�1 � �

y
2�2�� 

y
1 1 �  

y
2 2�

� f
1��
y
1 1���

y
2 2� � H:c:g � f
2��

y
1 2���

y
2 1� � H:c:g � f�1���

y
1�2���

y
1 2� � ��

y
2�1���

y
2 1�	 � H:c:g

� f�2�� 
y
1 2���

y
2 2� � � 

y
2 1���

y
1 1�	 � H:c:g � �3�j�

y
1 1j

2 � j�y2 2j
2	 � �4�j�

y
1 2j

2 � j�y2 1j
2	;

(11)

where the couplings 
1;2 and �1;2 are in general complex.
We checked that this potential does not have any accidental
(global) symmetries. Assuming that the fields �1;2,  1;2
transform in the following way:

 �1 ! �1ei�; �2 ! �2ei�;

 1 !  1ei�;  2 !  2ei�;

one finds that the couplings �1;2, �1;2;3, ~�1;2;3, �1;2, �3;4
leave the full U�1�4 invariant, 
1;2 breaks it down to U�1�3,
and �1;2 down to U�1�2, i.e. none of the couplings them-
selves is only invariant under U�1�Y . 
1;2 leave the same
U�1�3 invariant with the condition � � �� �� �. The
U�1�2 symmetries which are preserved by �1;2 are con-
strained by the conditions 2� � �� �, 2� � �� � and
2� � �� �, 2� � �� �, respectively. As one can see
only �1 � 0 and �2 � 0 can reduce U�1�4 to U�1�Y , i.e.
taking the 
1;2 terms with only the �1 term still leaves the
potential invariant under U�1�2. Consequently, none of the
VEV conditions should enforce �1 or �2 to vanish. A
simple example for this is the configuration h�1i � 0,
h 2i � 0, and h�2i � h 1i � 0 with all VEVs being real.
It leads to �1 � 0. However, it cannot produce phenome-
nological viable mass matrices anyway as discussed above.

In the following we show that the VEV configuration
which is used in the zeroth order approximation in our
numerical study represents one possible minimum of the
Higgs potential V4. As one can see, the equivalence of all
four VEVs is not obligatory, since for example �1 and �2

and �1 and ~�1 are not restricted to have the same value,
respectively. Therefore we search for a symmetry which
can maintain these restrictions such that the equivalence of
all four VEVs becomes more natural. The simplest choice
is to first interchange the fields �i with  i in order to
enforce, for example, the equivalence of �1 and �2 and
to further exchange the fields �1 and �2 preventing the
couplings �1;2 from being set to zero.3 This symmetry will
be called T in the following. It restricts the parameters as
follows:

 �1 � �2; �i � ~�i; �2 � 0;


1 � 
?2 ; �1 � �?2 ; �3 � �4:
(12)

Note that setting �2 to zero does not lead to an accidental
continuous symmetry. Especially, we do not enforce �1;2 to
vanish. Note also that changing the order of the actions
�i $  i and �1 $ �2 does not change the result.

Next we analyze the potential invariant under D5 � T
for real VEVs h�1i �

v��
2
p cos���, h�2i �

v��
2
p sin���, h 1i �

u��
2
p cos���, and h 2i �

u��
2
p sin���. The form of the potential

at the extremum is:
 

V4Tmin � �
1
2�

2
1�u

2 � v2� � 1
32�u

4 � v4��8�1 � 4�2 � �3�

� 1
4u

2v2��1 � �3� �
1
32�v

4 cos�4��

� u4 cos�4����4�2 � �3� �
1
4uv�u

2 cos��� ��

� sin�2�� � v2 sin�2�� sin��� ��	Re��1�

� 1
4u

2v2 sin�2�� sin�2��Re�
1�: (13)

The minimization conditions which can be deduced from
V4Tmin are:
 

@V4Tmin

@�
��

1

8
v4 sin�4��y�

1

2
u2v2 cos�2�� sin�2��Re�
1�

�
1

4
uv�v2�cos�2�� sin������ sin�3�����

�u2 sin����� sin�2��	Re��1�; (14a)

@V4Tmin

@�
��

1

8
u4 sin�4��y�

1

2
u2v2 sin�2��cos�2��Re�
1�

�
1

4
uv�u2�cos�����cos�2��� cos��� 3���

�v2 sin�2��cos�����	Re��1�; (14b)

where y � 4�2 � �3. Equations (14a) and (14b) are ful-
filled for � � �

4 and � � �
4 . Then each of the terms van-

ishes separately, there is especially no constraint on Re�
1�,
Re��1�, or 4�2 � �3. This is important, since constraining
these parameters to be zero could lead to accidental sym-
metries. For � � �

4 and � � �
4 there is also one solution

with u � v. Therefore the equivalence of all (real) VEVs is
a natural result of the potential.3The exchange of the fields  1 and  2 gives the same result.
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Apart from this zeroth order solution it is important to
check whether phenomenological viable VEV configura-
tions can be a minimum of the potential for an appropriate
choice of parameters. As we tried to restrict ourselves
above to SCPV, it is especially necessary to find out
whether this is possible for the chosen VEVs in our nu-
merical examples. Unfortunately, it turns out to be impos-
sible for the potential invariant under D5 � T. For VEVs
parametrized as h�1i �

v1��
2
p ei�, h�2i �

v2��
2
p ei�, h 1i �

v3��
2
p ei�, and h 2i �

v4��
2
p one can deduce, for example, the

following equations from the minimization conditions for
vi � 0, � � 0, � � 0, � � 0:
 

5v3v4 Re��1��v1v3 sin��� 2��

�v2v4 sin��� ��� � 0; (15a)

5v1v2 Re��1��v1v4 sin�2�� ��

�v2v3 sin��� 2�� ��� � 0: (15b)

These directly lead to the conclusion that Re��1� � 0. As
we consider SCPV, also Im��1� � 0 and therefore the
coupling �1 vanishes.4 This increases the symmetry of
the potential, as explained above. With vi � 0, � � 0,
� � 0, � � 0 it is then clear that this additional symmetry
will be broken and hence further massless Goldstone bo-
sons will appear which are phenomenologically unaccept-
able. In this case we have not gained anything by
discussing the four Higgs potential compared to the three
Higgs one. Abandoning the T symmetry and only requiring
that the potential is invariant under D5 does not change the
situation, since then one can deduce the equations:
 

5v3v4 Re��2��v1v3 sin��� 2��

�v2v4 sin��� ��� � 0; (16a)

5v1v2 Re��1��v1v4 sin�2�� ��

�v2v3 sin��� 2�� ��� � 0: (16b)

These enforce the vanishing of Re��1� and Re��2� for
general VEV configurations. Again Im��1;2� are already
set to zero, since we want to study the case of SCPV. In the
end, the constraints �1 � 0 and �2 � 0 lead to an increase
of the symmetry of the potential. Similar to the case above
this further symmetry is broken by arbitrary VEV configu-
rations resulting in extra Goldstone bosons. This proves
that SCPV can only exist for special VEV configurations,
but not in general.

For a general D5 invariant four Higgs potential with
complex parameters one can successfully solve all mini-
mization conditions without the necessity to set parameters
to zero. Furthermore one is able to maintain that all masses
of the Higgs fields at this extremum are positive, i.e. this
extremum can be a minimum of the potential. As all
relevant equations are invariant under vi ! �vi, the

VEV configurations h�1i �
v1��

2
p ei�, h�2i �

v2��
2
p ei�, h 1i �

v3��
2
p ei�, h 2i �

v4��
2
p and h�1i �

�v1��
2
p ei�, h�2i �

�v2��
2
p ei�,

h 1i �
�v3��

2
p ei�, h 2i �

�v4��
2
p are degenerate. Finally, one

can check numerically whether the potential is stable as a
whole. This clearly is not a proof of the stability of the
potential, but is enough for our considerations.

All this has been done for the two VEV configurations
used in the numerical examples. The parameters of the
potential can be chosen in such a way that all constraints
are fulfilled. The mass of the lightest Higgs field is usually
smaller (
 40 GeV) than the experimental bounds ( �
114:4 GeV) [32], if the mass parameters �i are of the
order of the electroweak scale (100–200 GeV) and the
quartic couplings are in the perturbative range. This prob-
lem can be cured by simply assuming that the �is are
larger than O�100 GeV� or adding some other mass di-
mension two terms which break D5. In order to pass not
only the direct Higgs mass bounds, but also the stringent
bounds on FCNCs, the Higgs masses should be even larger
than a few TeV. The mechanism of adding D5 breaking
terms is unmotivated from the theoretical point of view, but
seems to be necessary for a phenomenological viable
model in this context.

One could ask whether it is also possible to achieve that
arbitrary VEV configurations can be minima of the poten-
tial, if this is invariant under D5 � T. The answer is no,
since one can deduce three linear independent equations
containing Re��1�, Im��1�, and Re�
1�which are in general
only solved, if Re��1� � 0, Im��1� � 0, and Re�
1� � 0.
Again, the minimization conditions enforce a parameter
setup which leads to an additional global symmetry in the
Higgs potential.

Finally, we compare the D5 invariant potential of four
Higgs fields to the equivalent one in D6. Similar to D5 also
D6 has two inequivalent two-dimensional representations
(one faithful and one unfaithful one). However, in contrast
to D5 the D6 invariant four Higgs potential contains a
further U�1� symmetry. The reason for this is the D6

product structure 2i � 2i � 11 � 14 � 22 for i � 1, 2 and
21 � 22 � 12 � 13 � 21 which does not allow for invariant
couplings of the form 23

i 2j with i � j. Precisely, these
couplings, �1 and �2, exist in D5 and therefore prevent
the potential from having an accidental U�1�.

VI. EXTENSIONS OF THE MODEL

Finally, we would like to comment on how the model has
to be changed in order to be embedded into an SO�10�
GUT and—maybe simultaneously—into a continuous fla-
vor symmetry, like SO�3�f or SU�3�f. This is desirable,
since GUTs turned out to be very successful in unifying the
SM gauge interactions and fermions of one generation and
in explaining, for example, charge quantization. These
features should not be given up when flavored models are
considered. Second, the embedding of a discrete flavor

4Actually in general even more parameters of the potential are
constrained to be zero or have to fulfill certain relations.
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symmetry into a continuous groupGf allows one to unify it
with the GUT group being also continuous into one group
containing gauge and flavor symmetries. Attempts to find
such a group can be found in the literature [33]. Albeit
these have not been very successful, the idea is still appeal-
ing. Furthermore gauged symmetries are the only ones
which remain unbroken in the presence of quantum gravi-
tational corrections [34] which suggests that any flavor
symmetry should also be gauged. However, gauging a
discrete symmetry can be performed in the easiest way, if
it is embedded into a continuous one which is then gauged.
Nevertheless, in the context of string theory discrete flavor
symmetries could also arise without such an embedding.

Since all fermions of one generation reside in the 16 of
SO�10� they need to transform in the same way under D5,
for example, as 11 � 21. In our minimal model with just the
four Higgs fields �i and  i the resulting mass matrices do
hardly lead to phenomenological viable masses at tree
level and at low energies. Therefore we have to extend
the Higgs sector by at least one Higgs field 
 transforming
trivially under D5. The mass matrices are then of the form

 M u;� �
�u;�0 h
i

? �u;�1 h�1i
? �u;�1 h�2i

?

�u;�2 h�1i
? �u;�4 h 1i

? �u;�3 h
i
?

�u;�2 h�2i
? �u;�3 h
i

? �u;�4 h 2i
?

0@ 1A;
Md;l �

�d;l0 h
i �d;l1 h�2i �d;l1 h�1i

�d;l2 h�2i �d;l4 h 2i �d;l3 h
i
�d;l2 h�1i �d;l3 h
i �d;l4 h 1i

0B@
1CA;

(17)

i.e. the Higgs field 
 fills the zeros in the (1, 1), (2, 3), and
(3, 2) elements. Note that the form of the right-handed
Majorana mass terms does not change. In a complete
SO�10� model the Higgs doublet fields have to be em-
bedded into the representations 10, 120, and 126, since
these do couple to 16� 16. Still this setup has to be
embedded into the continuous flavor group Gf. For Gf

being SO�3�f this is not possible, since we cannot identify
11 � 2i with the fundamental representation of SO�3�f.
The same holds for SU�3�f. In order to do so, the first
generation has to transform as 12 rather than 11. This leads
to a sign in the (1, 3) and (3, 1) elements of the mass
matrices in Eq. (15), but does not alter the discussion. The
five Higgs fields �i,  i and 
 
11 � 21 � 22 can be
identified with the 5 of SO�3�f and together with an addi-
tional field 
0 
 11 also with the six-dimensional repre-
sentation of SU�3�f.

A more minimal choice for an embedding into
SO�10� �Gf would be given by the three generations
transforming as 12 � 21 and three Higgs fields doing the
same. Unfortunately, this leads to traceless mass matrices
for the fermions which seem to be highly disfavored by the
observed mass hierarchies among the generations. This
problem can be cured by adding another Higgs field trans-
forming trivially under D5. Furthermore this increases the
number of allowed Yukawa couplings by two. Since the

added Higgs field transforms as 11, the model can still be
embedded into the continuous flavor symmetries SO�3�f
and SU�3�f with this field being identified with the singlet
of SO�3�f or SU�3�f. Although we showed that the Higgs
sector is not phenomenological viable in this case (see
Sec. V), we cannot exclude it as a GUT model, because
the Higgs couplings might change through the embedding
of the SU�2�L Higgs doublet fields into SO�10�
representations.

VII. CONCLUSIONS AND OUTLOOK

In this paper, we constructed a minimal model with the
SM gauge group enlarged by the flavor symmetryD5. Both
are broken only spontaneously at the electroweak scale.
We chose D5, since it is the smallest discrete group with
two inequivalent irreducible two-dimensional representa-
tions. We demanded the left-handed and left-handed con-
jugate fields of the three generations to unify partially, i.e.
transform as 1� 2 under D5, combined with the require-
ment that our model should be embeddable at least into the
Pati-Salam gauge group. Furthermore we have chosen the
minimal possible number of Higgs doublets with a poten-
tial free of accidental symmetries and did not include
scalar fields transforming as SU�2�L triplets or gauge sin-
glets. We showed that under these constraints a minimal
model can be built in which the left-handed fields trans-
form as 11 � 22 under D5, the left-handed conjugate ones
as 11 � 21 and the four Higgses �i and  i�i � 1; 2� as 21 �
22. By a numerical study we showed that all fermion
masses and mixing parameters can be accommodated at
tree level. We considered the case of Majorana as well as
Dirac neutrinos and we discussed the results of the un-
measured leptonic quantities. By our choice the spectrum
of the light neutrinos is always normally ordered. The
structure of the right-handed neutrino mass matrix is (al-
most) trivial, since we did not include SM gauge singlets.
As a consequence two of the right-handed neutrinos are
degenerate at tree level. We compared the structure of the
D5 invariant mass matrices with those of D3 invariant ones
which are often discussed in the literature. The main
difference is the tendency to get more texture zeros for a
similar assignment of fermions and Higgs fields arising
from the existence of the two inequivalent two-
dimensional representations in D5. We then turned to a
discussion of the Higgs sector and found that all potentials
with three Higgs fields transforming as 1� 2 are not only
D5 invariant, but also incorporate an accidental U�1� sym-
metry which is broken by any VEV configuration leading
to phenomenological viable mass matrices for the fermions
at tree level. To find the group theoretical reason for this
accidental U�1� we considered similar potentials invariant
under D3 and D4, respectively, and found that they do not
have an accidental U�1� symmetry. The difference lies in
the D5 product structure 11;2 � 2 � 2 and 2� 2 � 11 �
12 � 20 such that the coupling 2� 2� 2� 11;2 is not
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invariant under D5. Therefore we had to extend the Higgs
sector to four fields �i and  i transforming as the doublets
of D5. We explicitly showed that this potential is free of
accidental symmetries and analyzed its VEV configura-
tions. For a zeroth order solution we imposed a further
discrete symmetry—called T—on the potential in order to
maintain the configuration that all (real) VEVs are equal as
natural outcome of the minimization conditions. In a sec-
ond step we proved that SCPV is not possible for the VEV
configurations used in our numerical examples of the
fermion mass matrices. Nevertheless these configurations
can be minima of the D5 invariant four Higgs potential, if
its parameters are complex. Furthermore we calculated the
masses for the Higgs fields. We found that they are natu-
rally of the order O�100 GeV� up to O�1 TeV� with the
smallest mass below the LEP bound of 114.4 GeV [32], if
the mass parameters of the potential are of the order of the
electroweak scale and the quartic couplings are in the
perturbative regime. Therefore FCNCs might be a problem
which can probably be cured by adding large mass dimen-
sion two terms which break D5. In our numerical examples
the FCNCs involving the first generation get additionally
suppressed, since the relevant Yukawa couplings are at
most 10�4. Finally, we considered extensions of our low
energy model and showed the necessary changes in the
particle assignment and content to achieve the embedding
into SO�10� �Gf where Gf can be either SO�3�f or
SU�3�f.

In our numerical examples the VEVs of the fields �i and
 i break D5 completely. However, D5 has two nontrivial
Abelian subgroups Z2 and Z5 which can be generated by
the generator B and the generator A alone, respectively. As
one can see, Z5 is always broken by a nonvanishing VEVof
�i and  i. In contrast to this a residual Z2 is preserved in
the Lagrangian, if h�1i � h�2i and h 1i � h 2i.
Interestingly, the resulting mass matrices Mu;� and Md;l

are then invariant under the interchange of the second and
third generation and therefore produce a maximal mixing
in the 2-3 sector, a vanishing mixing in the 1-3 sector, and
leave the mixing angle 	12 undetermined. For an exact Z2

thus the mixing matrices VCKM andUMNS have two vanish-
ing mixing angles 	13 and 	23, since the maximal mixing
angles in the 2-3 sectors of the up-type quarks (neutrinos)
and the down-type quarks (charged leptons) cancel each
other. This leads to the conclusion that this residual Z2 is
only weakly broken in the quark sector, but strongly bro-
ken in the lepton/neutrino sector. Actually the equalities
h�1i � h�2i and h 1i � h 2i have also been employed
when we searched for an appropriate zeroth order structure
of the fermion mass matrices in our phenomenological
analysis (see Sec. IV). By considering the nontrivial sub-
groups of D5 this choice gains further significance.

This discussion can be compared with the studies of the
nontrivial subgroups of A4 [35]. A4 can be broken to either
Z2 or Z3 by different VEV configurations of Higgs fields

forming a triplet under A4. It turns out that preserving the
subgroup Z3 for charged fermions leads to VCKM � 1
whereas Z2 is preserved in the neutrino sector leading to
tribimaximal mixing. Concerning the quark sector our
flavor symmetry D5 has the advantage that its breaking
to Z2 leads to vanishing 1-3 and 2-3 mixing, but does not
constrain the Cabibbo angle. In this way we can explain
why the Cabibbo angle is about 1 order of magnitude larger
than the two other mixing angles whereas models using A4

might have problems to generate a 1-2 mixing angle being
large enough to accommodate the data. On the other hand
in our minimal model shown here the residual subgroups of
D5 can hardly give reason for the tribimaximal or bimax-
imal mixing pattern observed in the leptonic sector which
can nicely be explained by the residual Z2 symmetry of A4

in the neutrino sector.
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APPENDIX A: DETAILS OF GROUP THEORY

Here, we show the Clebsch Gordan coefficients for all
Kronecker products in case that none of the representations
is complex conjugated. This choice corresponds to the
Yukawa couplings for the down-type quarks and charged
leptons (see Sec. III). All other Clebsch Gordan coeffi-
cients needed, for example, for the quartic couplings in the
Higgs sector and the Yukawas for the up-type quarks which
involve at least one complex conjugated representation can
be generated from the given Clebsch Gordan coefficients
taking into account the similarity transformation between
the representation matrices and its complex conjugates as
shown in Sec. II A.

For A
 1i and B
 1j the product is AB
 1�i�j�mod2�1.
Combining the two-dimensional representation

 

a1

a2

� �

 2i

with the trivial singlet A
 11 leads to

 

Aa1

Aa2

� �

 2i:

Similarly for the nontrivial singlet B
 12 one finds

 

Ba1

�Ba2

� �

 2i:

The D5 covariant combinations of 21 � 21 for

 

a1

a2

� �
;
a01
a02

� �

 21

are a1a02 � a2a01 
 11, a1a02 � a2a01 
 12, and
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a1a01
a2a

0
2

� �

 22

and for the product 22 � 22 they read b1b
0
2 � b2b

0
1 
 11,

b1b
0
2 � b2b

0
1 
 12, and

 

b2b
0
2

b1b01

� �

 21

with

 

b1

b2

� �
;
b01
b02

� �

 22:

For the mixed product 21 � 22 we find

 

a2b1

a1b2

� �

 21

and

 

a2b2

a1b1

� �

 22

with ai being the upper and lower components of 21 and bi
of 22, respectively.

The Clebsch Gordan coefficients for the product ���
can be constructed from the ones given for �� � by
simply taking the transpose of these. Therefore the shown
Clebsch Gordan coefficients are sufficient for the calcula-
tion of all Yukawa and Higgs couplings.

Finally, we display the resolution of the smallest repre-
sentations of SO�3� (SU�3�) into irreducible ones of D5.

SO�3� ! D5 SU�3� ! D5

1! 11 1! 11

3! 12 � 21 3! 12 � 21
5! 11 � 21 � 22 6! 211 � 21 � 22
7! 12 � 21 � 222 8! 11 � 12 � 221 � 22
9! 11 � 221 � 222 10! 212 � 221 � 222

One can interchange 21 with 22 to get an alternative possible
embedding. These breaking sequences can be calculated with
the methods shown in [36].

APPENDIX B: TABLES OF NUMERICAL
EXAMPLES

Tables III and IV contain solutions for Dirac and
Majorana neutrinos.

APPENDIX C: EXPERIMENTAL DATA

The masses for the quarks and charged leptons at � �
MZ are [37,38]:

 mu�MZ� � �1:7
 0:4� MeV;

mc�MZ� � �0:62
 0:03� GeV;

mt�MZ� � �171
 3� GeV;

md�MZ� � �3:0
 0:6� MeV;

ms�MZ� � �54
 11� MeV;

mb�MZ� � �2:87
 0:03� GeV;

me�MZ� � �0:486 847 27
 0:000 000 14� MeV;

m��MZ� � �102:751 38
 0:000 33� MeV;

m
�MZ� � 1:746 69�0:000 30
�0:000 27 GeV:

The Cabibbo-Kobayashi-Maskawa (CKM) mixing angles
hardly depend on the scale� at low energies. Therefore we
take the values found in [39] which are measured in tree-
level processes only:

 sin�	12� � s12 � 0:2243
 0:0016;

sin�	23� � s23 � 0:0413
 0:0015;

sin�	13� � s13 � 0:0037
 0:0005;

� � 1:05
 0:24; and J CP � �2:88
 0:33� � 10�5:

In the neutrino sector only the two mass squared differ-
ences measured in atmospheric and solar neutrino experi-
ments are known [40]:

 �m2
21 � m2

2 �m
2
1 � �7:9

�0:6
�0:6� � 10�5 eV2;

j�m2
31j � jm

2
3 �m

2
1j � �2:2

�0:7
�0:5� � 10�3 eV2:

The leptonic mixing angles are constrained: s2
13 � 0:031,

TABLE III. Numerical solution for Dirac neutrinos. The Yukawa couplings of the neutrinos
have to be multiplied by 10�12:35 and

P2
i�1�jh�iij

2 � jh iij
2� � �172:02 GeV�2.

Yukawas �i0 �i1 �i2 �i3

i � u �0:993 413 0.994 834 0.000 478 57 0.000 151 179
i � d �0:016 992 5 0.016 399 6 0.000 087 483 3 0.000 127 194
i � l �0:010 791 2 0.009 540 78 �0:000 060 939 0.000 056 597
i � � �1:006 16 0.979 207 1.3039 1.453 44

VEVs h�1i h�2i h 1i h 2i

abs. [GeV] 97.3856 71.386 101.872 68.0594
phase [rad.] �0:007 651 5 0.007 171 1 0.014 899 0
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s2
12 � 0:3�0:04

�0:05, and s2
23 � 0:5�0:14

�0:12. All values observed in
neutrino oscillations are given at 2� level. Three further
quantities connected to the neutrinos are measurable: the
sum of the neutrino masses from cosmology, m� in beta
decay experiments, and jmeej in neutrinoless double beta
decay. The experimental bounds on these quantities are:

 X3

i�1

mi � �0:42 . . . 1:8� eV �21	;

m� �

�X3

i�1

jUei
MNSj

2m2
i

�
1=2
� 2:2 eV �24	;

and jmeej �

��������X3

i�1

�Uei
MNS�

2mi

��������� 0:9 eV �26	:
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