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We construct a theory of Maxwell stresses in Rindler space, presenting both a noncovariant and a
covariant formulation. The theory shows how the Maxwell stresses are modified by a nonvanishing
acceleration of gravity and that the Maxwell stresses of an electromagnetic field produce a volume stress
force which vanishes in an inertial frame. In the noncovariant formulation we deduce the Maxwellian
force due to the bending of the field lines by the acceleration of gravity. In the covariant formulation we
show that Archimedes’ law is valid for stationary electromagnetic fields in Rindler space: The Maxwellian
surface forces acting from the outside field upon a closed surface produce a buoyancy equal to the weight
of the electromagnetic field enclosed by the surface. Generally the mechanism is different from that in a
fluid in which the buoyancy is due to a pressure which increases with depth. In a vertical electrical field the
buoyancy is due to a tension that increases with height, but in a horizontal field it is due to a Maxwellian
pressure which increases with the depth.
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I. INTRODUCTION

In a usual laboratory at the surface of the Earth we
experience a uniform gravitational field. According to
Einstein’s principle of equivalence we may explore the
physics in such a reference frame by considering a uni-
formly accelerated reference frame. This is usually called a
Rindler frame [1], and the 3-space of the Minkowski space-
time as referred to such a frame is known as the Rindler
space.

In this article we shall consider some effects upon the
electromagnetic field of a point charge at rest in the Rindler
frame, of the gravity experienced in this frame. In particu-
lar we shall investigate the field from the point of view of
the Maxwell stresses in order to understand the origin of
the field force acting upon a charge at rest in a gravitational
field. The existence of this force has earlier been found in
another way by Harpaz [2] and interpreted as a radiation
reaction force. Our analysis leads to a different interpreta-
tion of this force.

Calculating the Maxwellian stress force on a closed
surface in a stationary electromagnetic field and a volume
force being the weight of the field, we find that
Archimedes’ law is valid for stationary electromagnetic
fields in Rindler space. The mechanism of the buoyancy is
exhibited for the simple cases of vertical and horizontal
fields.

II. MAXWELL’S EQUATIONS IN RINDLER SPACE

In this section we shall establish Maxwell’s equations
for arbitrary electromagnetic fields in Rindler space.

The line element of spacetime in the Rindler frame may
be written as

 ds2 � �g0
2x2dt2 � dx2 � dy2 � dz2; (2.1)

where the constant g0 is an acceleration, and x is the

distance from the horizon in the Rindler frame at x � 0.
The kinematics of this frame has been thoroughly dis-
cussed in Ref. [1]. At the point x the acceleration of gravity
is g�x�, which is the acceleration of the point in the local
system of inertia

 g�x� � 1=x: (2.2)

Thus g0 is the acceleration of gravity at the point x � 1=g0.
In the following F�� is the field tensor in the Rindler

frame. The components of the field tensor in a field of
orthonormal basis vectors in the Rindler frame are denoted
by F�̂ �̂ and are related to the coordinate components by

 F0̂ î �
���������������
jg00jgii

q
F0i � g0xF0i;

Fî ĵ �
������������
giigjj
p

Fij � Fij:
(2.3)

The electric field is defined as the electric force per unit
charge upon a charge at rest. The covariant expression of
this force is

 f� � qF��
dx�

ds
: (2.4)

Hence the electric field ~E � Ei ~ei is given by

 fi�qEi�qFi0
dx0

ds
�q

Fi0
g0x
��qg0xF

i0��qFî 0̂�qF0̂ î

(2.5)

which leads to

 Ei � F0̂ î � g0xF
0i: (2.6)

In the same way the magnetic flux density is given by

 

~B � Bi ~ei;

B1 � F2̂ 3̂ � F23 and cyclic permutations:
(2.7)
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Note that the field strengths are the same in an accelerated
orthonormal basis comoving with the Rindler frame as in a
local instantaneous inertial rest system of the uniformly
accelerated reference frame. The components of a tensor
with reference to a field of orthonormal basis vector has
been called the physical components of the tensor [3],
because one has then become rid of coordinate effects
present in the expressions of the components when the
tensor is decomposed in an arbitrary coordinate basis.
Although there is Minkowski metric in the orthonormal
basis field comoving with the Rindler frame, this basis field
is different from the orthonormal basis of an instantaneous
inertial rest frame of the Rindler frame. The timelike basis
vector of the orthonormal basis field comoving with a
frame is equal to the four-velocity field of the reference
particles of the frame. Mathematically the difference be-
tween the two orthonormal basis fields appear in the con-
nection coefficients. The connection coefficients of the
inertial basis field vanish, but the orthonormal basis field
comoving with the Rindler frame has nonvanishing con-
nection coefficients. In particular �x̂ t̂ t̂ � 0 in the inertial
basis field and �x̂ t̂ t̂ � 1=x in the basis field comoving with
the Rindler frame. From the geodesic equation follows that
a free particle instantaneously at rest has an acceleration
��x̂ t̂ t̂. This is the acceleration of gravity in the frame.

Maxwell’s equations in the Rindler frame are obtained
from the covariant form of the equations

 

1������������������
j detg��j

q @
@x�
�
������������������
j detg��j

q
F��� � �4�s� (2.8)

 

@F��
@x�

�
@F��
@x�

�
@F��
@x�

� 0; (2.9)

where s� is the four-current density,

 s� �
1�����������
�g00
p ��; ~j�: (2.10)

� is the current density.
In the Rindler frame detg�� � �g00 � g2

0x
2. Hence, in

terms of the fields ~E and ~B defined by Eqs. (2.6), (2.7),
(2.8), and (2.9) lead to

 

r � ~E � 4��
@ ~E
@t
�r� �g0x ~B� � �4�g0x~j

r � ~B � 0 r� �g0x ~E� �
@ ~B
@t
� 0; (2.11)

where � and ~j are the charge density and current density,
respectively. In the stationary case Maxwell’s equations in
the Rindler frame reduce to

 

r � ~E � 4���~r�; r� �x ~E� � 0;

i:e: r� ~E �
1

x
~E� ~ex (2.12a)

r � ~B � 0; r� �x ~B� � 4�x~j�~r�;

i:e: r� ~B � 4�~j� ~r� �
1

x
~B� ~ex; (2.12b)

where ~E and ~B are the fields strength which where defined
in local orthonormal basis in Eqs. (2.6) and (2.7), ��~r� is the
charge density and ~j� ~r� the current density.

III. MAXWELL STRESS IN THE FIELD OF A
POINT CHARGE IN THE RINDLER SPACE

Electrodynamics in the Rindler space has earlier been
investigated by I. Brevik [4]. He deduces expressions for
the fundamental electromagnetic modes of a pure radiation
field in Rindler space. However, he does not consider
Maxwell stress, which is the topic of the present article.
We shall first examine the Maxwell stress force in a region
of space from a very simple point of view. In Sec. V the
result obtained in this section will be applied to the field of
a point charge. For the present purpose a noncovariant
approach, not taking into account the weight of the electric
field, is most suitable. A covariant description is presented
in Sec. VI.

We now consider an electrostatic field and an element of
a field line tube of infinitesimal cross section in a region
free of charge. The product of E and the area A of the cross
section is constant along the tube due to the continuity
equation r � ~E � 0. The element is of infinitesimal length
ds such that to lowest order its volume is Ads. In order to
find the Maxwell stress force which acts on the infinitesi-
mal volume element, we shall apply well known properties
of the electromagnetic field [5]: The electric field transmits
a tension E2=8� parallel to the direction of the field and a
pressure of magnitude E2=8� transverse to the direction of
the field as measured in an instantaneous inertial rest
system of the Rindler frame. The forces acting upon the
volume element are tensions ~T1 and ~T2 at the boundary
surfaces at the ends of the tube and pressure forces acting
upon the side.

The total surface force �̂S, on the element, as measured in
local inertial frames at the surface points of the element, is

 

~̂S � �
Z
�0

E2

8�
~nd�� ~T1 � ~T2

� �
Z
�

E2

8�
~nd�� 2� ~T1 � ~T2�; (3.1)

where ~n is the outwards pointing surface normal, and d� a
surface element. In the surface �0 the end surfaces of the
tube are not included, but they are included in the surface
�. The equality of the two expressions are due to the fact
that tension and pressure are opposite in direction and of
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the same value, E2=8�. Since� is a closed surface, the first
term of the last expression can be transformed into a
volume integral,

 

Z
�

E2

8�
~nd� �

Z
V

1

8�
r�E2�dV �

1

8�
r�E2�Ads; (3.2)

where A is the cross section area and ds the length of the
field line tube. Let � denote increment over the length of
the tube, and ~et a unit tangential vector. Then

 

~T1 � ~T2 � �
�
A
E2

8�
~et

�
�
AE
8�

��E ~et� �
AE
8�

� ~E

�
AEds

8�
d ~E
ds

(3.3)

From Eqs. (3.1), (3.2), and (3.3) we find that the total
surface force is

 

~S �
�
�

1

8�
r�E2� �

E
4�

d ~E
ds

�
Ads: (3.4)

Making use of the identity

 r�E2� � 2� ~E � r� ~E� 2 ~E� �r� ~E�

� 2E
d ~E
ds
� 2 ~E� �r� ~E� (3.5)

we obtain

 

~S � �
1

4�
~E� �r� ~E�Ads: (3.6)

We introduce the force ~̂f per unit volume,

 

~̂f �
1

4�
~E� �r� ~E� (3.7)

and write Eq. (3.6) in the form

 

~S� ~̂fAds � 0: (3.8)

This equation may be interpreted as an equation of equi-
librium for the volume element acted upon by a surface

force ~S and a volume force ~̂fAds.
At this point one may ask which properties of space and

field have been assumed to obtain the result (3.7). The
assumptions are that 3-space is Euclidean and the field is
static. Thus the result is valid for any electrostatic situation
in inertial frames and in the Rindler frame at points free of
charge.

In a global inertial frame r� ~E � 0 which shows that
~̂S � 0 and ~̂f � 0, i.e. in an inertial system the total
Maxwell stress force on the surface of a volume free of
charge is zero and so is the corresponding force density.

We shall now consider an electrostatic field in the
Rindler frame. We insert r� ~E � ~E� ~ex=x from
Eq. (2.12a) into Eq. (3.7), and get

 

~̂f �
1

4�
~E�

�
~E�

~ex
x

�
�

1

4�x
�Ex ~E� E

2 ~ex�: (3.9)

This equation will now be adjusted to the field from a
charge Q on the x-axis at the position xQ. The electric field
lines from the charge Q are conveniently described in
cylindrical coordinates �x; �; ’�, where � � �y2 � z2�1=2

is the distance from the x-axis, and’ is the angle round this
axis. The component E’ � 0, so the field lines are in
vertical planes ’ � constant. The components Ex and
E� are given in Eq. (5.3). The field lines leave the charge
Q in different directions. They are bending downwards in
the gravitational field, each line forming an arc of a circle
and reaching the horizon, x � 0 at the border of the Rindler
space in vertical direction. The center of such a circle is
consequently in the horizon, i.e. in the plane x � 0.

Putting ~E � ~Ex � ~E� in Eq. (3.9) we get

 

~̂f �
1

4�x
�Ex ~E� � E2

� ~ex�: (3.10)

Introducing (see Fig. 1)

 x � R sin�; Ex � E cos�; E� � E sin�; (3.11)

we get

 

~̂f �
E2

4�R
~en (3.12)

→
E

θ

θ

α

A 

B 
C 

D 

R 

xQ

x

x

ρ

→

1T

→

2T

→

1P

→

2P

Q 

→
n

FIG. 1. The figure shows an electric field line from a charge Q
in Rindler space and an element of a field line tube. The field line
is an arc of a circle. Rotating the pictured plane around the x-axis
one obtains the whole field of the charge. The field lines are bent
downwards due to the acceleration of gravity like the paths of
droplets in a water fountain. The Maxwellian stress produces
tensions T1 and T2 in the directions of the field line, and a
pressure normal to the field line.
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which agrees with eq. (4) in Ref. [2]. The unit vector ~en �
� ~ex sin�� ~e� cos� is the principal normal vector of the
field line pointing in the direction of the curvature center, R
is the radius of curvature, and ~e� is the basis vector of the
�-coordinate.

A transition to an inertial frame is most easily obtained
by introducing the Møller coordinate �x � x� 1=g0 where
g0 is the acceleration of gravity at �x � 0. Then the line
element of the uniformly accelerated reference frame takes
the form [6]

 ds2 � ��1� g0 �x�2dt2 � d �x2 � dy2 � dz2: (3.13)

Since

 

1

x
�

g0

1� g0 �x
(3.14)

we get from Eq. (3.11)

 R �
1� g0 �x
g0 sin�

: (3.15)

In the inertial frame limit g0 ! 0, we get limg0!0R � 1

and the force �̂f due to the electric stresses vanishes, as
expected for the field of a point charge with straight field
lines in an inertial frame.

IV. ON THE ELECTRIC STRESS TENSOR IN THE
RINDLER FRAME

We proceed with a general treatment of electrostatics in
the Euclidean 3-space of the Rindler frame. The charge
distribution is given as � � ��x; y; z�. Maxwell’s equa-
tions, Eqs. (2.12a), are now written in component form as
follows

 

@Ej
@xj

� 4��;
@Ei
@xj
�
@Ej
@xi
�

1

x
�	1iEj � 	1jEi�:

(4.1)

The electric force density is

 Fi � �Ei: (4.2)

In textbooks on electricity it is shown how Fi in inertial
frames may be expressed as the divergence of the electric
stress tensor [5]. We shall here show how this is modified in
the Rindler space.

By means of Eqs. (4.1) and (4.2) we get

 Fi � �Ei �
1

4�

@Ej
@xj

Ei �
1

4�
@
@xj
�EjEi� �

1

4�
Ej
@Ei
@xj

�
1

4�
@
@xj
�EjEi� �

1

4�
Ej

�@Ej
@xi
�

1

x
�	1iEj � 	1jEi�

�

�
1

4�
@
@xj
�EjEi� �

1

8�
	ij

@E2

@xj
�

1

4�x
�E1Ei � 	1iE2�

(4.3)

which may be written as

 Fi �
@tî ĵ
@xj
� f̂i; (4.4)

where tî ĵ are the components of the Maxwell stress tensor
as referred to an instantaneous inertial rest system of the
Rindler frame,

 tî ĵ �
1

4�

�
EiEj �

1

2
	ijE2

�
(4.5)

and

 f̂ i �
1

4�x
�E1Ei � 	1iE

2�

�
1

4�x
��E2

2 � E
2
3; E1E2; E1E3� (4.6)

or

 

~̂f �
1

4�x
�E1

~E� E2 ~e1� �
1

4�
g0

1� g0 �x
�E1

~E� E2 ~e1�

(4.7)

in accordance with Eq. (3.9). Here tî ĵ is the electric stress

tensor, which has the same form as in inertial frames, and ~̂f
is the force due to electric stress per unit volume, which
vanishes in inertial frames where g0 � 0.

Equation (4.4) may be interpreted physically by inte-
grating it over a volume V of Rindler space,

 

Z
FidV �

Z @tî ĵ
@xj

dV �
Z
f̂idV: (4.8)

Here
R
FidV �

R
�EidV is the force on the charge in V.

The integral
R
f̂idV expresses the force due to electric

stresses in V. We express the first integral on the right-
hand side of Eq. (4.8) as a surface integral by means of
Gauss’s theorem. Let ~n be the unit outward normal and d�
an area element. Then

 

Z @tî ĵ
@xj

dV �
Z
tî ĵnjd� (4.9)

and Eq. (4.8) may be written

 

Z
FidV �

Z
tî ĵnĵd��

Z
f̂idV: (4.10)

Here tî ĵnjd� is the i-component of the force acting on the
area d� from outside. By means of Eq. (4.5) we get

 tî ĵnj �
1

4�

�
EiEj �

1

2
	ijE2

�
nj �

1

4�

�
Ei ~E � ~n�

1

2
niE2

�
:

(4.11)

That is, the force acting upon the area from the outside may
be written
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~̂td� � �
1

4�

�
� ~E � ~n� ~E�

1

2
E2 ~n

�
d�: (4.12)

In general, to account for the electric stress on an ele-
ment, we may introduce � and � for the two sides of the
element. Let ~n be the unit normal on the positive side
(pointing outwards from the element), and ~n0 � � ~n the
normal on the opposite side. The force of electric stress

acting on the element from the positive side is ~̂td�, and the

force from the negative side is ~̂t
0
d�, where

 ~̂t 0 �
1

4�

�
� ~E � ~n0� ~E�

1

2
E2 ~n0

�
� � ~̂t (4.13)

i.e. there is an opposite force acting on the opposite side.
Putting ~E � �E ~n in Eq. (4.12) we get for the force per unit
area

 

~̂t �
E2

8�
~n (4.14)

demonstrating that there is a tension parallel to the direc-

tion of the field. If ~E ? ~n Eq. (4.12) gives ~̂t �
��1=8��E2 ~n, showing that there is a pressure transverse
to the direction of the field.

For arbitrary directions of ~n relative to ~E the area will be
exposed to a shear stress in addition to the tension or
pressure. It is easily seen from Eq. (4.12) that the absolute

value of ~̂t is independent of the angle between ~E and ~n, and
equal to the energy density E2=8�. Further, the direction of
~̂t is such that ~E bisects the angle between ~n and ~̂t.

V. APPLICATION TO THE FIELD OF A POINT
CHARGE

Suppose a point charge Q is situated on the x-axis at the
height x � xQ. The electrical field is rotationally symmet-
ric about the x-axis. The field lines define vertical planes,
and are circles with centers on the horizontal plane x � 0,
as shown in Fig. 1. (Note that in this construction the
centers of the circles are not restricted to that part of the
horizontal line in the paper plane which is covered by the
�-axis, but fill the whole of this line. The circles with
centers to the left of the x-axis give the field lines starting
with a downwards component at the charge, and the centers
to the right of the x-axis give the field lines with an
upwards component at the charge.)

The electrical field, found by solving Eqs. (2.12), may be
expressed as

 

~E � �
1

x
r�; (5.1)

where the potential � is given in eq. (4.41) of Ref. [7], and
may be expressed as

 � �
Q
2

�
r
r0
�
r0

r

�
: (5.2)

Here r is the distance from the point charge, and r0 is the
distance from a point which is symmetrically placed on the
other side of the x � 0 plane. The components of the
electrical field strength are,
 

Ex � 4Qx2
Q�x

2 � x2
Q � �

2�=
3
R; E� � 8Qx2

Qx�=

3
R;


R � rr0; r � 	�x� xQ�2 � �2
1=2;

r0 � 	�x� xQ�
2 � �2
1=2 (5.3)

in accordance with eq. (16) and (19) in [7].
We now apply Eq. (4.10) to a region which does not

include the chargeQ. Then ~F � 0 and the equation may be
written

 

Z
tî ĵnjd��

Z
f̂idV � 0 (5.4)

which says that the sum of the force from the outside on the
surface and the volume force is equal to zero.

Let us now apply Eq. (5.4) to the region between two
spherical surfaces which are concentric about the charge
point, i.e. r1 < r< r2 where 0< r1 < r2 < xQ. Because of
the symmetry of the field and the region, the total force in
the volume and on the surfaces points in the x-direction.
We therefore restrict ourselves to the component of forces
in that direction. Expressing ~E by polar coordinates �r; ��,
given by,

 x � xQ � r cos�; � � r sin� (5.5)

we have

 Er �
Q

r2

1� b cos�

	1� 2b cos�� b2
3=2
;

E� �
Q

r2

b sin�

	1� 2b cos�� b2
3=2
; b �

r
2xQ

(5.6)

and the magnitude of the field strength is

 E �
Q

r2

1

1� 2b cos�� b2 : (5.7)

Let Ŝ1�r� denote the x-component of the electric stress
force acting on the convex side of a spherical surface of
radius r (< xQ). We introduce the unit normal vector ~n �
~er � ~ex cos�� ~e� sin�, which together with Eq. (4.11)

gives,

 tx̂ ĵnj �
1

8�
	�E2

x � E
2
�� cos�� 2ExE� sin�
: (5.8)

Hence, by integration over angles we obtain

 Ŝ 1̂�r� �
Z
r
t1̂ ĵnjd�

�
Q2

16x2
Q

�
1

b3 �
2

b�1� b2�
�

1� 3b2

2b4 ln
1� b
1� b

�
:

(5.9)
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Expanding this expression in powers of r=xQ leads to

 Ŝ 1�r� �
Q2

x2
Q

�
�

2

3

xQ
r
�

1

10

r
xQ
�

3

140

r3

x3
Q

� . . .
�
: (5.10)

The force acting on the convex side of the outer surface is
Ŝ1�r2�, and the force acting on the concave side of the inner
surface is�S1�r1�. Thus, the force acting on the surface of
the considered region is �Ŝ1�r1� � Ŝ1�r2�. According to
Eq. (5.4) this force is equal and opposite of the volume
force,

 

Z
r1<r<r2

f̂1dV � Ŝ1�r1� � Ŝ1�r2� (5.11)

where, from Eq. (4.6), f̂1 � �E2
�=4�x, and S1�r� is given

by Eq. (5.9). If Ŝ1�r2� may be neglected compared to
Ŝ1�r1�, Eq. (5.11) explains how the force on the inner
sphere may be found by the volume force, as was done
by Harpaz [2].

To lowest order in r1 and r2 we get from Eqs. (5.10) and
(5.11)

 

Z
f̂1dV �

2

3

Q2

xQ

�
1

r2
�

1

r1

�
�

2

3

Q2

xQr1

�
r1

r2
� 1

�
(5.12)

i.e.

 

Z
f̂1dV � �

2

3

Q2

xQr1
; where r1 � r2: (5.13)

Introducing the acceleration of gravity, gQ � 1=xQ, at the
point x � xQ, we find that the force on the concave side of
the inner sphere is

 � S1�r1� � �
Z
f̂1dV �

2

3
Q2

gQ
r1

(5.14)

which is the approximation found by Harpaz [2] (in our
notation).

It may be noted that the procedure employed in this
deduction cannot be used in an inertial frame, for example,
in connection with the field of an electric dipole. The
reason is that in an inertial system f̂1 � 0 even in the
case of an electric field with curved field lines, and
Ŝ1�r1� � Ŝ1�r2� according to Eq. (5.11).

It may be useful, here, to put in mind a result given on
p. 162 of Ref. [7]. It concerns an extended spherical charge
with an equipotential volume. Utilizing the fact that the
field outside the charge may be described as the field due to

a fictitious charge, at the point x �
�����������������
x2
Q � r

2
1

q
on the x-axis

we found the field at the surface. Considering the Maxwell
stress, we found in Ref. [7] the following exact expression
for the self force ~Fs on an extended charge with radius r1,

 

~F s � �
2

3
Q2

gQ
r1

~ex
1� g2

Qr
2
1

: (5.15)

The dominating term of this expression agrees with
Eq. (5.14) when gQr1 � 1.

We now proceed with our analysis of the field due to a
point charge. Let us consider the total 3-space, VR, of the
Rindler frame, x > 0, excluding a sphere around the point
charge. The total 3-space is considered as the limit of a
cylindrical region coaxial with the x-axis. Let ~N � � ~ex be
the outward normal at the plane x � 0. Then, since the
surface integrals at infinity have zero limits, we have from
Eq. (5.4) the equation

 

Z
x�0

t1̂ îNid�� Ŝ1�r1� � �
Z
VR
f̂1dV (5.16)

where the left-hand side is the force acting on the surface of
the 3-space considered. The first term on the left-hand side
is the Maxwellian stress force acting on the plane x � 0,
i.e. on the horizon of the Rindler space. It points in the
negative x-direction. The force �Ŝ1�r1� which is acting on
the concave side of the sphere, is directed upwards and is
given by Eqs. (5.9) and (5.10). Its magnitude is approxi-
mately 2Q2=3xQr1.

From Eq. (5.3) we get, in accordance with eq. 20 in [8],

 

~E�at x � 0� � �
4Qx2

Q

�x2
Q � �

2�2
~ex (5.17)

and from Eq. (4.5)

 t1̂ 1̂ �
E2

8�
: (5.18)

Hence,

 

Z
x�0

t1̂ îNîd� � �
Z
x�0

t1̂ 1̂d� � �
1

8�

Z
E2d�

� �
2

3

Q2

x2
Q

: (5.19)

The volume force is now given by Eq. (5.16),

 

Z
VR
f̂1dV �

2

3

Q2

x2
Q

� S1�r1� �
2

3

Q2

x2
Q

�
2

3

Q2

xQr1

� �
2

3

Q2

xQr1

�
1�

r1

xQ

�
; (5.20)

where S1�r1� is given by Eq. (5.9).
To sum up, there are two forces acting downwards on the

field in VR, the volume force
R
VR
f̂1dV and the tension

�2=3��Q2=x2
Q� at the horizon, x � 0. The equilibrium is

maintained by a force (� S1) which is acting upwards on
the inner surface of the sphere of radius r1 surrounding the
charged particle.

Equation (5.19) is an expression of the tension at the
plane x � 0, i.e. at the horizon in the Rindler space. We
introduce the acceleration of gravity gQ � 1=xQ and get

E. ERIKSEN AND Ø. GRØN PHYSICAL REVIEW D 74, 025002 (2006)

025002-6



 

Z
x�0

t1̂ îNid� � �
2

3
Q2g2

Q: (5.21)

This is a force. In units with c � 1 force and power have
the same dimension. However physically it is remarkable
that the expression (5.21) is identical to Larmor’s formula
for radiated power. The charge is permanently at rest in the
Rindler space, however. The situation is static and there is
no magnetic field at any time or any place in the Rindler
space, so as observed in this space the charge does not
radiate [7]. As observed in an inertial frame, on the other
hand, the charge does indeed radiate with the power (5.21).

VI. COVARIANT THEORY AND ARCHIMEDES’S
LAW FOR AN ELECTROMAGNETIC FIELD IN

RINDLER SPACE

The electromagnetic energy-momentum tensor in an
arbitrary frame of reference is given by

 T�� �
1

4�

�
F��F

�� �
1

4
	��F��F

��
�
; (6.1)

where F�� is the field tensor. The tensor T�� is constructed
such that the four-force density �� � F��s�, by means of
Maxwell’s equations, may be expressed as the covariant
divergence of T�� ,

 � �� � T��;�: (6.2)

This divergence may be expressed as [6]

 T��;� �
1������������������

j detg��j
q @

@x�
�
������������������
j detg��j

q
T�� � �

1

2

@g��
@x�

T��:

(6.3)

In the Rindler frame with metric ��g0
2x2; 1; 1; 1� this

expression takes the form

 � �� � T��;� �
1

g0x
@

@x�
�g0xT

�
� � �

1

x
@x
@x�

T0
0 ; (6.4)

where T�� is given by Eq. (6.1) with F�� as the field tensor
in the Rindler frame.

At a point where the charge density � � 0, Eq. (6.4)
becomes

 

@

@x�
�g0xT

�
� � � g0T

0
0

@x
@x�

: (6.5)

Here we may put � � 0 and get

 

@

@x�
�g0xT

�
0 � � 0 (6.6)

which expresses the energy conservation law,

 

@h
@t
�r � ~S � 0; (6.7)

where

 h � �g0xT
0
0 � g0x

1

8�
� ~E2 � ~B2� (6.8)

represents energy density, and

 Si � �g0xT
i
0 � g0

2x2 1

4�
� ~E� ~B�i (6.9)

represents energy flux.
With the Møller coordinate �x � x� 1=g0 we have

g0x � 1� g0 �x. In the inertial limit, where g0 ! 0 and
g0x! 1, the Rindler quantities h and ~S get their inertial
values.

Next we put � � i � 1, 2, 3 in Eq. (6.5), and get

 

@

@x�
�g0xT

�
i� � g0T

0
0	i1: (6.10)

By means of Eq. (6.1) and the definitions of ~E and ~B in
Eqs. (2.6) and (2.7) we find

 

1

4�

@
@t
� ~E� ~B�i �

@
@xj

tij � �	i1g�x�h; (6.11)

where

 tij �
g0x
4�

�
EiEj � BiBj �

1

2
	ij� ~E

2 � ~B2�

�
: (6.12)

Here g�x� � 1=x is the acceleration of gravity, and h is the
energy density of the field as given in Eq. (6.8).

We integrate Eq. (6.11) over a constant volume V and
obtain by means of Gauss’s law,

 

Z
�
tijnjd�� 	i1

Z
V
g�x�hdV �

1

4�
d
dt

Z
V
� ~E� ~B�idV

(6.13)

which suggests the following interpretation. The left-hand
side is the force acting on the system, i.e. a force on the
surface of the system due to the Maxwell stress, and a
volume force which is the weight of the field. At the right-
hand side ~E� ~B=4� is the momentum density of the field.
Hence, the equation says that the sum of the Maxwellian
forces acting upon the system is equal to the time deriva-
tive of the momentum of the system.

We note that according to Eq. (6.9) the momentum
density of an electromagnetic field in the Rindler space is

 

1

4�
~E� ~B �

1

g2
0x

2
~S; (6.14)

where ~S is the energy flux density (Poynting’s vector). In
the following we let the fields be stationary, i.e. @ ~E=@t �
@ ~B=@t � 0. Then the right-hand side of Eq. (6.13) is zero,
and we get

 

Z
�
tijnjd� � 	i1

Z
V
g�x�hdV; (6.15)

where the left-hand side is the i-component of the force
acting on the surface. The equation tells that this force has
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no horizontal component, and that the vertical component
(i � 1) is pointing upwards. Thus, the surface force acts
like a buoyancy, and this buoyancy is equal to

R
V g�x�hdV

which is the weight of the field in the volume. This is the
law of Archimedes of Syracuse (287–212 B.C.) as applied
to a stationary electromagnetic field in a gravitational field.

In vector notation Eq. (6.15) reads

 

~S� ~W � 0; (6.16)

where ~S is the buoyancy and ~W the weight,

 

~S � ~e1

Z
�
t1jnjd� (6.17)

 

~W �
Z
V

~fdV: (6.18a)

The volume force ~f is the weight per unit volume,

 

~f � � ~e1g�x�h � � ~e1g0
1

8�
� ~E2 � ~B2�: (6.18b)

We shall apply Eq. (6.15) to the electrostatic field ~E in
Eq. (5.3), which is produced by a point chargeQ situated at
rest on the x-axis in the point x � xQ. Putting ~B � 0 in
Eqs. (6.8) and (6.12) we get

 h � g0x
~E2

8�
(6.19)

 tij �
g0x
4�

�
EiEj �

1

2
	ij ~E

2
�
: (6.20)

We let the volume V be the total 3-dimensional volume VR
above the horizon of the Rindler frame (i.e. x > 0), except
a small sphere of radius r1 with center at the point charge.
Because of the factor x in the expression (6.21) for tij there
is no contribution to the surface integral from the plane x �
0. Neither is there any contribution from infinitely far. So,
from Archimedes’ law, we may conclude: On the electric
field in the volume VR there acts a surface force upwards on
the inside of the sphere. This force is equal and opposite to
the weight of the field in VR, keeping the field in static
equilibrium. (A corresponding situation is that of a gar-
ment hanging on a peg. The peg corresponds to the force
that keeps the charge at rest, and the garment corresponds
to the electric field. The garment acts upon the peg with a
force equal to its weight.)

We shall finally calculate the surface force acting on the
inner surface of the sphere of radius r1. For this purpose we
utilize the fact that this force is the buoyancy ~S acting on
the field which keeps it at rest. Without this force the field
would be freely falling. For the sake of comparing with the
corresponding expression (5.14), which was found without
taking the weight of the field into account, it is convenient
to choose g0 � gQ � 1=xQ. According to Eqs. (6.16),
(6.18), and (6.19),

 

~S � ~exgQ
Z
VR

E2

8�
dV: (6.21)

By integration we find

 U 
Z E2

8�
dV �

Q2

8r1

�
6�

2

1� b2 � 3b ln
1� b
1� b

�
;

(6.22)

where b � r1=2xQ. Expanding this in powers of r1=xQ
leads to

 U �
Q2

2r1

�
1� 2

�
r1

xQ

�
2
�

1

16

�
r1

xQ

�
4
� � � �

�
(6.23)

which gives U � Q2=2r1 when r1 � xQ. From Eq. (6.21)
we now get the buoyancy, i.e. force from the stresses in the
electric field, upon the inside surface of the sphere,

 S � gQU �
gQQ2

2r1
(6.24)

which is different from the expression (5.14) found by
Harpaz [2].

The Maxwellian stress force acting on the outside of the
sphere is opposite to the force S. Thus, it is acting down-
wards and is equal to the weight of the electric field in VR.

VII. THE MECHANISM OF THE BUOYANCY IN A
STATIONARY ELECTROMAGNETIC FIELD

We consider a region of Rindler space which is free from
charge and current. Under stationary conditions Eq. (2.12)
give the following equations for ~E and ~B,
 

r � ~E � 0; r� ~E �
1

x
~E� ~ex; (7.1a)

r � ~B � 0; r� ~B �
1

x
~B� ~ex: (7.1b)

The equations are identical in form. Further the expres-
sions (6.12) and (6.18b) are symmetric in ~E and ~B, so the
field ~E in the examples below may everywhere be replaced
by ~B.

Let ~E be vertical field,

 

~E � E~ex: (7.2)

Then Eq. (7.1a) is satisfied when E is constant. We now
consider a volume in the form of a cube with side length s
and situated as shown in Fig. 2. According to Eq. (6.12)
there is a tension g0xE2=8� parallel to the direction of the
field, and a pressure of the same magnitude normal to the
field. Thus, on the vertical sides of the cube there are
pressure forces acting horizontally. Their sum is zero. On
the bottom plane there is a drag T1 � g0x1�E

2=8��s2 act-
ing downwards, and on the upper plane there is a drag T2 �
g0�x1 � s��E2=8��s2 acting upwards. The net Maxwell
stress forces acting on the cube (the buoyancy) is directed
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upwards and given by

 T2 � T1 � g0
E2

8�
s3 (7.3)

which is just the weight of the field in the volume, accord-
ing to Eq. (6.8).

Next we let ~E be in the y-direction,

 

~E � Ey ~ey: (7.4)

Then Eq. (7.1a) requires that Ey � k=x where k is a con-
stant. Also in this case the forces on the vertical sides are
horizontal. On two of them there are opposite drags of the
same magnitude, as shown in Fig. 2. On the other two
vertical sides there are pressure forces of equal magnitude
in opposite z-directions. The sum of the horizontal forces is
zero.

On the bottom plane there is a pressure force acting
upwards,

 P1 � g0x1
E2

8�
s2 �

g0

8�
k2

x1
s2 (7.5)

and on the top plane there is a pressure force acting down-
wards

 P2 � g0�x1 � s�
E2

8�
s2 �

g0

8�
k2

x1 � s
s2: (7.6)

Thus there is a buoyancy on the cube given by

 P1 � P2 �
g0

8�
k2

�
1

x1
�

1

x1 � s

�
s2 (7.7)

which according to Eq. (6.18) is the weightW of the field in
the cube

 W �
Z
V
g0

1

8�
~E2dV �

g0

8�

Z
V

k2

x2 dV

�
g0

8�

Z x1�s

x1

k2s2

x2 dx �
g0

8�
k2

�
1

x1
�

1

x1 � s

�
s2: (7.8)

These examples show that in a vertical field the buoy-
ancy is due to a tension that increases with height. In a
horizontal field the mechanism is like that in a fluid in
which the buoyancy is due to a pressure which increases
with depth.

It should be noted that the buoyancy is extremely small
in an electrical field due to its small mass density compared
to that of, for example, air, which is 1:3 kg=m3 at standard
temperature and pressure. Consider an electrical field equal
to the ionization field of the Earth’s atmosphere, E �
2:4� 106 V=m. The energy density of this field is about
25 J=m3. However, the mass density is only 2:8�
10�16 kg=m3. The weight of one cubic meter of this field
at the surface of the Earth is approximately 2:7� 10�15 N.
At the surface of a neutron star the acceleration of gravity
is 3� 1012 m=s2. Even in such a strong gravitational field
the weight of the above electrical field is only about a
hundredth of a Newton, i.e. equal to the weight of a milli-
gram mass at the surface of the Earth.

VIII. CONCLUSION

A laboratory at the surface of the Earth is not freely
falling. It is not an inertial frame. Relative to an inertial
frame it accelerates upwards with the acceleration of grav-
ity. It accelerates uniformly. Hence one may obtain knowl-
edge about the physics experienced in a laboratory at the
surface of the Earth by studying corresponding phenomena
in a uniformly accelerated reference frame. Flat spacetime
as experienced in such a frame is called Rindler space. In
this space one experiences an acceleration of gravity.

In the present work we have studied modifications of
Maxwell stresses in electromagnetic fields due to gravity.
In the electric field of a point charge at rest in the Rindler
space, the field lines are bent downwards and shaped like a
fountain. In this field there is a force density due to the
Maxwell stresses, as given in Eq. (3.12). It is inversely
proportional to the curvature radius of the field lines.

We have calculated the exact expression for the
Maxwellian stress force acting upwards on the inner
spherical surface around a point charge. An approximate
form of this expression, valid for a small sphere, is given in
Eq. (5.14). A related expression is Eq. (5.21) which gives
the Maxwell stress force acting upon the plane x � 0,
representing the horizon plane of the Rindler space.
Multiplying this force by the velocity of light we obtain
Larmor’s formula for the power radiated by an accelerated
charge. This does not mean, however, the presence of any
electromagnetic radiation in the Rindler space. The situ-
ation we have considered has been static.

→
E

→
EVertical field Horizontal field 

2T

1T

2P

1P

sx +1

1x

x 

y 

FIG. 2. The figure shows the buoyancy in the Rindler frame
due to Maxwell stress in an electrostatic field. In a vertical field
the buoyancy is due to a tension that increases with height. In a
horizontal field the mechanism is a pressure that increases with
depth.
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From a covariant theory of electromagnetic stresses in
Rindler space we have formulated Archimedes’ law for
stationary electromagnetic fields in Rindler space. In this
case the buoyancy is due to Maxwell stresses. In a vertical
electric (or magnetic) field they are tensions acting up-
wards on the upper horizontal surface of a volume element
in the field and downwards on the bottom part. The tension
increases with height, producing a surface force—a buoy-
ancy—equal to the weight of the electric field in the
volume element. In a horizontal field the Maxwell stresses
produce a vertical pressure which increases with depth just

as in a fluid. For an arbitrary electromagnetic field these
two mechanisms act together to give a buoyancy on a
surface enclosing a region of the field equal to the weight
of the enclosed field. Hence we arrive at the Archimedian
law for an electromagnetic field. There is a buoyancy in the
field equal to the weight of the displaced field.
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