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In spite of the macroscopic character of the primordial fluctuations, the standard inflationary distribu-
tion (that obtained using linear mode equations) exhibits inherently quantum properties, that is, properties
which cannot be mimicked by any stochastic distribution. This is demonstrated by a Gedanken experiment
for which certain Bell inequalities are violated. These violations are in principle measurable because,
unlike for Hawking radiation from black holes, in inflationary cosmology we can have access to both
members of correlated pairs of modes delivered in the same state. We then compute the effect of
decoherence and show that the violations persist provided the decoherence level (and thus the entropy) lies
below a certain nonvanishing threshold. Moreover, there exists a higher threshold above which no
violation of any Bell inequality can occur. In this regime, the distributions are ‘‘separable’’ and can be
interpreted as stochastic ensembles of fluctuations. Unfortunately, the precision which is required to have
access to the quantum properties is so high that, in practice, an observational verification seems excluded.
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The inflationary paradigm [1] successfully accounts for
the properties of primordial spectra revealed by the com-
bined analysis of CMBR temperature anisotropy and Large
Scale Structure spectra [2]. In particular, it predicts that the
distribution of primordial fluctuations is homogeneous,
isotropic and Gaussian, and that the power spectrum is
nearly scale invariant (simply because the Hubble radius
was slowly varying during inflation).

Surprisingly, inflation implies that density fluctuations
arise from the amplification of vacuum fluctuations [3];
because of backreaction effects, the vacuum is indeed the
only possible initial state [4]. In addition of being ampli-
fied, the modes of opposite wave-vectors k and�k end up
highly correlated. More precisely, using linear mode equa-
tions, the vacuum evolves into a product of two-mode
squeezed states [5–8]. The highly squeezed character of
the distribution implies the vanishing of the variance in one
direction in phase space. This direction is that of the
decaying mode [7]. The observational consequence of
this squeezing are the acoustic peaks in the temperature
anisotropy spectrum [9,10].

In spite of the macroscopic character of the mode am-
plitudes, we shall show that the inflationary distribution is
still entangled in a quantum mechanical sense. To prove
this, we shall provide observables able to distinguish quan-
tum correlations from stochastic correlations. At this point,
it is important to notice that, unlike for Hawking radiation
from black holes, we have in principle access to the purity
of the state since, both members of two-mode sectors in the
same state can be simultaneously observed on the last
scattering surface [11].

Another important element should now be discussed: the
linear mode equation is only approximate. Indeed, even in
the simplest inflationary models there exists gravitational
interactions which couple sectors with different k’s, and
induce non-Gaussianities [12]. However, as in the BCS

description of superconductivity [13], the weakness of
the interactions allows to approximate the distribution by
a product of Gaussian two-mode distributions [10,14]. The
nonlinearities will then affect the power spectrum as if
some decoherence effectively occurred. In this sense, infla-
tionary distributions belong to the class of Gaussian homo-
geneous distributions obtained by slightly decohering the
standard distribution derived with linear mode equations.
Notice also that in general, we have an experimental access
to the state of a system only through a truncated hierarchy
of its Green functions, the Gaussian ansatz being the lowest
order (Hartree) approximation.

In the absence of a clear evaluation of the importance of
nonlinearities (see Note Added), it is of value to phenom-
enologically analyze the above class. It is characterized by
three k-dependent parameters. The first governs the power,
see nk in (2). The second gives the orientation of the
squeezed direction in phase space, whereas the third con-
trols the strength of the correlations between modes with
opposite momenta. The latter is strongly affected by deco-
herence effects, and shall be used to parameterize the
decoherence level. It has been understood [9,10] that this
level cannot be too high so as to preserve the well defined
character of the acoustic peaks. However what is lacking in
the literature concerning the quantum-to-classical transi-
tion is an operational identification of the subset of distri-
butions exhibiting quantum correlations.

To fill the gap, we propose a Gedanken experiment
which shows that certain Bell inequalities are violated
when using the standard distribution. We then show that
the violation persists provided that the decoherence level
lies below a certain threshold. Finally we point that there
exists a higher threshold above which no violation of any
Bell inequality can occur. The corresponding distributions
are separable (see below for the definition) and can be
interpreted as stochastic ensembles.
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In inflationary models based on one inflaton field, the
linear metric (scalar and tensor) perturbations around the
homogeneous background are governed by massless mini-
mally coupled scalar fields obeying canonical commuta-
tion relations [15]. The scalar metric perturbations are
driven by the inflaton fluctuations and correspond to per-
turbations along the background trajectory, called adia-
batic perturbations [16]. At the end of inflation, the
homogeneous inflaton condensate decays and heats up
matter fields. After inflation, during the radiation domi-
nated era, the adiabatic perturbations correspond to density
perturbations of the matter fields (radiation, dark matter,
. . .) which all start to oscillate in phase. The fluctuations
orthogonal to these, called isocurvature, are not excited on
cosmological scales in one inflaton field models. There-
fore, in the linear approximation, the phase and amplitude
of the k-th Fourier mode of each matter density fluctuation
is related, via a time dependent transfer matrix, to the value
of �k and its time derivative evaluated at the end of
inflation (� being the canonical field governing scalar
metric fluctuations during inflation). This implies that the
properties of the correlations of the density fluctuations are
the same as those of �k.

We now briefly outline how one obtains highly squeezed
two-mode states [5,7]. During inflation, in the linearized
treatment, each �k evolves under its own Hamiltonian

 Hk �
1

2

�
j@��kj

2 �

�
k2 �

@2
�a

a

�
j�kj

2

�
; (1)

where � is the conformal time d� � dt=a and a is the
scale factor. To follow the mode evolution after the reheat-
ing time �r, we continuously extend the inflationary law to
a radiation dominated phase wherein a / �. In quantum
settings, the initial state of the relevant modes (i.e. today
observable in the CMBR) is fixed by the kinematics of
inflation [4]: these were in their ground state about 70 e-
folds before the end of inflation (the minimal duration of
inflation to include today’s Hubble scale inside a causal
patch). From horizon crossing k=a � H till the reheating
time, �k2 � @2

�a=a� in (1) is negative. As a result, at the end
of inflation, the initial vacuum has evolved into a tensor
product of highly squeezed two-mode states.

The resulting distribution belongs to the class of
Gaussian homogeneous distributions, see [14] for more
details. These are characterized by their two-point func-
tions, best expressed as

 hâykâk0 i � nk�3�k� k0�; hâkâk0 i � ck�3�k� k0�:

(2)

The destruction operator âk is defined by âke�ik�r ���������
k=2

p
��̂k � i@��̂k=k� where �̂k is evaluated at �r. The

mean occupation number governs the power spectrum, as
shall be explained after Eq. (5). To meet the observed r.m.s.
amplitude of the order of 10�5, one needs nk � 10100, i.e.

highly excited states. The phase arg�ck� gives the orienta-
tion of the squeezed direction in phase space at �r. In
inflation, using the above phase conventions, one gets
arg�ck� � ��O�n�3=4

k �. Finally, the norm of ck governs
the strength of the correlations between partner modes k,
�k, i.e., the level of the coherence of the distribution. To
parameterize the (de)coherence level, we shall work at
fixed n and arg�c� (in the sequel we drop the k indexes),
and write the norm jcj as

 jcj2 � �n� 1��n� ��: (3)

The standard distribution obtained in the linear treatment is
maximally coherent and corresponds to � � 0. The least
coherent distribution, a product of two thermal density
matrices, corresponds to � � n.

The physical meaning of � is revealed by decomposing
the adiabatic modes in terms of the amplitudes �g; d� of the
growing and decaying solutions. Taking into account the
time dependence of the corresponding transfer matrix, any
matter density fluctuation can be used. For simplicity, we
shall use the massless field � extended in the radiation
dominated era. In this case, the transfer matrix of âk is
simply e�ik�. Decomposing

 �̂ k��� � ĝk
sin�k�����

k
p � d̂k

cos�k�����
k
p ; (4)

Equations (2) give
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The last expression in each line is valid when the
decoherence is weak, i.e. �� n. In this regime, the power
spectrum Pk � k3h�̂k����̂�k���i ’ k

2nksin2�k�� is
dominated by the growing mode. At fixed �, it therefore
displays peaks and zeros as k varies. From the last Eq. (5),
one sees that the decoherence level � fixes the power of the
decaying mode. (The same conclusions would have been
reached had we considered dark matter or temperature
perturbations.)

Even though Eqs. (2) univocally determine the corre-
sponding (Gaussian) distribution, they are unable to sort
out the distributions possessing quantum properties from
those which have lost them, or in other words, to determine
the ranges of � characterizing these two classes. To opera-
tionally do so, it is necessary to introduce operators which
are not polynomial in ĝk and d̂k [17].

In what follows, we shall use operators based on
coherent states. These obey âkjv;ki � vjv;ki and
â�kjw;�ki � wjw;�ki. They are minimal uncertainty
states and each of them can be considered as the quantum
counterpart of a point in phase space, here a classical
fluctuation with definite phase and amplitude. This corre-
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spondence is excellent in the regime n� 1. Moreover,
they play a key role when considering decoherence: when
modes are weakly coupled to an environment, the reduced
density matrix becomes diagonal in the basis of coherent
states [18], or other minimal uncertainty states [19].

Coherent states are particularly useful in our context
because they will allow us to sort out entangled quantum
distributions from stochastic ones. The reason is that co-
herent states can probe the detailed properties of the dis-
tribution. In particular, the probability to find a particular
classical fluctuation is given by the expectation value of the
projector on the corresponding (two-mode) coherent state,
namely

 ��v;w� � jv;kihv;kj 	 jw;�kihw;�kj: (6)

The probability is
 

Q�v;w;�� � Tr
�2�����v;w��

�
1

n� 1
exp

�
�
jvj2

�n� 1�

�

�
1

1� �
exp

�
�
jw� �w�v�j2

1� �

�
; (7)

where �2��� is the matrix density of the two-mode system.
We have writtenQ�v;w;�� in an asymmetric form to make
explicit the power of the growing mode ( � n� 1), and the
much smaller width ( � 1� �) governing the dispersion
of the values of w around �w�v� � vc=�n� 1�, the condi-
tional amplitude of the partner mode, given v. Had we used
a projector on a one-mode coherent state, we would have
gotten only the first Gaussian. In fact, as we shall see, to
have access to the (residual) quantum properties of the
distribution, one must use the two-mode projectors (6).
As explained in [11], these projectors also allow to com-
pute conditional values which cannot be expressed in terms
of mean values. For instance, Tr
����̂��;x�� gives the
space-time pattern of fluctuations when the set of configu-
rations specified by the projector � is realized.

Given the macroscopic character of mode amplitudes in
inflationary cosmology, it is remarkable that the projectors
(6) can violate Bell inequalities. To understand the origin
of this possibility, it is necessary to define the class of
separable states [20]. A two-mode state is said separable
if it can be written as a positive sum of products of one-
mode density matrices Separable Gaussian states can all be
written in terms of the projectors (6) as [14]

 �sep
2 ��� �

Z d2v
�

d2w
�

P�v;w;����v;w�: (8)

The function P is given by

 P�v;w;�� �
1

�0
exp

�
�
jvj2

n

�
� exp

�
�
jw� ~wj2

�0=n

�
; (9)

with ~w � cv=n and �0 � n2 � jcj2 � 0. The latter im-
plies jcj � n, or � � n=�n� 1� ’ 1 for n� 1. (The limit-

ing case jcj � n, � � n=�n� 1� is interesting: the second
exponential becomes a double Dirac delta which enforces
w � cv=n � �v in phase and amplitude. In other
words, for each two-mode sector, there is only one fluctu-
ating quantity, since the second mode is completely fixed
by its partner. In inflationary cosmology, the corresponding
density matrix can be viewed as the quantum analogue of
the usual stochastic distribution of growing modes. Indeed,
the entropy of this quantum distribution is ln�n� per two-
mode, and this is the entropy of the stochastic distribution
for each growing mode [14]. This quantum-to-classical
correspondence is corroborated by the fact that off-
diagonal matrix elements of ���� in the coherent state
basis vanish precisely when � > 1.

The physical meaning of separable states comes from
the fact that all states of the form (8) can be obtained by the
following classical protocol [20]: when a random generator
produces the four real numbers encoded in �v;w� with
probability P, two spacelike separated observers perform-
ing separate measurements on the subsystems k and �k
respectively, prepare them into the two-mode coherent
state jvijwi. Nonseparable states can only be produced
by letting the two parts of the system interact. Only these
are quantum mechanically entangled.

By construction, the statistical properties of separable
states can be interpreted classically. In particular, they
cannot violate Bell inequalities [20]. In what follows we
shall study the ‘‘Clauser-Horne’’ inequality [21,22] be-
cause it is based on Q of (7). It reads
 

C�v;w;�� � 
Q�0; 0;�� �Q�v; 0;�� �Q�0; w;��

�Q�v;w;��� �
�
n� 1

2

�
� 1: (10)

We can now search for distributions, i.e. values of �, and
for configurations v and w which maximize C. The max-
imization with respect to w gives arg�cvw� � � and
jwj � jvj. We fix the arbitrary phase of v by 2 arg�v� �
arg�c�, so that C is maximum along the ’line’ w � �v. In
Fig. 1 we have plotted C�v;�v; �� for three values of �.

The maximum with respect to the norm of v is reached
for
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The maximal value is

 CM��� �
1

2�1� ��
�

�
1�

3

24=3
�O

�
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n

��
: (12)

The inequality (10) is thus violated for

 � <
�1� 3=24=3

2
’ 0:095; (13)

irrespectively of the value of n when n� 1.
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From the last two equations we learn that Bell inequality
(10) is violated by the standard inflationary distribution
(� � 0). Notice that this violation is maximal, as one might
have expected, since the two-mode correlations are the
strongest in this state. More importantly, if � obeys (13),
the violation persists in the regime of highly amplified
modes obtained in inflationary cosmology.

In conclusion, our principle results are the following.
First, in spite of the macroscopic character of adiabatic
fluctuations, the standard inflationary distribution pos-
sesses quantum features which cannot be mimicked by
any stochastic distribution. Second, these features are op-
erationally revealed by a well defined procedure based on
the violation of the Bell inequality (10). Third, the projec-
tors used in this inequality have a clear meaning in cos-
mology: they give the probability that a particular
semiclassical fluctuation be realized. Fourth, the mere ex-
istence of decoherence effects is not sufficient to eliminate
the quantum properties. To do so, decoherence should be
strong enough so as to induce � � 1, that is, so that the
distribution becomes separable.

The threshold value � � 1 therefore plays a double role.
First, as previously noticed, the distribution with � � 1
possesses an entropy ( � lnn per two-mode) which is equal
to that of the classical distribution of growing modes.
Second, separability is the condition for distinguishing
quantum from classical distributions, see e.g. [23] where
it was used to define the time of decoherence. To our

knowledge, besides the present work, this criterion of the
study of the quantum-to-classical transition has not been
used in inflationary cosmology.

Let us now briefly address two additional questions.
Firstly, to what extend the violation of the inequality (10)
is verifiable? We start by pointing out that there is no
physical principle which prevents evaluating the four terms
in Eq. (10). Because of isotropy, in a given comoving
volume (e.g. a sphere of radius R), we have, for a given
wave vector norm k � jkj, about �kR�2 adiabatic modes all
characterized by the same two-mode density matrix. This
is true before and after the reheating, and also irrespec-
tively of the decoherence level. Finally this is still true
when considering the projection of the adiabatic modes on
the last scattering surface. Indeed, for sufficiently high
angular momentum, there exist an ensemble of well
aligned two-modes with both members living on the last
scattering surface [11]. One can thus accumulate statistics
to measure the four observables of Eq. (10). Unfortunately,
an observational verification of the inequality Eq. (10)
seems excluded. Indeed the cosmic variance, which is of
the order of the mean amplitude (hence proportional to n�
10100), is much larger than the required precision, which is
given by the spread of the coherent states ( � 1) [24].

The second question concerns the value of � in realistic
inflationary models. This interesting question deserves
further study, see Note Added. Let us here simply compare
the critical value � � 1 separating quantum from stochas-
tic distributions to the expected level of non-Gaussianities.
At the end of inflation, the two-point function of the
gravitational potential � is conventionally [25] parameter-
ized by the coefficient fNL entering the field redefinition
� � 
�� fNL�2=�aM��=�

���
�
p
Ma� where � is our Gauss-

ian field during inflation, M is Planck mass, and � the slow
roll parameter. It has been observationally limited to
�58< fNL < 134 [2], while theoretical calculations give
fNL � O�10�2� for the inflationary phase. On one hand,
the variation of the power spectrum of � is therefore
�P=P ’ f2

NLP where P is the power spectrum in the linear
approximation ( ’ 10�10). On the other hand, using (5),
one gets �P=P � �=n. Therefore fNL � 10�2 corre-
sponds to � ’ nPf2

NL ’ 1086. This indicates that the mini-
mal source of decoherence, the nonlinear interactions
during inflation, should be strong enough to give rise to
separable distributions.

We would like to thank Ulf Leonhardt and Serge Massar
for interesting discussions and suggestions.

Note Added.—The question of the importance of deco-
herence effects induced by the weak non-linearities ne-
glected in the standard treatment has been recently
addressed in a couple of preprints [26]. The non-linearities
have been treated in the Gaussian approximation, as in
[18,19]. Therefore the reduced density matrices belong to
the class of partially decohered matrices described in
Eqs. (2) and (5), and considered in more details in [14].

1.1

1

1.05

0.95

0.85

x

10.80.60.40.20

0.9

FIG. 1 (color online). The loss of violation as decoherence
increases. We have represented C�v;�v; �� as a function of x �
jvj2 for n � 100 and for three values of �: 0 (upper), 0.05
(middle), and 0.1 (lower). The horizontal line (C � 1) is the
maximal value allowed by classically correlated states.
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To simplify the calculation, the environement has been
effectively described by local correlation functions, i.e.
by only short wave length modes. Since this simplification

still requires to be legitimized, the decoherence level at the
end of inflation, i.e. the value of �, is still unknown.
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