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Recently striking multiple relations have been found between pure state two- and three-qubit
entanglement and extremal black holes in string theory. Here we add further mathematical similarities
which can be both useful in string and quantum information theories. In particular, we show that finding
the frozen values of the moduli in the calculation of the macroscopic black-hole entropy in the S7TU model
is related to finding the canonical form for a pure three-qubit entangled state defined by the dyonic
charges. In this picture the extremization of the BPS mass with respect to moduli is connected to the
problem of finding the optimal local distillation protocol of a GHZ state from an arbitrary three-qubit pure
state. These results and a geometric classification of STU black holes, BPS and non-BPS can be described
in the elegant language of twistors. Finally an interesting connection between the black-hole entropy and
the average real entanglement of formation is established.

DOI: 10.1103/PhysRevD.74.024030

L. INTRODUCTION

Recently there has been much progress in two seemingly
unrelated fields of theoretical physics. One of them is
quantum information theory which concerns the study of
quantum entanglement (the ‘“‘characteristic trait of quan-
tum mechanics”™ [1]) and its possible applications such as
quantum teleportation [2], quantum cryptography [3] and,
more importantly, quantum computing [4]. The other is the
physics of stringy black holes which has provided spec-
tacular results such as the black-hole attractor mechanism
[5] and the microscopic calculation of the black-hole en-
tropy [6] related to the nonperturbative symmetries found
between different string theories [7-9].

As far as mathematics is concerned, these two different
strains of knowledge turned out to be related when Duff
[10] pointed out that the entropy of the so-called extremal
Bogomolny-Prasad-Sommerfield (BPS) STU black hole
can be expressed in a very compact way in terms of
Cayley’s hyperdeterminant [11] which plays a prominent
role as the three-tangle [12] in studies of three-qubit en-
tanglement. Recently further mathematical similarities
have been found by Kallosh and Linde [13]. They have
shown that the entropy of the axion-dilaton black hole is
related to the concurrence which is the unique pure two-
qubit entanglement measure. They have stretched the va-
lidity of the relationship between the three-tangle and the
STU black-hole entropy found by Duff to non-BPS black
holes. They have also related the well-known entanglement
classes of pure three-qubit entanglement to different
classes of black holes in string theory. Finally they empha-
sized the universal role of the Cartan-Cremmer-Julia E7(7
invariant playing as the expression for the entropy of black
holes and black rings in N = 8 supergravity/M theory. By
making use of the SU(8) symmetry, they have pointed out
that the three-tangle shows up in this invariant too.

These results are intriguing mathematical connections
arising from the similar symmetry properties of qubit
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systems and the web of dualities in the STU model. As
far as classical supergravity is concerned, the symmetry of
the extremal STU model is SL(2, R)®* or, taking into
account quantum corrections and the quantized nature of
electric and magnetic charges, SL(2, Z)®3. In string theory
the latter symmetry group is also dictated by internal
consistency. In qubit systems on the other hand, the sym-
metry group in question is the group of stochastic local
operations and classical communication (SLOCC) which
is SL(2, C)®3. Hence the groups connected to dualities
occurring in stringy black holes are related to integers or
at most to the real number system. However, the power of
entanglement is related to the special role played by com-
plex numbers in quantum theory. This manifests itself at
the level of three-partite protocols in the use of the larger
group SL(2, C)®? [or more generally in GL(2, C)®?], giv-
ing rise to interesting complex geometry [14] similar to the
one found in twistor theory [15,16].

In the treatments of Refs. [10,13], instead of the eight
complex numbers characterizing a general (unnormalized)
three-qubit state, the eight integers corresponding to the
quantized electric and magnetic charges of N =2, D =4
supergravity have been used. Hence in this case we have a
correspondence between quantized charges and the integer
amplitudes of a special class of (unnormalized) real three-
qubit states. Already using these real quantum bits or rebits
[17] enabled the authors of Refs. [10,13] to obtain amazing
formal correspondences between stringy black holes and
quantum entanglement. Now the following question arises:
can we find further relationships displaying the power of
three-qubit entanglement in the more general complex
context? One of the aims of the present paper is to answer
this question in the affirmative. We show that the well-
known process of finding the frozen values of the moduli
for the calculation of the macroscopic black-hole entropy
in the STU model is related to the problem of obtaining the
canonical decomposition for the three-qubit states defined
by the charges using complex SLOCC transformations. We
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also regard this paper as an attempt to establish some sort
of dictionary between the languages used by string theo-
rists and researchers working in the field of quantum
information theory. In particular, we would like to show
how the general theory of complex three-qubit entangle-
ment contains, in the form of real states, the important
cases studied by string theorists in the special case of STU
black holes.

The organization of the paper is as follows. In Sec. II the
background concerning three-qubit entanglement is pre-
sented. Here we also discuss the canonical form of three-
qubit states (the analogue of the Schmidt decomposition
for two qubits), and its relationship to three-qubit invari-
ants. Special attention is paid to the important special case
of real states which will play the dominant role in subse-
quent chapters as the ones describing STU black holes.
Here a new result concerning the algebraic characterization
of such real states embedded in the more general complex
ones is obtained. In Sec. III, in the context of the super-
symmetric STU model, we present the quantum entangle-
ment version of the well-known process of freezing the
moduli by extremization of the BPS mass [5]. It turns out
that this extremization is related to finding the optimal
distillation protocol of a GHZ state in the entanglement
picture. The solutions of the stabilization equations result-
ing in the STU black-hole entropy formula have been
obtained in [18]. We show that the process of finding the
frozen values of the moduli is just the one of obtaining a
canonical form for the corresponding three-qubit state by
employing complex SLOCC transformations. In Sec. IV,
using the complex principal null directions of the two-
plane in C* containing the two real four-vectors of the
charges, we shed some light on the geometric meaning of
this canonical form. Here an alternative geometric picture
for the classification of BPS and non-BPS black holes,
small and large, is also suggested. It is based on the
intersection properties of a complex line in CP* with a
fixed quadric. Finally an interesting connection between
the black-hole entropy and the real entanglement of for-
mation is established in Sec. V. This section also contains
some comments and the conclusions.

II. THREE-QUBIT ENTANGLEMENT

An arbitrary (unnormalized) three-qubit pure state
l¢) € C?> ® C? ® C? is characterized by eight complex
numbers ¢;;; with [, k, j = 0, 1 and can be written in the
following form:

ly) = Zl/’zkjwkj),

Lkj

lkj) = 1c ® |k)p ® |j}a. (1)

We can imagine three parties (Alice, Bob, and Charlie),
wildly separated, possessing a qubit from the entangled
three-qubit state |i). (Above we have adopted the conven-
tion of Ref. [13] of labeling these qubits from the right to
the left.) In a class of quantum information protocols the
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parties can manipulate their qubits reversibly with some
probability of success by performing local manipulations
assisted by classical communication between them. Such
protocols include stochastic local operations and classical
communication, hence they are called SLOCC transforma-
tions of the states. It can be shown [19] that such operations
can be represented mathematically by applying the group
GL(2, C)®} on the state |¢) in the form

gy — (C® Bo A)l|y), C®Be® A € GL(2 C)®.

@)

Since we are interested in states up to a physically irrele-
vant complex constant, we can fix the determinants of the
GL(2, C) transformations to 1; hence we can assume that
the group of SLOCC transformations is just SL(2, C)®.

In the SLOCC classification of pure three-qubit states,
one forms the space of equivalence classes C? ® C? ®
C?2/SL(2, C)®3. The result is as follows [19]. We have
six different equivalence classes. Four of them correspond
to the completely separable class (A)(B)(C) represented
e.g. by [000), and three classes of biseparable states of the
form A(BC), B(AC), and C(AB) represented e.g. by
(100) + |11)) ® |0) for the first of them. The remaining
two classes are the so-called Werner and Greenberger-
Horne-Zeilinger classes represented by the states |W) =
|001) +]010) + [100) and  |GHZ) = |000) + |111).
Hence, apart from the separable cases, three-qubits can
be entangled in two essentially different ways. The class
carrying the genuine tripartite entanglement is the GHZ
class. It is known that the GHZ state appears as the maxi-
mally entangled state [20], it violates Bell inequalities
maximally, and it maximizes the mutual information of
local measurements; moreover, it is the only state from
which an EPR state can be obtained with certainty. On the
other hand, the W state maximizes only two-qubit quantum
correlations [19] inside our three-qubit state.

There are a number of polynomial invariants character-
izing these entanglement classes. The most important one
is the SL(2, C)®? and permutation (triality) invariant three-
tangle [12] 745¢c = 4|D()| where

D) = Yiooinn + Woo1¥iio T Yor¥ion + ¥o11¥ioo
= 2(o00%001 Pr10¥111 + YoooPoro¥ior P
+ Yoootor1¥100¥111 + Yoororo¥101¥110
+ too1¥o11¥110¥100 T Yor0¥o11¥101%100)
+ 4(boootor1 Pro1¥110 + Yoot boro¥iooin) - (3)

is the Cayley hyperdeterminant [11]. By choosing the first,
second, or third qubit, one can introduce three sets of
complex four-vectors; e.g. by choosing the first i.e.
Alice’s qubit we define
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Pooo Poor
(A) _ Yoo 77(A) _ on
! Yoo | ! Y01 &)
0 Ui
LJ=1,...,4

Similarly we can define the pairs of four-vectors
(€B), »®)) and (£©), »(©). Alternatively one can define
three bivectors PW = ¢é@ A »@  with components
(Pliicker coordinates)

Py =& nf" — ' 5)
and similarly with the label A replaced by B or C. Then we
have [14,21]

Tape = 2|P%)P(A)IJ| _ 2|P§§)P(B)”| _ 2|P(I§)P(C)IJ|’
(6)

where indices are raised with respect to the SL(2, C) X
SL(2, C) invariant metric g = ¢ ® ¢,

0 0 0 1
0 0 -10 0 1\ [0 1
7 _ -
8 0 -1 0 0 (—1 o>®<—1 o)‘
1 0 0 0

)

Since the Pliicker coordinates (5) are SL(2, C) invariant,
Eq. (6) shows the SL(2, C)®3 invariance and triality at the
same time. Notice that the three-tangle can also be written
in the form

Tapc = 4(E-E(n-n) — (-2 =4-DWI ®

with & - n = g &,m,, and the possible labels A, B, C of &
and 7 are now suppressed.

The physical importance of the three-tangle 7, is that
it discriminates between the two different types of three-
qubit entanglement. For the W class we have 745 = 0 and
for the GHZ class 745¢ # 0. In order to also discriminate
between different types of separability, we need further
invariants. These are defined as follows.

Let us define the one- and two-partite reduced density
matrices

pa = Trpcly)Xil, prc = Tral)yl, &)

and the quantities pg, pc, pac, and p,p are defined ac-
cordingly. Note that the trace of these quantities for un-
normalized pure three-qubit states is not fixed to 1. Then
we can define the quantity 74¢) called the squared con-
currence between the subsystems A and BC as

4
Tae) = 4detpy =2 Z P%)P%). (10)
1J=1

Similarly one can define (¢ and T¢(4p), using P*) and
PO, respectively. Notice that we now have complex con-
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jugation in the first factor and now the indices are not
contracted by the metric g. In order to understand this by
suppressing subsystem labels, we can alternatively write

TABC) = 4(<§|§><77|77> - |<§|77>|2), (11)

where (&|n) = Z‘;:l £;m;. Equation (11) should be com-
pared with Eq. (8). We remark that the expressions for 7,5
and 74(g¢) can be written in a unified way by going to the
“magic base”’[22] via using a suitable unitary transforma-
tion. In this case [14] Topc = 2|PyyP""| and 743¢) =
2P,y PMN where, in this base, indices are simply raised by
SMN M, N =1, 2, 3, 4 with M and N now labeling the
components in the magic base. This way of writing uses the
fact that (SL(2, C) ® SL(2, C))/Z, = O(4, C). Here, in or-
der to establish connections with the formalism of stringy
black holes, however, we follow a different route and use
the somewhat more complicated expressions of Egs. (6)
and (10). Notice also the factors of 2 appearing in these
formulas. These are necessary for normalized states, since
in this case all four quantities take values in the interval
[0, 1].

Looking at Eq. (11) itis clear that 74(5¢) = 0if and only
if £ and W are linearly dependent. (We exclude the
trivial cases with ¢ or 7 vanishing.) This means that the
corresponding reduced density matrix p, has rank one, a
condition equivalent to A(BC) separability. Hence
Tace) = 0 iff [) is A(BC) separable. Similarly the van-
ishing of the squared concurrences 7p4¢) and 7¢(4p) in-
dicate separability of the form B(AC) and C(AB).

What about the invariance properties of our quantities
TaBC)> Thac)» and Tcup)? Clearly these quantities are
individually invariant with respect to SL(2, C) ® U(4),
where the SL(2, C) part is acting on the qubit which was
singled out from the rest. However, all three quantities are
left invariant merely with respect to the action of the
subgroup SU(2)®3.

Using the four invariants 74g¢, Tac)» TaAc)» a0d Tc(ap),
one can obtain the classification of pure three-qubit states
[19]. For the completely separable class, all of our invar-
iants are vanishing. For the A(BC) class only 745 and
Tapc) are vanishing. After the appropriate permutations
the same can be said for the remaining biseparable classes.
For the W class only 74p¢ is vanishing, and at last for the
GHZ class none of the invariants is vanishing.

How can we characterize two-partite correlations inside
our three-qubit state? In order to do this we have to look at
the density matrices pap, pac, and ppc. Generally these
states are mixed, so we have to characterize also two-qubit
mixed-state entanglement. A useful measure for the most
general type of two-qubit mixed-state entanglement is 745
which is the squared concurrence for the mixed state in
question [22],

Tap = (max{A; — A, — A3 = Ay, 0})2 (12)
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where A;, i = 1, 2, 3, 4 is the nonincreasing sequence of the
square roots of the eigenvalues of the nonnegative matrix

pp = pls ®£)p(s ® ). (13)

The quantities 74 and 7 are defined accordingly. Notice
that the trace of the matrix pp due to the Hermiticity of p is
an SL(2, C) X SL(2, C) invariant, since it is of the form

Tr(pp) = prp". (14)

Consequently the traces of all powers of the matrix pp are
also invariant with respect to this group. The result is that
the quantities 745, 7c, and 74¢ are SL(2, C) ® SL(2, C)
invariant too.

In the special case when the mixed two-qubit state sits
inside the pure three-qubit state, we have

(pc)y = EVED + W7, (15)

i.e. all of our two-qubit mixed-state density matrices have
at most rank two. This means that in the formula (12) we
have at most two nonzero eigenvalues A; and A,. The
invariants discussed above are not independent, they are
subject to the important relations [12]

TaBC) = Tap + Tac T Tapc (16)

while the two other ones can be obtained by cyclic permu-
tations. These relations implying that e.g. T4pc) = Tap +
74c are also called the entanglement monogamy relations,
expressing the fact that, unlike classical, quantum correla-
tions cannot be shared freely between the parties.

There is one more invariant whose geometric meaning
was clarified in Ref. [14]. Consider a pure three-qubit state
which is nonseparable (i.e. none of the quantities 745¢),
Tpac) OF Tcap) 18 vanishing.) Then the three separable
bivectors P = & A m (in the following the labels A, B,
and C are implicit; we refer to the triple of these objects
by using plural for the corresponding quantities) are giving
rise to the planes aé; + bn; with a, b € C. Then we can
find the principal null directions of these planes by solving
the quadratic equations a’(¢ - &) + 2ab(€ - ) + b*(n -
1) = 0. The discriminant of these equations is just the
Cayley hyperdeterminant so we have two principal null
directions for 7,p5c # 0 and one for 745 = 0 for each
plane. Hence the number of principal null directions cor-
responds to the two nonseparable three-qubit entanglement
classes, the W class and the GHZ class. Assuming & - & #
0 and solving the quadratic equations for the ratio ¢, these
directions are

uf = —P, ¢ D¢, (17)

or alternatively assuming 7 - 1 # 0 and solving for the
ratio 2,

vi =Py’ =D, (18)
where D = D(¢) is the Cayley hyperdeterminant (3). Of
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course, these vectors are null i.e. u™ - u™ = v™ - v* =0;

moreover, the two sets of solutions are proportional i.e.
+ ¥

u~ ~ v™*. One can show that

I\/l—)uji,

i.e. they are eigenvectors of the Pliicker matrix with
eigenvalues *1 times the square root of Cayley’s
hyperdeterminant.

Let us now define the quantity

Pluj = Plv; = =JDvy,  (19)

oase = 1P + ™ [P + [lo* 1P + vl (20)

It can be shown [14] that o4 5 is permutation and SU(2)®?
invariant and, for normalized states, takes values in the
interval [0, 1]. [Remember that Eq. (20) can be defined
with three similar expressions with the corresponding
quantities #~ and v~ labeled by A, B, and C. The three
similar expressions turn out to be equal, reflecting triality.]
For the relationship of o4 to other permutation invari-
ants expressed in terms of density operators, see
Refs. [14,23].

What is the significance of our new invariant o,pc? It
will turn out that the sufficient and necessary condition for
an arbitrary complex three-qubit pure state to be SU(2)®?
equivalent to a real state can be expressed in terms of o4 p¢
in a simple form. These real states will be playing an
important role in our description of stringy black holes in
terms of three-qubit entanglement.

In order to find this condition we have to see how one
can find canonical forms for three-qubit states [24,25]. For
definiteness let us fix a qubit, say A. It was noted in [14]
that finding this canonical form is equivalent to first finding
one of the principal null directions by performing a trans-
formation / ® I ® Uy, with U, unitary and then perform-
ing further unitaries of the form U ® Ug ® I. After the
first step we can have ¢’ - ¢ =0, i.e. det(y),,) = 0, and
after the second &” = (ry, 0,0, 0)7, with r, a real number.
The result of this process for the canonical form is [24,25]

) = rol000) + €/ r,[001) + r,011) + r5]101)
+ ral111), @D

where the numbers r,, a =0, ..., 4 are real nonnegative
and 0 = ¢ = 7. Notice that, unlike in the two-qubit case
where the canonical form (the well-known Schmidt de-
composition) contains merely two real nonnegative num-
bers, here we also have an unremovable complex phase.
Note also that this decomposition is unique for 0 < ¢ < 7.
For the remaining cases ¢ = 0, 77, two canonical forms
exist (corresponding to the two principal null directions).
One can break this degeneracy by taking the form with the
smallest value for r| or, if | is unique, taking the form with
the smallest ry [25].

Based on the results of Ref. [25], we can show that the
expansion coefficients r,, a = 0, 1, ..., 4 and cos¢ can be
expressed in terms of the invariants T,p, Tpc, Tacs TABCS

024030-4



STRINGY BLACK HOLES AND THE GEOMETRY OF ...

and o 4pc. It is straightforward to show that Egs. (24-27)
of that paper in our notation look like

2 _
r5) 2(tap + Tapc)’ 22)
)2 = M 23
() 2o ppc =VA) )
w2 _ 78c(Tap + Tapc) 24
r3) 2o ppe =VA) &4
(rER = Tapc(Tag + Tagc) 25)

2Aoapc VA
(ri)* = wppc — (rg)* = (i) = (15> = ()% (26)

o TP+ (55— e/
Cosp™ = D pE T
ryryryry

. @D

where

A = 03 — (Tap + Tapc)(Tpc + Tapc)(Tac + Tape)-
(28)

Notice that, due to the fact that our states are unnormalized,
the norm squared w,pc = (¥|) as an obvious SU(2)®3
invariant appears.

Now, at last, how can we characterize real states inside
the complex ones? A pure three-qubit state is said to be real
when there exists a product basis where all coefficients are
real. There is a theorem [25] stating that a pure three-qubit
state is real if and only if

VTABTBCTAC = |0'ABC - wABCTABc| (29)
or
A=0 (30)

holds. Notice that unlike in Ref. [25] in these reality
conditions as the first result of this paper the role of
geometry via the occurrence of the principal null directions
is clearly displayed. Actually, in the paper of Acin et al.
[25] the reality conditions are not even expressed in terms
of our fundamental invariants. Looking back to the qua-
dratic equations determining the principal null directions,
one can show that if the initial states are real then (29)
holds and the null directions are both real, or (30) holds and
the null directions are complex conjugates of each other. In
the second case from Eqs. (22)—(27) one can see that in this
case r} =r, and cosgp’ = cosp . Notice the simple
form of the coefficients r, for the A =0 case. As we
will see in the next section the A = 0 case will hold for
supersymmetric BPS black holes, and the case character-
ized by Eq. (29) will correspond to nonsupersymmetric
non-BPS black holes.
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Closing this section we note the following important
facts to be used later. In order to reach a canonical form
we can start by choosing any of the qubits to play a special
role. In order to preserve the norm until this point, we used
unitary transformations to obtain this canonical form.
However, for unnormalized states we can relax this con-
straint and we can use the more general class of SLOCC
transformations on the chosen qubit, while for the remain-
ing ones we can continue using local unitaries. As we have
seen, this process will still result in a five term canonical
form. However, if we choose the full group of SLOCC
transformations than we can reach the simpler looking
representative states of the SLOCC classes, namely, the
separable, biseparable, W and GHZ classes. Starting from
an arbitrary complex state for the special case with D # 0,
we can arrive at the canonical GHZ state [000) + |111).
However, from the real states with A =0 we can only
reach GHZ states of the form [25]

[y = a(]000) + e|111)) (31)

with & generally not equal to 0. This canonical form will
play an important role in our later considerations concern-
ing BPS STU black holes. This completes our study of
three-qubit entanglement of the most general complex
type. In the following section we turn our attention to
a very special class of three-qubit entanglement.
Representative states will be unnormalized and have inte-
ger amplitudes. These states and their complexifications
will describe the entanglement properties of STU black
holes.

III. STU BLACK HOLES AND ENTANGLEMENT

Based on the results of the previous section we now
establish some new connections between the theory of
three-qubit quantum entanglement and the STU model,
admitting extremal black-hole solutions. In the following
we consider ungauged N = 2 supergravity in D =4
coupled to n vector multiplets. At first, the number n will
be arbitrary and we will specialize to the n = 3 case
corresponding to the STU model later. The Lagrangian
of such models can be constructed [26] and the relevant
piece of its bosonic part that we need is of the form [27]

1 .-
L = 3 [d“x«/—g{—R +2G;50,2'9,7g""

+2(ImN [ F'F) + Re N, FEFDY - (32)

Here F!, and *F!,I=1,2,...,n + 1 are two-forms as-
sociated with the field strengths F%,, of n + 1 U(1) gauge
fields and their duals. The z/, i = 1,...,n are complex
scalar fields that can be regarded as local coordinates on
a projective special Kéhler manifold M. This manifold
can be defined by constructing a flat symplectic bundle of
dimension 2n + 2 over a Kéhler-Hodge manifold with a
symplectic section (L/(z,Z), M,(z,2)), I, J =1,...,n + 1
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satisfying
i(EIM] - LIM]) = 1. (33)

Here L and M, are covariantly holomorphic with respect
to the Kéhler connection implying that after introducing
the holomorphic sections (X’, F,) as

LT =KX, M;=eX?F;, 9 X'=09;F;=0

(34)
the Kahler metric is G;; = 9;0;K with the Kahler potential
K=—-In l(XIF[ - XIF]). (35)

Finally the complex symmetric matrix /N ;; satisfies the
constraints

MI = N[JLJ, ImNIJLIl_IJ = _%: (36)

and
D;M; = N ;D;L’, D;=9; —1Ki. (37

For the physical motivation of Eq. (32) we note that such
Lagrangians arise by dimensional reduction of the ten-
dimensional string theory on a compact six-dimensional
manifold K and restriction to massless modes. In this case
our M is just the moduli space of XK. Indeed, Calabi-Yau
three-folds provide moduli spaces as realizations of special
geometry [28].
Defining

G =ReN,;F/ —ImN *F’ (38)

the covariant charges are defined as

(5)- (1) )

The central charge formula is given by
2z, p,q) = XCI2(X(2)g, — Fi(@)p").  (40)

As we see, the central charge is depending on the charges
and the moduli 7. Note that 7z’ are space-time dependent. It
is well known that extremal BPS black-hole solutions to
the equations of motion corresponding to the Lagrangian
(32) can be found. These are static, spherically symmetric,
asymptotically flat solutions with regular event horizons.
The solutions contain, besides the metric, our n + 1 gauge
fields and n scalars z/, both functions of the radial coor-
dinate only. Hence in these models the central charge (40)
is a function of the radial coordinate r. In the asymptoti-
cally flat limit r — oo we have for the mass of the BPS
black hole

M= |Z|oo = M(Zi(oo)’ P, Q)’ (41)

i.e. it saturates the mass bound demanded by supersymme-
try. In the other (i.e. the near horizon) limit, as in the case of
the extremal Reissner-Nordstrom solution, the metric takes
the AdS? X S? form
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2
dr* + |Zr|;°r drr +1ZI2,.dQ%> (42
with |Z|2_, the value of the central charge at the horizon.
Since the area of the event horizon is A = 47|Z[2 . the
macroscopic Bekenstein-Hawking entropy is

SBH = % = 7T|Z|}2]0r. (43)
Sgy again seems to depend on both the charges and the
values of the moduli on the horizon. However, it turns out
that the values of the moduli on the horizon are determined
by the charges [5]. This result is compatible with the one of
relating Sgy, @ macroscopic entropy, to a microscopic one
which counts states [6]. In string compactifications the
fields z/(r) define a flow in moduli space converging to a
fixed point, the “attractor’’ value of the moduli determined
by the charges. The attractor equations equivalent to the
ones coming from the extremization of the BPS mass

M]%,ps = |Z|2 = €K|X1611 - Flpll2 (44)

with respect to moduli are of the form [5]

P\ ZL!
(%) a 2Im(ZMJ ) )

Equation (45) provides a highly nontrivial constraint be-
tween the charges and the moduli.

There exist black-hole solutions for which the moduli
remain constant even away from the horizon [18,27];
hence, in this case, the black-hole mass itself is also a
function of the dyonic charges. These solutions are called
double extreme solutions. In the following we will concen-
trate on such types of solutions. Moreover, in order to find
mathematical similarities with the three-qubit system we
restrict our attention to the n = 3 case. The double extreme
solutions of the arising ST U model were found by Behrndt
et al. [18]; in the following we follow their notation.

For the STU model we have n = 3 and the correspond-
ing three constant moduli are conventionally denoted as
(z', 2% 2%) = (S, T, U). Our aim is to produce a quantum
entanglement version of the determination of their frozen
value dictated by the supersymmetric attractor mechanism.
We use special (inhomogeneous) coordinates for the hol-
omorphic section (X!(z), F,(z)) as

1 —7172273
| 2.3

z 7%z

& 772

Recall that the model is described by the prepotential

F(X) = Xlﬁxg ie. F; =25 In accordance with Eq. (35)

the Kéhler potential is
K(z, 2) = —log(—i(z' = ) = 2)(2* = 2).  (47)

Then using the notation
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S:Sl+i82, T:T1+iT2, U:U1+ZU2

(48)
we can write M3pg Eq. (44) in the following form,
1
Mjps = = 1q0 + ¢1S + ¢uT + q3U + p°STU
BPS © 86 7,0, lgo + a1 q2 qs3 p
— p'TU — p*SU — p3ST|>. (49)

We would like to write this expression in an alternative
form reflecting triality, [29]

Mpps = " (My' @ My @ M — ey ® g7 ® My!
—ey® My @5 — My' @ er @)y, (50)

where

_Llrr s,
Ms=5 (s, 1sh) b
with similar expressions for M; and M. ¢ is the hyper-
matrix of Eq. (1), defining our (real) three-qubit state. In
order to find the exact relationship between the eight
components of ¢; and the eight components of the two
four-vectors (p°, p', p2, p3) and (g0, 91, ¢, q3)' and to
gain some additional insight, we proceed as follows.
First let us write IMS_I in the form

AS=L< 52 0). (52)

-1 _ 7t
Mgl = AL A, =25 1

Similarly we define

M;l = B%BT, Mal = C;]CU, (53)

where the matrices By and Cy are defined accordingly.
Using Afe Ay = ¢ and similar expressions for B and
Cy we get

Mips = §'(Cyy ® By ® AL)Q'(Cy ® By @ Ag)y, (54)
where
O'=iI®I®[+0,80,8]+0,0]® 0,
+1® 0, ® 0y). (55)
Notice that ' = %H where II is a rank-two projector, i.e.
I1? = II. In other words, @’ is a simple example of a

mixed-state three-qubit density matrix. To reveal the
rank-two structure of this density matrix we diagonalize

o, = —ig,
11—
U_ﬁ<1 i>' 0

Then the new density matrix is 0= Uy ® Ur ®
Use'US, ® UL ® UL = 1diag(1,0,0,0,0,0,0, 1) or, in
the notation used in quantum information,

@ = 5(1000)X000[ + [111)(111]). (57)

o3 = ’U0'2’U‘L,
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Using these unitary transformations we obtain a complex
representation for Mypg as follows,

My = (pl(Cl ® Bl ® Al)o(Cy ® By ® A9)ly), (58)

where Ag, By, and Cy are now SLOCC i.e. GL(2, C)
transformations of the form

_ 1 s -1
As_ﬂ/—zsz<—s 1)’ (59

with By and Cy defined similarly. Notice that we could
have multiplied these GL(2, C) matrices by ¢!"/* rendering
them to SL(2, C) ones, a transformation not changing

Mips.
Using the explicit form of @ we obtain the nice result
Mips = 5(1h000l” + 14711 1%), (60)
where
) = (Cy @ Br ® Ag)|4h) (61)

is the SLOCC transformed state. Looking at Eq. (60) it is
clear that M3, is expressed in terms of the magnitudes of
the GHZ part of the SLOCC transformed state, depending
on the values of the moduli S, 7, and U and their complex
conjugates.

Choosing the first qubit as a reference (recall that we are
labeling qubits from the right to the left) it is straightfor-
ward to show that

Yoo Youo \ _ 1 v -1
(‘Vwo Wno) V852T2U2<—U 1 )
% (k?%oo — oo 5?%10 — on )
S0 — Yo S0 — Yin

X ro-r (62)
(L))

boor Yo\ _ 1 v -1
(‘//101 ill) N \/852T2U2<—U 1 )
% (‘Sl/’ooo + o1 —Storo + %11)
—Sto0 T Y101 —S¢0 T Y

X r -T (63)
-1 1/

Calculating and substituting the components /,,, and ¢/},
into Eq. (60), a comparison with Eq. (49) yields the relation

Yoo = — 111 and the correspondence
Pooo P(l) 100 p3
oo 14 o1 q>
= ) = . (64)
oo P2 P10 q1
o q3 1 —qo

Notice that our convention differs from the one of Duff
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[10] in a sign change in the first four-vector and from the
one adopted by Kallosh and Linde [13] by a change in sign
of the components g, p', p?, and p°.

In order to proceed with the extremization of the BPS
mass, we introduce some notation. Let us label qubits
instead of A, B, and C by the letters S, 7', and U. We still
label qubits from the right to the left so, for example, the
four-vectors ¢© and 7'® are just the ones of Eq. (4)
obtained by choosing the first qubit to play a special role.
The pair of four-vectors (€7, M) and (£éV), n¥) are
defined accordingly. Moreover, using the dictionary
Eq. (64), we can express the following results in terms of
the dyonic charges. Let us now define the following set of
three complex four-vectors,

1 1
T S
A([TU): ol A§U5): o |
TU
| (65)
ST S
AP =17
ST

Notice that these are null with respect to our metric Eq. (7),
ie. A+ A =0 due to their tensor product structure [e.g.
ATY) = (1, U)" ® (1, T)']. With this notation the BPS mass
can be written as

1

SEG) — p) . ATV)2, 66
S50, SEY =) ATUP (66)

Mps =
where, due to triality, one can permute the labels STU
cyclically. Extremization with respect to S, T, and U and
their complex conjugates yields the equations

(SES — »®)) . ATU) = (67)
(TEM — My . AUS =, (68)
(W) — ). ABD = (69)

and their complex conjugates.

Let us use in the forthcoming manipulations the simpli-
fied notation &; = ES) and n; = n;s), I1=1,2, 3,4 This
means that in the following we look at the system of
equations above from the viewpoint of the first qubit.
Subtracting the conjugate of Eq. (69) from Eq. (67) we get

(T = DUSE = Uny = §& +m3) =0, (70)
yielding for nonzero T, the equations
Sé —my G
= S=—-—"F=. 7D
S&—m Ué — &
Adding the conjugate of Eq. (69) to Eq. (67) and using
Eq. (70) in the result we get

Uni—n3

PHYSICAL REVIEW D 74, 024030 (2006)
US& —Uny —Séy+my =0 (72)
which implies
U= 5:54 - 1’4,
S&—m
From Egs. (71) and (73) we see that
(§69 = n®Wp =0, (&Y =9y =0 (74)

5= M. (73)

Ué, — &4

Doing similar manipulations with the remaining equations
(or which is the same permuting the labels S, T, and U) we
obtain the constraint

(TED = n™)2 =o0. (75)

The last two sets of equations and their conjugates show
that the six complex four-vectors appearing in Egs. (67)—
(69) are null. In the formalism of Sec. II they define the
principal null directions for the planes in C* spanned by the
three pairs of four-vectors (£, ), (¢D), ™), and
(€W »). Solving the quadratic equations we can write
these principal null directions in the form of Eq. (17) with
appropriate labels S, T, or U to be attached. Notice that in
Eq. (17) D is complex. Here the components of ¢ and 7 are
real and, due to consistency, we have to require that the
quantity under the square root in Eq. (17) must be real and
positive. This ensures that the moduli are complex, hence
the Kéhler potential is well defined.

Solving the quadratic equations (74) and (75), moreover
using Eq. (8) and the fact that the Kihler potential e X =
—85,T,U, should be positive [18], from the viewpoint of
the first qubit the frozen values of the moduli are

go & m+iv=D o _S0% -
&0 50¢, —

with the value of U”) expressed in terms of §© given by
the first formula of Eq. (71) or alternatively the first of
Eq. (73). These formulas imply that

5(0)54 — M4
5(0)51 - 771’

providing the useful formula for ATY),

., (76)

voOTO = (77)

1 _
e G T NN )

Let us write this relation in the form

1 S(O)éﬂ - 5:'(0)52 )
5(0)51 - 5(0)53 UK 5(0)54 — N4

=(yo ) ™) 79

Using this and its conjugate in Eqgs. (62) and (63) we obtain
the transformed state Eq. (61) as
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270 O )
W) = \[a@ L — $@€1)1000)
SZ

= (= SO¢PNIN] (80)

which is of the generalized GHZ form. Hence we obtained
the nice result: finding the frozen values of the moduli for
STU black holes is equivalent to finding an optimal dis-
tillation protocol for a GHZ state starting from the one
defined by the charges as in Eq. (64).

In fact, we can simplify further our expression for the
transformed state as follows. First, notice that the BPS
mass is not sensitive to multiplication to an overall phase
factor appearing in |¢'). Moreover, a straightforward cal-
culation shows that

1 (€T - gDy(£W) . £U))
2 (&) - g0y :
Recalling Eq. (76) we see that S¥) = /=D /(&) - ¢9)

and similar expressions for Téo) and Ugo) hold. Collecting
everything, we get

1SO& = m > = - 81)

|y = IDIV/4(|000) + €’|111)), (82)
where
5O
8 = 7 + 2 arctan O 2 &1 . (83)
A\ & — M

Notice that this state is of the Eq. (31) form, verifying the
claim that the process of finding the frozen values for the
moduli for BPS STU black holes is equivalent to finding
the canonical form of the corresponding three-qubit state
using complex SLOCC transformations.

Having the exact values of ¢y, and ¢/}, at our disposal,
we can put these into our formula Eq. (60), yielding the
extremal value for the BPS mass, the expression
Mpslexe = 1212 = 1ZI2,, = /=D. Hence according to
Egs. (8) and (43) our final result for the macroscopic
entropy of the extremal STU BPS black hole is

T
Sgy = V=D = > VTasc (84)

where using the correspondence between our three-qubit
amplitudes and dyonic charges, Eq. (64), we obtain

—D=(£-&)(n-m)—(£-7n)?

= —(po g’ +4((p'q)(p*q) + (p'q1)(P*q5)

+ (P9 (P*q3) — 4p°q19295 + 4q0p' PP P,

(85)

where p o ¢ = p°qy + p'q, + p*q, + pq5. This expres-
sion for the black-hole entropy expressed in terms of the
charges has been obtained in Ref. [18] by solving the
stabilization equation (45). Comparing our results,
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Egs. (71) and (76), for the frozen values of the moduli
with that paper [see the somewhat more complicated look-
ing expressions as given by Egs. (32) and (41) of Ref. [18]]
we find that they agree. The observation that the black-hole
entropy can be expressed in the nice form as the square root
of the negative of Cayley’s hyperdeterminant is due to Duff
[10]. Here we presented a complete rederivation of this
result using the language of quantum information theory.

Since our quantum information theoretic approach has
also provided some new insights into the process of stabi-
lization of the moduli at the black-hole horizon, let us
summarize the key steps in obtaining this result. First, we
have written M3y in the form reflecting triality [Eq. (50)].
Then after some manipulations we managed to represent
this quantity as an expectation value of a density operator
using a real three-qubit state [Eqgs. (54) and (55)]. This real
three-qubit state depends on both the charges and the
moduli. Then by employing a local U(2)®3 transformation
a complex representation for this real state is obtained,
transforming our density operator into the very simple
form of Eq. (57). Now M3 as an expectation value with
respect to this complex wave function is in a form well
known from quantum information theory [Eq. (58)].
Namely, it contains a new wave function |¢') arising
from transformations of SLOCC on the initial wave func-
tion |¢) defined by the charges [see Eq. (61)]. At this point
we have also realized that Mppg is just a suitable projection
of this transformed wave function onto its GHZ compo-
nents [Eq. (60)]. As a next step we extremized M3pg with
respect to the moduli. It turns out that at the extremal
(attractor) values of the moduli |¢') has only GHZ compo-
nents, so at the black-hole horizon no projection is needed
[Eq. (82)]. Hence the dynamical process of stabilization of
moduli at the horizon is equivalent to a quantum distilla-
tion protocol of obtaining a maximally entangled GHZ
state from the initial state defined by the charges.

It is important to realize, however, that though the trans-
formed state of Eq. (61) playing a crucial role in arriving at
this nice interpretation is complex, it can be transformed to
a form containing merely real amplitudes by applying the
local unitary transformation Eq. (56) to all of our qubits.
Complex states which are local unitary equivalent to states
having real amplitudes were called real in Sec. II. These
states can be characterized by the vanishing of the invari-
ants, Eq. (29) or (30). As can be checked in the special case
of BPS STU black holes, we have real states with the
invariant A of Eq. (30) vanishing. In the next section we
start exploring the geometry of the real entangled states of
the STU model inside the most general complex ones.

IV. A GEOMETRIC CLASSIFICATION OF STU
BLACK HOLES

In the previous section we considered double extreme
BPS STU black holes. We concluded that these black holes
are characterized by the constraints 745 # 0 and A = 0,
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meaning that in the SLOCC classification these black holes
are in the subclass of the GHZ class, characterized by a
special reality condition. As we already know there are two
different classes of real states in the GHZ class character-
ized by the conditions (29) and (30). The second of these
conditions means that the principal null directions as four-
vectors in C* are complex conjugates of one another. This
condition characterizes the BPS STU black holes. What
about the other condition?

In the paper of Kallosh and Linde [13] the authors using
the SLOCC classification of three-qubit states presented a
complete classification of STU black holes. The black
holes corresponding to the GHZ class are called “large”
black holes. This term means that these black holes have
classically nonvanishing event horizons. According to the
authors there are two different classes of such black holes.
One of them is the BPS black hole studied in the previous
section. The other class corresponds to large non-BPS
black holes. It is easy to demonstrate that these black holes
are characterized by the other set of reality conditions,
namely, the one of Eq. (29). Indeed, according to this
condition such states have two linearly independent real
four-vectors as their principal null directions. For example,
the canonical GHZ state |[000) + |111) belongs to this
class. It should also be clear by now that the two different
reality classes can also be characterized by the sign of the
Cayley hyperdeterminant. A positive sign corresponds to
non-BPS and a negative sign to BPS black holes. Our
observations based on the reality conditions, Egs. (29)
and (30), can be regarded as a refinement of the classifi-
cation of Ref. [13], by also clarifying the embedding of
these entangled states corresponding to large ST U black-
hole solutions into the complex states of more general type
used in quantum information theory.

Next the classification of Ref. [13] also proceeds to
include the so-called “small”” black holes. These are the
ones with classically vanishing horizons corresponding to
the vanishing of 74p. These black holes are represented by
the separable classes and the W class (see Sec. II). In the
following we show that using the language of twistor
theory we can obtain a nice geometric characterization of
this classification.

The basic objects of our geometric correspondence are
pairs of complex four-vectors. These are elements of the
twistor space C*. These pairs of complex four-vectors span
planes in C*. Since our coordinates are defined merely
projectively, it is convenient to switch to the projective
picture and use the projective twistor space which is CP3.
In this space our pairs of complex four-vectors define
complex lines. For example, our four-vectors & and
1 with integer components used in the previous section
for an arbitrary complex number S define the line S& —
7® in CP3. Alternatively for complex T and U we can
also define the lines T¢éT) — ™ and UV — V),
Explicitly we have

PHYSICAL REVIEW D 74, 024030 (2006)

pz p'
é:(s) _\| P ) S _ q3 , (86)
I p3 m 7
q1 —4qo
p‘]) p*
T _ | P (1) _ qs
= , n = , (87)
I P I a1
q> —4qo0
p‘l) P’
w _ | P S _ q2
= , n, = . (33)
I »? I a
q3 —40

Of course these lines are very special compared to the ones
of the most general complex type.

Let us describe three-qubit entanglement of the most
general type from the viewpoint of one of the parties e.g.
Alice. The eight complex amplitudes characterizing this
type of entanglement are then characterized by the vectors
£W and nY of Eq. (4). The important special case related
to black holes is obtained by restricting these complex
amplitudes to ¢© and n'¥ i.e. to the ones of Eq. (86). In
the following we drop the superscript (A4) or (S) again to
reduce clutter in notation. Let us now define a nondegen-
erate quadratic form Q: C* X C* — C as follows. For
& m € C* define

Q&) =Eé-m=E&Emy— &ms— &y + E4my. (89)

Then the vectors ¢ € C* satisfying Q(Z, /) = 0 define a
quadric surface @ in CP3. We regard the twistor space
with this quadric @ as fundamental.

Let us now consider an arbitrary complex line corre-
sponding to a three-qubit state in CP? of the form w¢ — 7
where w is a nonzero complex number and ¢ and 7 are
non-null i.e. they are not lying on the quadric Q. In the
following we shall examine the intersection properties of a
complex line of the above form with the fixed quadric Q.
When the equation Q(wé — 1, wé — ) = 0 has two so-
lutions for w (corresponding to the two principal null
directions) the line intersects @ at two different points.
The sufficient and necessary condition for this to happen is
just D # O1i.e. T4pc # 0. Hence states belong to the GHZ
class iff the representative lines intersect & at two points.
Large black holes within this class are represented by the
real lines described by the vectors of Eq. (86) with integer
components. They are either BPS (D < 0) or non-BPS
(D >0). In the first case the principal null directions
defined by the frozen value of the moduli S© on the
horizon u™ are complex conjugates of one another; in the
other they are real (see Fig. 1.).

If the equation Q(w¢ — i, wé — m) = 0 has merely one
solution (the case of one principal null direction) the line is
tangent to the quadric @ at this particular point. This can
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>

GHZ

FIG. 1. Geometric representation of large black holes corre-
sponding to real states in the GHZ class. The line is defined by
the vectors ¢ and 1 of Eq. (86) and by the dyonic charges. The
points of intersection of the line with the quadric Q@ are the
principal null directions u™ defined by the frozen value of the
moduli S©, Eq. (76), on the horizon.

happen iff D = 0 i.e. 74pc = 0. Then states belong to the
W class iff the corresponding lines are tangent to the
quadric. After specializing again to real states now repre-
senting the small black holes, we obtain the geometric
situation depicted by Fig. 2.

Note, however, that in these two cases of genuine three-
qubit entanglement the points through which the lines were
defined are themselves nor lying on Q.

The next special case is the one of A(BC) separable
states. In this case 74c) = 0; hence, according to
Eq. (11) the vectors & and 5 are proportional, so our line
degenerates to a point not lying on the quadric 9.
Including also the degenerate case when one of the vectors
e.g. m is vanishing, we can represent the corresponding
situation of small black holes by drawing a point off the
quadric represented by the vector &, now with integer
components (see Fig. 3).

Let us now turn to the cases when the lines themselves
are lying inside the quadric Q. Such lines are called

e

W

FIG. 2. Geometric representation of small black holes corre-
sponding to real states in the W class. The line is defined by the
vectors ¢ and 7 and by the dyonic charges. The point of
intersection of the line tangent to the quadric @ corresponds
to the two coincident principal null directions u™.
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J>

LS

A(BC)

FIG. 3. Geometric representation of small black holes corre-
sponding to real states in the A(BC) class. The point off the
quadric @ is defined by the vector ¢ of dyonic charges. The
other vector 7 is either projectively equivalent to £ or vanishing.
The dashed lines intersecting at a point refer to the existence of
two families of lines on @ ruling it.

isotropic [30] with respect to Q. It is well known that there
are exactly two families of lines on a nondegenerate
quadric @ in CP3. In other words our quadric Q is ruled
by two families of lines. They are conventionally called «
lines and B lines [30]. Two such representative lines are
depicted in Fig. 3. Two lines belonging to the same family
do not intersect, whereas two lines belonging to the oppo-
site families intersect at a single point (see Fig. 3) on 9.
Hence any nondegenerate quadric in CP? is isomorphic to
CP' X CP!. Using the results of our previous paper [14]
one can show that these isotropic lines correspond pre-
cisely to B(AC) and C(AB) separable states. In order to see
this, recall that [14] by defining 7, = Tcup) and 7_ =
Tpac) We have

7. =& EP +21E - + |In - 9>+ (PY = =PY)P,,
(90)

where

* Pry = Yex PEE, ©On
and see Eq. (5) for the definition of the Pliicker coordi-
nates. Isotropic lines satisfy the relations £ - é = n - n =
¢ - n = 0; moreover, such lines are necessarily self-dual or
anti-self-dual [30]. Hence for isotropic lines we have either
74+ = 0 or 7_ = 0. Conversely, using the positivity [14] of
the terms in Eq. (90) the vanishing of 7. implies that the
corresponding lines are isotropic. Since the states are
C(AB) or B(AC) separable if and only if 7, or 7_ vanishes,
isotropic lines on @ represent precisely two of our bise-
parable classes. Specializing again to real states of C(AB)
or B(AC) separable forms representing small STU black
holes, we have the geometrical situation of Figs. 4 and 5.
Finally we are left with the geometrical representation of
the small black holes corresponding to the totally separable
class, i.e. the states of the form (A)(B)(C). Such states are
represented by points since they are A(BC) separable;
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C(AB)

FIG. 4. Geometric representation of small black holes corre-
sponding to real states in the C(AB) class. The line through the
points ¢ and 7 lying now on @ is an isotropic line, i.e. it lies
entirely inside the quadric and coincides with one from the
family of special lines of Q. These lines are related to the
self-duality of the Pliicker matrix and are called « lines.

moreover, they have to lie on the quadric since, due to
C(AB) and B(AC) separability, they are parts of isotropic
lines. The only possible way of representing them is by a
point on the quadric which is of course located at the
intersection of an « and a B plane (see Fig. 6).

Let us stress at this point that these equivalence classes
of real states illustrated by Figs. 1-6 are the ones inherited
from the complex ones. In this pictorial representation the
presence of our reality conditions is implicit. For example,
for BPS STU black holes the reality condition is #* = u~;
that clearly cannot be represented in the simple picture of
Fig. 1. The problem of a complete characterization of the
geometry of the embedding of our real states inside the
most general complex ones is an interesting one. Here as a
first step we only managed to provide an algebraic charac-
terization of such states.

Notice also that this geometrical representation is from
the viewpoint of system A or which is the same as the S part

J>

B(AC)

FIG. 5. Geometric representation of small black holes corre-
sponding to real states in the B(AC) class. The line through the
points ¢ and 7 lying now on Q is an isotropic line, coinciding
with one from the other family of special lines of Q. These lines
are related to the anti-self-duality of the Pliicker matrix and are
called B lines.
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(A)B)(C)

FIG. 6. Geometric representation of small black holes corre-
sponding to real states in the totally separable (A)(B)(C) class.
Such holes are represented by a single point lying at the
intersection of an « line and a B line. Here this point is
represented by &. The other point m is either projectively
equivalent to ¢ or can be taken to be zero.

of the STU model. The fixed quadric @ is defined by using
the SL(2, C) ® SL(2, C) invariant metric Eq. (7), which is
of course also invariant under SL(2, R) ® SL(2, R). Since
the symmetry of the STU model is [SL(2, R)/SO(2)]®3
(the moduli are coordinates of this manifold) our choice of
@ is in accordance with the basic structure of the STU
model. Physically, however, all parties are equivalent,
hence the geometric picture as given by Figs. 1-6 is
independent from the choice of parties. We can give,
however, to the subsystem A a physically different role
by allowing transformations on the combined system BC
(i.e. TU) of a more general type. For example, instead of
applying the real version of the SLOCC group SL(2, R)®3
we can have the larger one SL(2, R) ® SO(2, 2). [In the
complex case this group is SL(2, C) ® SO(4, C).] This
means that B and C are sharing among each other local
resources of a more general kind than A. This enlargement
of the SLOCC group in the entanglement picture amounts
to using a dual description of black holes where the moduli
S is singled out and whose imaginary part plays the role of
the string coupling constant [18,27,29]. The manifold for

SL2,R) 50(2,2) :
50(2) x SO2)XS0Q2) The dif-

ferent roles the parties A and BC play in the local protocols
performed by them correspond to the different characters
S-duality and 7- and U-dualities have in string theory.
Indeed S-duality [associated with the SL(2, Z) subgroup
of SL(2, R)] in this picture is of nonperturbative character,
whereas T- and U-dualities based on SO(2,2) symmetry
are of perturbative character (i.e. they are not mixing
electric and magnetic charges). This point has been em-
phasized by Kallosh and Linde [13].

In our geometric representation this dual picture means
that now Figs. 1-6 represent the physical situation of
S(TU) black holes. Although the nondegenerate quadric
@ is now represented differently [i.e. in the SO(2, 2) form)]
the intersection properties are invariant. The choice of base
describing the situation is the one obtained after applying

the moduli in this picture is
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an Sp(8, R) transformation to the charges [18] which in
our labeling of the three-qubit system is equivalent to the
0(4, R) transformation

p! &1~ &4
p* L1 &+¢
Al | P - 2 3 92
SV Il R
p &+ &
q' N1~ N4
) 1 +
Al — | 4 - 2 T 73 93
1 6:12 \/§ =M | ©3)
q Mt

where now indices are lowered with the SO(2, 2) invariant
metric  h;; = diag(—1, —1, +1, +1). Clearly p'g, =
hi p'gJ = & - m; see Eq. (89). In closing this section we
note that the choice of base equations (92) and (93) corre-
sponds to the real version of the so-called magic base of
Hill and Wootters [22], which is related to the usual
conversion of four-vector indices to spinorial ones of
twistor theory [15].

V. CONCLUSIONS

In this paper we have studied interesting similarities
between two different fields of theoretical physics, quan-
tum information theory and the physics of stringy black
holes. Though they are seemingly unrelated, one can real-
ize that the unifying themes in both of these fields such as
information, entropy, and entanglement are the same.
Since the near horizon geometry of black holes is AdS? X
S2, using the idea of Ads/CFT holography one might
certainly expect connections between entanglement
entropy and black-hole entropy. Though there are some
interesting recent developments [31] in relating entangle-
ment entropy and black-hole entropy, the correspondence
between these notions is not well understood. In order to
get some further insight into the nature of such important
problems, it is sometimes useful to look for the clues
coming from different strains of knowledge. Hence, fol-
lowing the initiative of Duff [10] and Kallosh and Linde
[13], in the present paper we have established new relations
between extremal black holes in the STU model of string
theory and qubit systems in quantum information theory.

In particular, we have shown that the well-known pro-
cess of finding the frozen values for the moduli on the
horizon in the theory of STU black holes corresponds to
the problem of finding a canonical form for the three-qubit
state defined by the dyonic charges using complex SLOCC
transformations in quantum information theory. Alter-
natively, this process, which is equivalent to solving the
stabilization (attractor) equations in one picture, corre-
sponds to obtaining the optimal distillation protocol for a
GHZ state in the other. The geometric representation for
this process was found. It is equivalent to finding the
principal null directions of a complex plane in C*. We
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have managed to characterize algebraically the real states
describing ST U black holes by embedding them inside the
more general complex ones used in quantum information
theory. Using the language of twistors based on the inter-
section properties of complex lines with a fixed quadric Q
in CP3, an instructive geometric classification for STU
black holes was given.

Let us now add some important observations to these
results. Let us first consider the transformed state of
Eq. (61). As we have shown, using the frozen values for
the moduli S, 7', and U results in the state of the GHZ form
Eq. (82). Since the amplitudes of this state, besides ¢/,
and ¢/, are zero the projection onto these components in
Egq. (60) is not needed. Hence M pglexe = 3 11¥/113,, = 3 X
<¢|CTUCU ® B}BT ® A}Asllp)hor. Then we get for the
black-hole entropy

T
Sgu = 5”’#/”%“ =

I

v TABC- (94)

This interesting formula relates the black-hole entropy to
the value of the norm of the transformed state at the
horizon. Now in papers [32,33] the optimal local distilla-

tion protocol for the canonical GHZ state % X

(1000) + [111)) was found. In particular, it was proved
[33] that the total probability for obtaining the canonical
GHZ state is bounded from above by /Tagc/ Amax (C tCe®
BB ® ATA). Here A, (X) denotes the largest eigenvalue
of the operator X and the parameter dependent operators A,
B, C are the generalizations of our Ag, By, Cy of Eq. (59)
for the complex case. Hence an upper bound is achieved by
minimizing this largest eigenvalue with respect to the
parameters. These observations show that in the case of
BPS STU black holes the minimum area principle of the
supersymmetric attractor mechanism is somehow related
to the maximization of the probability of success for con-
verting a particular state to the canonical GHZ state. It
would be interesting to use the insight and formalism
provided by stringy black holes for obtaining an alternative
description of this optimization process.

As our second observation let us consider the real state

l4(S, T, U)) = Cyy ® By ® Agly), (95)
known from Eq. (54). Then it is easy to show that
(floy ® o3 ® Iy = Tr(0pcos ® 0y), (96)

where  now  0pc(S, T, U) = dyotfrwo + Yibren =
&€ + M1y [compare with Eq. (15)]. Using similar ma-
nipulations for the expectation values of the operators o, ®
I® 0, and I ® 0, ® 0,, we obtain for the BPS mass
squared Eq. (54) the formula
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Mg = g(“lz”z + Tr(Qpcos ® 0y) + Tr(Q4c0, ® 072)
+ Tr(@ppor ® 07)). o7

Now, in Ref. [17], it was shown that the magnitudes Cz- =
|Tr(0gco, ® 0,)| ete. define the concurrences for the real
qubits i.e. rebits. Moreover, this quantity defines the im-
portant quantity, the entanglement of formation for rebits,
via the formula

(98)

1 ++/1 - Cz(éBC))
2

E(0pc) = H(

where H(x) = —xlog,x — (1 — x)log,(1 — x) is the binary
Shannon entropy. Since |#) and |¢/) are unitarily related
[see Eq. (56)] we have ||]|2 = ||//||2, hence the extremal
BPS mass squared can also be written in the form
Mpslexee = 2Chor Where C = 1(Cap + Cpe + Cyc) is the
average real concurrence. Hence the entropy for the large
BPS STU black hole can be written in the alternative forms

T 5 LY
SBH = Em = EChor = Elll//”}zmr (99)

Notice that in these expressions all quantities are expressed
in terms of the real moduli dependent three-qubit state |1/A/>,
Eq. (95), calculated with the frozen values for them at the
horizon. Of course, due to the SL(2, R) invariance of the
three-tangle, we have 7,pc = T4pc so it has the same
value, no matter if we use the state |¢/) with an integer or
the one I@ with moduli dependent real amplitudes.
However, the norm and the average real concurrence de-
pend on the values of the moduli in a nontrivial way.
Indeed, according to Eq. (97) the combination of these
quantities gives M3,s to be extremized. However, quite
remarkably all three quantities are frozen to the same value
at the horizon.

The occurrence of the real concurrence (of which the
real entanglement of formation is a monotonically increas-
ing and convex function) in the STU black-hole scenario
suggests a possibility for an alternative physical interpre-
tation of the macroscopic black-hole entropy. As it is well
known (see Ref. [34] for a nice review) the entanglement of
formation of a two-qubit mixed state © is related to the
minimum number of EPR pairs required to create that state
©. More precisely we have the following definition. Let
us consider all pure state decompositions of the mixed
state @ of two-qubits, say A and B, in the form @ =
SM | pil®X D). Let us moreover introduce the quantity
E(®) = S(Trg|®XP|) = S(Try|®PXD|) with S denoting
the von-Neumann entropy. Then the definition of the en-
tanglement of formation is [22,34]

E(Q) = infy pyE(®y), (100)
k
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where the infimum is taken over all pure state decomposi-
tions of @. These definitions and Eq. (99) clearly show the
possibility of relating the BPS STU black-hole entropy to
the minimization of the number of EPR pairs needed to
create a state characterized by the density matrices 0,4,
Opc, and Q4 as a function of the moduli fields. This
number according to the very definition of the entangle-
ment of formation, Eq. (100), is also related to the mini-
mization of the convex hull of the von-Neumann entropies
with respect to all possible pure state decompositions of the
state 0. This idea relating the average entanglement of
formation to the black-hole entropy might turn out to be
relevant in identifying the black-hole entropy with the
entanglement entropy within the framework of AdS/CFT
correspondence.

It is important to interpret the message of these senten-
ces correctly. The entanglement present in the physics of
STU black holes is of an unusual type. Here the entangle-
ment is not carried by distinguishable particles as in quan-
tum information theory, but rather by special nonlocal
objects that are composites of quantized charges and the
moduli [see Eq. (95)]. Indeed the real entangled state of
Eq. (95) is represented by an entire line in our geometric
representation. Then when we are talking about entangle-
ment of formation using EPR pairs etc. one has to have in
mind this strange kind of entanglement. Of course, accord-
ing to the microscopic interpretation of black-hole entropy,
since the quantized charges are related [13] to the numbers
of DO-, D2-, D4-, and D6-branes, this kind of entanglement
should somehow boil down to the usual one of string theory
states.

Returning back to the real concurrence, we stress that its
square is not the same as the restrictions of the squares of
the complex concurrences, i.e. the quantities 7,5, Tgc, and
Tac, to the real domain. In fact, it is easy to show that for
BPS STU black holes i.e. D <0 we have

CiB = TAB + TABC: (]01)

However, for non-BPS ST U black holes i.e. D > 0 the two
concepts turn out to be identical; i.e. in this case we have
for example C%, = 7,45. Looking back at the form of our
reality conditions, Egs. (29) and (30), it is clear that using
the notion of the real concurrence these expressions can be
cast into a unified form. For example, the reality condition
for BPS STU black holes is o 4pc = C45CpcCac-

These considerations and the geometric representation
of Sec. IV show that the three-qubit states relevant to STU
black holes are described by real lines in CP3. These lines
are lying on U(2)®? orbits determined by the vectors ¢ and
7 defined by the dyonic charges, or which are the same on
the orbits determined by the vectors 3 and 7) corresponding
to the moduli dependent real states |ng>. In this paper we
have used the complex geometry of three-qubit states of
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the most general type. However, the three-qubit states
having some relevance for stringy black holes are, at
most, real. Though we have provided an algebraic charac-
terization of how these states are embedded in the space of
the most general three-qubit ones the following question
arises: how does one also characterize this embedding
geometrically, and more importantly does the existence
of complex three-qubit states of the most general kind
have any significance to string theory? Though we do not
know the answer, we note that the situation is somewhat
similar to the one in twistor theory. In twistor theory
[15,16,30] real lines (defined differently than here) in
CP? correspond to points of conformally compactified
Minkowski space-time; however, to see the full power of
twistor geometry one is forced to also include complex
lines corresponding to points of complexified and compac-
tified Minkowski space-time. This Klein correspondence
where, instead of lines in CP?, points in a space [the
complex Grassmannian Gr(2,4)] isomorphic to compacti-
fied and complexified Minkowski space-time can be used
to obtain a geometrical representation for three-qubit states
similar to the one presented here [14]. Notice that this
correspondence between lines and space-time points is a
nonlocal one, which according to the original motivation of
twistor theory is expected to play an important role in
describing the nonlocality of quantum entanglement.
Though the similarity between the real lines found here
and the ones of twistor theory is obvious, it is not at all
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clear how we can relate these geometric considerations to
the underlying special geometry of N = 2, D = 4 super-
gravity or to string theory states with some number of D-
branes. Note, however, that the special role of real coor-
dinates (the analogue of our real lines found here) in
supergravity theories is currently under investigation
[35,36]. In order to make further steps in the clarification
of such issues in a future work we are planning to elaborate
further the geometry of the embedding of our real wave
functions inside the complex ones.

For the moment, the status of the new relations found in
this paper is just like in Refs. [10,13], that they are merely
mathematical coincidences. Though we are aware that the
appearance of a mathematical structure in two disparate
subjects does not necessarily imply a deeper unity, the
realization that these relations do exist might turn out to
be important for obtaining further insights for both string
theorists and researchers working in the field of quantum
information.
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