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Solitonic generation of vacuum solutions in five-dimensional general relativity
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We describe a solitonic solution-generating technique in the five-dimensional general relativity.
Reducing the five-dimensional problem to the four-dimensional one, we can systematically obtain
single-rotational axially symmetric vacuum solutions. Applying the technique for a simple seed solution,
we have previously obtained the series of stationary solutions which includes the S?-rotating black ring.
We analyze the qualitative features of these solutions, e.g., conical singularities, closed timelike curves,
and spacetime curvatures. We investigate the rod structures of seed and solitonic solutions. We examine
the relation between the expressions of the metric in the prolate-spheroidal coordinates and in the

C-metric coordinates.
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I. INTRODUCTION

In recent years, finding exact solutions of higher-
dimensional general relativity has attracted much interest.
There are several reasons for this. The string theory, which
is a promising candidate of a quantum gravity theory,
predicts that the spacetime has more than four dimensions.
Furthermore the possibilities of the large or infinite extra
dimensions are proposed for solving the hierarchy problem
[1,2]. Also, the production of higher-dimensional black
holes in future linear colliders is predicted based on these
models [3].

Although the uniqueness theorem has not been general-
ized to the higher dimensions yet, the studies of the space-
time structures in higher-dimensional general relativity
revealing the rich structure have been performed recently
with great intensity. For example, several authors exam-
ined some qualitative features concerning the black hole
horizon topologies in higher dimensions [4]. This possi-
bility of the variety of horizon topologies gives difficulty to
the establishment of theorems analogous with the powerful
uniqueness theorem in four dimensions. Also several exact
solutions involving black holes were obtained in the
higher-dimensional spacetime. The higher-dimensional
generalization of the four-dimensional exact solutions
were obtained for cases of the Schwarzschild and
Reisner-Nordstrom black holes by Tangherlini [5] and for
the Kerr black hole by Myers and Perry [6]. Particularly in
the five-dimensional case, several researchers have tried to
search new exact solutions since the remarkable discovery
of a rotating black ring solution with horizon topology
S! X §2 by Emparan and Reall [7]. For example, the super-
symmetric black rings [8] and the black ring solutions
under the influence of external fields [9] are found. The
systematical derivation of these solutions and some gen-
eralizations were examined by Yazadjiev [10]. In addition
the richness of the phase structure of Kaluza-Klein black
holes has been discussed. Above all, the phases with and
without Kaluza-Klein bubbles [11,12] have been investi-
gated energetically. (See [13,14] and references therein.)
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Also the phase transition between black holes and black
strings are widely investigated. (See, e.g., [15] and refer-
ences therein.) A new geometrical structure of a charged
static black hole in the five-dimensional Einstein-Maxwell
theory has been studied [16].

In this context a systematical search of possible solu-
tions in higher dimensions is of great significance. In the
four-dimensional  general relativity, the solution-
generating techniques had been fully developed for the
stationary and axisymmetric spacetime. These techniques
were used for the systematical generations of solutions
[17], including the famous multi-Kerr solutions [18], since
the discovery of Tomimatsu-Sato solutions [19]. As in the
four-dimensional case, the development of systematical
ways of constructing new solutions would promote our
understanding of the higher-dimensional general relativity.

Using the fact that finding some class of five-
dimensional solutions can be reduced to the four-
dimensional problem [20-22], the present authors [23]
obtained a new class of five-dimensional stationary solu-
tions by using a kind of Bécklund transformation. In the
analysis the formula given by Castejon-Amenedo and
Manko [24] was applied. (See also [25].) This method is
promising in the point that we can easily prospect the
property of the solution and obtain the exact expression
of it. It was shown that the solutions obtained in [23]
include a single-rotational black ring solution with S! X
§? event horizon topology which rotates in the azimuthal
direction of S?. This S$?-rotating black ring solution is
important, especially when we try to find a double-
rotational black ring solution, because it should be realized
when we take a single-rotational limit of the double-
rotational black ring. After the discovery of the solution,
Figueras found a C-metric expression of the S?-rotating
black ring solution [26]. Tomizawa et al. [27] showed that
the same black ring solution is obtained by using the
inverse scattering method [28], which has the potential to
produce more general solutions. This technique was ap-
plied to the higher-dimensional theory of Kaluza-Klein
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compactifications several decades ago [29]. Recently it
was applied to the five-dimensional static Einstein equa-
tion [30]. Also this technique was used to rederive the five-
dimensional Myers and Perry solution [31]. Using this
technique and a matrix transformation of Ehlers type,
solitonic solutions of the five-dimensional string theory
system were obtained [32,33].

In this paper we present a detailed explanation for the
solution-generating technique used to derive the new solu-
tions in the previous paper [23]. In addition we analyze the
qualitative features of the solutions including singular ones
in detail. These solutions are generated from the five-
dimensional Minkowski spacetime as a seed solution.
Although the spacetimes found here have singular objects
like closed timelike curves (CTC) and naked curvature
singularities in general, a part of these solutions is a new
class of black ring solutions whose rotational planes are
different from those of Emparan and Reall’s. This black
ring solution needs a conical singularity inside or outside
the ring because the effect of rotation cannot compensate
for the gravitational attractive force. The excess angle of
the ring can be represented by mass and radius parameters.
When we fix the mass and radius parameters, there is an
upper limit of the rotational parameter of the ring.

We also study the rod structures [34,35] of the seed
solution and the corresponding solitonic solution to under-
stand the relation between them. The rod structure analysis
helps us to find the seed solution for the solitonic solution
we want to obtain. Recently the seed solution of Emparan
and Reall’s S'-rotating black ring has been obtained fol-
lowing this strategy [36]. It has been reported that the
S'-rotating black ring solution is generated starting from
the Levi-Civita metric by using the inverse scattering
method [37].

Particularly in the S%-rotating black ring, the C-metric
representation of the solution was obtained [26]. This
representation is simple and suitable for the analysis of
the solutions. In this paper we investigate the relation
between these two expressions in the prolate-spheroidal
and C-metric coordinates.

The plan of the paper is as follows. In Sec. II we describe
the solution-generating technique used in this analysis. In
Sec. III we denote the application of the technique for the
simple seed solution. We analyze the properties of the
solutions derived in the application in Sec. IV. In Sec. V
we give a summary of this article.

II. SOLITONIC SOLUTION-GENERATING
TECHNIQUE

In this section we write up the procedure for generating
the axisymmetric solution in the five-dimensional general
relativity, which was applied to the generation of the
single-rotational black ring solution whose rotational di-
rection is different from the one of Emparan-Reall’s ring
[23]. In this approach we use the fact that the five-
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dimensional problem with some conditions can be reduced
to a four-dimensional problem, which had been investi-
gated elaborately several decades ago. As a result, we can
use several well-established solution-generating tech-
niques in the four dimensions to generate new five-
dimensional solutions in a straightforward way. Also if
we prepare various seed solutions for each application,
then we can obtain various kinds of new solutions even
within the limitation of single-rotation.

The spacetimes which we considered satisty the follow-
ing conditions: (c1) five dimensions, (c2) asymptotically
flat spacetimes, (c3) the solutions of vacuum Einstein
equations, (c4) having three commuting Killing vectors
including time translational invariance, and (c5) having a
single nonzero angular momentum component. Under the
conditions (c1)—(c5), we can employ the following Weyl-
Papapetrou metric form (for example, see the treatment in

[35D),
ds* = —e*Y(dx® — wdp)* + V1 p*(dp)? + e*V2(dy)?
+ 20U (dp? + d7?), (1)

where U, U;, U,, w, and y are functions of p and z. Then
we introduce new functions S :=2U, + U, and T := U,
so that the metric form (1) is rewritten into

ds®> = e T[—e5(dx" — wd)? + eT2V1 p2(dp)?
+ ez(y+U1)+T(dp2 + dzz)] + eZT(dl//)z. )

Using this metric form the Einstein equations are reduced
to the following set of equations,

@ V2T =0,
(ii) { dpyr = 4p[(8 T)* = (9.7)*]
3, yr =3p[9,T9.T),
(i) v = - 2 Vs Vs
@iv) ‘ 9pYs = 3, +g se5(0,E50, Es — 9.E59.Es)
0.7s = 3l (0,€50:Es + 0,€50.E5),
v) (0,®,0,9) = p~le* (= 0.0, 0, w),
(vi) Y=vst
(vi) U = ¥ ’

where @ is defined through the Eq. (v) and the function &g
is defined by £ := €5 + i®. The Eq. (iii) is exactly the
same as the Ernst equation in four dimensions [38], so that
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we can call £ the Ernst potential. The most nontrivial task
to obtain new metrics is to solve the Eq. (iii) because of its
nonlinearity. To overcome this difficulty we can however
use the methods already established in the four-
dimensional case. Here we use the method similar to the
Neugebauer’s Bicklund transformation [39] or the
Hoenselaers-Kinnersley-Xanthopoulos (HKX) transfor-
mation [40], whose essential idea is that new solutions
are generated by adding solitons to seed spacetimes.

To write down the exact form of the metric functions, we
follow the procedure given by Castejon-Amenedo and
Manko [24], in which they discussed a deformation of a
Kerr black hole under the influence of some external
gravitational fields. In the five-dimensional spacetime we
start from the following form of a static seed metric

ds? = e [ =5 (dx")? + 5" p2(dp)?

+ "5 (dp? + d)] + 2TV (dY)2. (3)

For this static seed solution, eS(O), of the Ernst Eq. (iii), a

new Ernst potential can be written in the form
so x(1 + ab) + iy(b — a) — (1 — ia)(1 — ib)
= )
x(1 + ab) + iy(b — a) + (1 — ia)(1 — ib)
“)

where x and y are the prolate-spheroidal coordinates: p =

ovx* — 13/1 — y2, z = oxy, with o > 0. The ranges of x
and y are | = x and —1 =< y < 1. The functions a and b
satisfy the following simple first-order differential equa-
tions

Es

(x = y)d.a = al(xy — 18,80 + (1 - y»)a,50],

(x —y)dya=a[—(x* - 19,80 + (xy — 1)ays<0>],

(x+y)a,b = —b[(xy + 19,59 + (1 — yz)ayS(O)],

(x +y)a,b = —b[—(x* = 1)9,8O + (xy + 1)9,5O].
(5)

The metric functions for the five-dimensional metric (2)
are obtained by using the formulas shown by [24],

A
8 = ©6)

C
w="20e5" 1 + Cy, @)
e = Cy(x* — 1)7'Ae?, (8)

where C; and C, are constants and A, B, and C are given by

A= -DA+ab) =1 =-y)b—a 9

B:=[(x+1)+ (x—DabP +[(1+y)a+ (1—ybl]
(10)
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C:=u*— 11+ ab)b—a—yla+b)]

+ (1 —y*)(b —a)l+ab+ x(1 —ab)]. (11)

The function ' in Eq. (8) is a y function corresponding to
the static metric,

(BH) )
ds? = e*T(O)[_e2UOBH 59 (gx0)2 + e 20" _S(O)pz(dd))z

+ U8 (@p2 + d2)] + 2T (dy),

(12)
where UPH) = 2 In(5}). And then the function 7 is equal
to T and U, is given by the Einstein Eq. (vii).

Next we consider the solutions of the differential equa-
tions (5). At first, we examine the case of a typical seed
function

SO =3[R, + (z — )]

where R, = /p? + (z — d)*. The general seed function is
composed of seed functions of this form. Note that the
above function S is a Newtonian potential whose source
is a semi-infinite thin rod [34].

In this case we can confirm that the following a and b
satisfy the differential equations (5),

(13)

a=1,'e*bas, b=—1_,e i, (14)

where

bue = $nle~Tu(e + 0]

(15)

Here the functions U, and U, are defined as U, := % X
In[R; + (z — d)] and U, := % In[R, — (z — ¢)]. Because
of the linearity of the differential equations (5) for S©,
we can easily obtain a and b which correspond to a general
seed function if it is a linear combination of (13). See
Appendix A for this point.

The function v’ is defined from the static metric (12), so
that ' obeys the following equations,

9,7 = pl(0, 7 ~ (2.5'P1+ 3pl(0, T2 = (3.T'7),
(16)

8z’}’l = %p[apslazsl] + %p[aﬂTlaZTl]’ (17)

where the first terms are contributions from Eq. (iv) and the
second terms come from Eq. (ii). Here the functions S’ and
T’ can be read out from Eq. (12) as

S =2U%M + 50, (18)

T =70, (19)

To integrate these equations we can use the following fact
that, the partial differential equations

a,vLy = pl0,0.0,0,—09.0.0,0,] (20)
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azy/cd = p[apﬁcazﬁd + apﬁdazﬁc]’ (21)
have the following solution,
Yea = 3U0c T304 = ;0¥ (22)

where Y., = R.R; + (z — ¢)(z — d) + p*. The general
solution of vy’ is given by the linear combination of the
functions y/ .
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ITI. APPLICATION FOR SIMPLE SEED METRIC

Using the solution-generating technique described
above, we have obtained a series of five-dimensional axi-
symmetric stationary solutions in the previous paper [23].
In this section we retrace the analysis to derive the explicit
form of the metric.

We adopt the five-dimensional Minkowski spacetime as
a seed solution in this analysis. To obtain the solutions with
sufficient variety, however, we add a freedom of one pa-
rameter to the seed metric and start from the following
metric form,

ds?> = —(dx°)? + (/p*> + (z + Ao)?* — (z + A0))dPp? + (/p* + (z + Ao)* + (z + Ao))dy?

1

+
2p* + (z + Ao)?

(dp? + dz?)

= —(@dx0 + o[ = D1 = ) + (xy + A2 = (xy + A + o4/ = (1 = y?) + (xy + AP

+ (xy + A)dy? + ol —y?)

2% = DA = y?) + (xy + A)?

where A is an arbitrary real constant. To construct ringlike
solutions we have to take A > 1. By introducing the new
coordinates r and y:

p=rx. z=3x*-r)- Ao

we can easily confirm that the above metric corresponds to
the Minkowski spacetime,

ds?> = —(dx®)? + (dr* + rPd¢?) + (dx* + x*dy?).
24)

From Eq. (23), we can read the form of the functions S and
T as seed functions,

SO =70 = U_,p= %ln[ p>+(z+ A0+ (z+ Ao)]
— Un[oy/ (2 = D)(1 = y?) + (xy + A)?
+ (xy + )] (25)

Using Egs. (14) and (15) we obtain the functions a and b,

(x—y+1+D)+x2+y>+ 20y + (A2 = 1)

= a ,
A(xy + A) + /x2+ y2 + 2Axy + (A2 — 1)]'/2

(26)

2 2
LA | (23)
32-1 1- y2

2yt A+ V2 + 92+ 2dxy + (A2 - 1)]'/?
Gy =1+ +2 2 F2hy + (A2 — 1)
27)

b

where @ = 20217 and B = —1_,/(20'/?).

Next we reduce the explicit expression of the y’. When
we substitute the seed functions (25) into Eqgs. (18) and
(19), the functions S’ and T’ are obtained as

§' =20 + 50 =20, ~0 )+ U pp (28)

T=T7T09=0_,,. (29)
As aresult, the differential equations (16) and (17) become

3,7 = pl0,0,)* = (3,0,)1+ pl(3,0_,)>
—(0,0_,)21+ pl(3,0_)p)* = (0,0-,,)*]
- 2pl0,0,0,U0_, —9,0,0,0_,]
+p[0,0,0,0_,, —3,0,0.0_,,]
—plo,U_,0,U_), —0.U_,0,0_,,]

0%

(30)
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0.y =2pl0,0,0,0,]1+2p[0,0_,0,0_,]
+2p[0,0_,,0,0_,,1—2p[0,0,0.0_,
+0,0_,0,0,1+ pl3,0,0.0_,,
+9,0_,,0.0,1—-plo,0_,0.0_,,
+0,0_,,0.0_,1 (1)
Now we divide 7’ into the six parts as
Y =Yoot Yoo T Yro20 = 200 T Yo ae
~ Y re (32)

where each of the terms are the solutions of Egs. (20) and
(21). Finally, using the Eq. (22), we obtain the resulting
form of ' as

y =40,-0_,)+0_,, —XinR, + InR_,
+1InR_,,) +32InY, _, —InY, _,,
+1nY_, _,,) — 3In2. (33)

Consequently the functions which are needed to express
the full metric are completely obtained. The full metric is
expressed as

A C 2
ds® = — E[dxo — <2ae—5““ o cl)dﬂ

+ 2B = (1 = )
250 2 Go
+ > (dy)* + Ao+

y B(\/()c2 — D0 =y)+(xy+A)>+ Ax +y)
(x + DY&Z = DA = %) + (xy + A)?
2 2
(L DT
32-1 1- y2
Note that we have rewritten the factor of the last bracket of

the metric (34) in the simpler form than the previous one.
In the following, the constants C; and C, are fixed as

(34)

2012 1
Cl =", C2 = 72,'
1+ aB V2(1 + ap)

to assure that the spacetime does not have global rotation
and that the periods of ¢ and i become 27 at the infinity,
respectively. The metric (34) in the canonical coordinates
p and z is given in Appendix B.

IV. PROPERTIES OF SOLUTION

In this section we investigate the qualitative features of
the solution derived in the previous section. Before the
detailed explanations, we summarize the basic properties
of it briefly. The spacetime described by this solution is
axially symmetric, stationary, and, in general, asymptoti-
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82 x 81 horizon 52

£ ( —axis) i.,,........m\': S

rotation in (b

No rotation in 7!1

X (¢ —axis)

FIG. 1. Schematic diagram of a local ringlike object which
resides in the spacetime. Generally some singular behavior
appears near the horizon.

cally flat. It is expected that there is a ringlike local object
as in Fig. 1. The parameters of A and o characterize the
size and mass of the local object, respectively. While
appropriate combinations of & and S can be considered
as the Kerr and the Newman-Unti-Tamburino (NUT) pa-
rameters in the four-dimensional case. Because of the
existence of rotation, the spacetime has ergo regions
around the ringlike object. Also, there are closed timelike
curves in the general case, where the metric component
844 1s negative. In fact the value of g4, can be negative
around the inner disk of theringat ] <x < Aandy = —1
as we will show in the subsection IV E. If we demand
8¢ = 0at1 <x<Aandy= —1, we obtain the follow-
ing quadratic equation for 3,

2B+ 2+ (A +1)B+ a(d —1)=0. (35)

We can confirm that one of the solutions of this equation

2+ a’ A+ 1) = oA+ 1) —4a*(A —3) + 4
dar

B =
(36)

is the condition for 8hp = 0. Even in this case, there are
conical singularities inside or outside the rings. The reason
for this is that the effect of rotation cannot compensate for
the gravitational attractive force.

In the rest of this section we discuss the physical prop-
erties of the solution in detail, including the results given in
the previous paper [23].

A. Limits of solution

The solution (34) has several limits which assist our
understanding of the nature of the solution. Direct genera-
tion of the limit solutions are given in Appendix C. One of
the most considerable limits is the Myers and Perry black
hole with a single rotation which is derived when we set
A=1 and B =0. In fact the metric has the following
expression,
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ds2=_x—1—a2(1—y)

(1+a’)(1-y)
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(x—DA—=y)(x+1+ a1 +y)) e

dx’ +201/2
x+1+a2(1+y)<x g

+ o(x + (1 + y)dy? + —(x + 1+ a?(1 + y))(

2+2_] 1 — 2
S A (d0+201/2‘1—y d¢>>+a’

p2x+q2y+l ppx+qy—1

+ o(x + D1 + y)dy? +

x—1-—a%*(1 -

)d¢>2 to

2
LA
-1 1-—y?

x—1—a%(1—y)

pix+ g’y + 1

PPx + ¢y — 1(x — 1)(1 — y)d¢?

prx+ g’y + 11 dx?
o
2p? |:x2—1

where p> = 1/(a® + 1) and ¢ = o?/(a® + 1). We intro-
duce new parameters ay and m, and new coordinates 7 and
6 through the relations,

i¥es a?
r="2 $=3, (38)
m m
72
X=—=—A, y = c0s26, (39)
20
so the metric (37) is transformed into
Asin?0 2
2= —(1 - A)[dxo + —“01 o dﬂ

in>0d¢> + Pcos>Odiy?

di?

+ (P + agcos20)|:d02 + Py 2

} (40)

J

2
S }
l—y2

(37)

[
where A := m?/(7 + a3cos’6). The line element (40) is
exactly the same form found by Myers and Perry.

Also this solution has a limit of a static black ring or a
rotational black string when the condition (36) holds. The
former case is realized when we take the limit & — 0. The
parameter $ also approaches 0 in this limit. Therefore the
function C and the constant C; become 0 and then the
spacetime approaches static one in this limit. In addition,
the functions A and B become simple forms

A= —1, = (x+ D2 41)

So, the ergo region and the CTC region do not appear in
this spacetime obviously. The metric form of this limit
becomes

02 4 & (x + (1 — y?)

V2 =D =) + (xy + )2+ (xy + )

dg? + o2 = (1= y2) + (xy + A

— (xy + A)dy? + A+

This metric can be written in canonical coordinates as
Eq. (B8) in Appendix B.

The latter is realized when the parameter A goes to
infinity under the condition: & = & X 4/2/A with —1 <
@ < 1. In this case B goes to infinity like —& X \/A/2
while the product a3 is finite and —1 < a8 = —a*> < O.

(1 — @202 — 1) — 4a2(1 — y?)

o G+ DFEE=DA =)+ (xy+ A2+ Ax+ y))( dx? N dy? >
VO =11 =) + (xy + A)? -1

2a(1 +a)((1—a*)x+ 1+ &2)(1 -

= 42)

{
As aresult, the functions a and b approach constants @ and
—a, respectively. The -y component of the metric di-
verges except at x = oo and y = —1. To avoid this singular
behavior we have to replace the angular coordinate ¢ with

\/%. Also we have to rescale ¢ as ¢ = \/2)‘(5, After these

replacements, the metric can be rewritten as

ds? = — (dxO + 20172

(x+ 1 —a(x —1))? + 4a*>?

N 0_()62 - DI =y)x+1—

1-
@*(x — 1))? + 4a*y?

(1— &)y —1) —4a@ (1 -y

=2 1)) 2.2 2 2
+0_(x~|—1 a*(x — 1))* + 4a?y dx N dy
1—y2

12 2a(px + (1 — y?)

2(1 — a2)? -1

[Jx2+q 1

= dx® +2
v e Al 2

(px+ 1) + cjzyz[ dx? dy? }
o +

+ odj? +
o 257 [ A

PP+ @y =)

d¢>

@P((1— @) — 1) —4a@(1 —y?)

d@? + odif?

(2 = 11 — y2)(px +1)2 + g%y?
p x2 + q -1

dg?

d¢3>2 +o

(43)
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Za

where p = 1+~2 and g =
black string metric.

. This is just a rotational

B. Asymptotic flatness

It should be noted that the solution-generating tech-
niques developed in this study have an advantage that the
resulting five-dimensional solutions hold asymptotic flat-
ness if we adopt a five-dimensional asymptotically flat seed
solution. This can be easily confirmed by the rod structure
analysis, which will be discussed in the next subsection. If
we take the asymptotic limit, x — oo, in the prolate-
spheroidal coordinates, the metric form (34) approaches
the asymptotic form of the Minkowski metric (23),

ds®> ~ —(dx°)?> + ox(1 — y)d¢? + ox(1 + y)dy?
o ox
+ —dx? + ————-dy’. 44
TR T g “44)
Also the asymptotic form of £g near the infinity x = oo
becomes

3 o P(a, B, A)
ES:T"COSB[I _pm"{‘ "':|
ap[ e 20co0s?0 Q(a, B, ) N }
200 [1 + ap 2 (1+aB) ’
(45)
where

P(a, B, A) = 4(1 + a® — a?B?),
Oa, B, A) = a(2a2 —A+3)— 2012,83 - B[2QRaB + 1)
X(a?+ 1)+ (A—1Da*(aB +2)]

and we use the coordinates (7, 8) through Eq. (39). This
fact means that, even if A # 1 or 8 # 0, the asymptotic
form has the same asymptotic behavior as the case with
A=1and B =0, i.e., the Myers-Perry black hole. From

the asymptotic behavior, we can compute the mass pa-
2 2

rameter m“ and rotational parameter m-a:
2=UP(a’B”\)’ 20y = 4o 32 Q@ B, A)
(1+ap) (1+ap)®
(46)

C. Rod structure analysis

We analyze the rod structure of the solution, which was
studied for the higher-dimensional Weyl solutions by
Emparan and Reall [34] and for the nonstatic solutions
by Harmark [35]. The brief review of these methods are
given in Appendix D. We have four rods whose intervals
are 7 E[—oo, —Ac],[ — Ao, —0o], [ — o, o], and [o, o]
at p = 0 which correspond with (x, y) € {A = x,y = —1},
{[I=x=Ay=-1}L{x=1,-1=y=1}and {1 =x,
y = 1}, respectively. The semi-infinite rod [ — o, —Ac]
has the direction v = (0,0, 1). Therefore this rod corre-
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sponds to the fixed points of the i-rotation. The finite rod
[ — Ao, — o] has the direction

v=(E10),

2\/— QRap*>+ 2+ a*>(A+1)B+ a(r —1))
I+ aB)A—1+aB(A+1))

(47)

It can be shown that this rod is spacelike. In general it does
not correspond to the fixed points of the ¢-rotation. When
the condition (35) holds, it becomes the fixed points of the
¢-rotation. The finite rod [ — o, o] has the direction

+aB)(A+ Da —28)
2Jo((A + )a?+2)
(48)

v=wao ao=U

which corresponds to the region of time translational in-
variance. The semi-infinite rod [o, o] has the direction
v = (0, 1, 0). Therefore this rod corresponds to the fixed
points of the ¢-rotation. When the condition (35) holds,
the topology of the event horizon is ' X S? for A > 1 as in
Fig. 1 because the rod [ — o, o] has the rods in the /9 ¢
direction on each side. Also the solution is free of the
pathology of the Dirac-Misner string [41] in this case.

We show the schematic pictures of rod structures of the
S2-rotating black ring and its seed solution in Fig. 2. By the
solution-generating transformation the segment [ — o, o]
of the semi-infinite spacelike rod of the seed, which cor-
responds to the fixed point of ¢-rotation, turns into the
finite timelike rod with the direction (48). To indicate that
this vector has nonzero x° and ¢ components, the rod is
laid between x° and ¢ axes in Fig. 2. In general the seg-
ment [ — Ao, — o] also changes its direction from 9/9 ¢ to
(47). We can see that the solitonic transformation keeps the
existence of the two semi-infinite spacelike rods intact.
This fact assures the asymptotic flatness of the obtained
solution.

,,,,,,,, e .

FIG. 2. Schematic pictures of rod structures. The left panel
shows the rod structure of Minkowski spacetime which is a seed
of the S2-rotating black ring. The right panel shows the rod
structure of the S%-rotating black ring. The segment [ — o, o] of
the semi-infinite rod of the seed becomes a finite timelike rod
and changes its direction by the solution-generating transforma-
tion. Here we put the finite timelike rod between x° and ¢ lines
because the corresponding eigenvector has nonzero x° and ¢
components. Note that the segment [ — Ao, —o] also changes its
direction by the transformation in general.
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B=-0.195752 1 X

FIG. 3 (color online). The behavior of the 0-0 component of
the metric (34) in the case of (a, B, A) = (0.5, —0.195752, 2).
The region where the component function is above the level zero
corresponds to the ergo region.

D. Ergo region

As naturally expected from the presence of the rotation,
the new solutions have ergo regions where g, > 0. In fact,
the 0-0 component of the metric (34) becomes positive
near x = | because the function A becomes negative there.
The form of this component at x = 1 is obtained as

_ ((A+ Da = 2B)%(1 = y?)
B+ )+ 2B1—y) + ad + D1+ )7
(49)

Figure 3 is the plot of g, for the region 1 <x <4 and
|

800

4oapB*+ 2+ a*>(A+1)B + a(A —1)*(x*—1)
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—1<y<1 in a typical case of (a, B, A)=
(0.5, —0.195752,2) which satisfies the condition (36).
There exists an ergo region around the event horizon x =
1.

Next we consider the relations between the ergo region
and the parameter a. We plot the ergo regions for the cases
of @ = 0.5, 0.7, 0.9 with A = 2 in Fig. 4. The values of 8
are determined by the condition (36). The ergo region of
this ring spreads out towards the nonrotational axis (x = A,
y = —1) of the ring as the value of & becomes large.

For singular cases where Eq. (36) does not hold, we
investigate the behaviors of gq for different values of 83 as
in Fig. 5. For the cases of large absolute values of S, the
shapes of ergo regions are similar with each other. There
are two special cases, where 8 = M and B = — % The
former case does not have ergo regions. The latter case
would be singular because the mass and rotational parame-
ters diverge.

E. Closed timelike curve

There may exist closed timelike curves in this space-
time. It would exist if the metric function g,4 becomes
negative. At first it can be easily shown that the value of
8¢¢ 18 zero at y = 1. There is no harmful feature around
there. However we can confirm the appearance of CTC
from the fact that this component becomes

= — , 50
800 T T+ aBPBAA — 1) + (A — Dx + 1) + aBA + Dix — 1)) 0
for the range 1 < x < A at y = —1. This value is always negative except when the parameters satisfy the condition (35).
When A and « are given, the parameter 8 must be
2+ a?(A+ 1) +/a*(A+1)? —4a*(A—3) + 4
B=B:=- Yol , (51)
or
2+ a?(A+1)—Ja*(A+ 1) —4a?(A—3)+ 4
B=p =~ v o : 62
a=0.5 o=0.5 o=0.5
1 1 1
¥ 0 y 0 y 0
_1 -1 -1
1 ) 3 1 I 3 i I z 3 2

FIG. 4. Ergo regions for the cases of @« = 0.5, 0.7, 0.9 with A = 2. The values of § are determined by Eq. (36). In the shaded regions

the values of gq, are positive.

024029-8
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=20 =0.75 =0
1 B 1 B 1 B
y 0 vy 0 y 0
_1 -1 -1
T 2 3 i T2 3 i T 2 3 4
H H H
-_0.5 -2 --20
1 A 1 A 1 B
y 0 vy 0 y 0
1 e 1
T 2 3 i T 2 3 i T 2 3 4
H H *

FIG. 5. Ergo regions for singular cases where @ = 0.5 and A

= 2. In the shaded regions the values of g,, become positive. The

values of B do not satisfy Eq. (36). When 8 = M, the ergo region disappears.

to satisfy the condition (35). Even in this case there can
appear the CTC when the function B becomes sufficiently
small outside the ergo region. We can show that the value
of B becomes zero at

(A2 = Da? — 42

0.
4apB

(53)

For B8 = B, the coordinate value x of (53) is in the range
x > 1. Therefore there appears singular behavior and g4
becomes negative in its neighborhood. While, when 8 =
B, this singular behavior does not appear because the
value of x in (53) is less than 1. As a result, the condition
(52) makes the singular structure of the spacetimes fairly
mild as seen in the right panel of Fig. 6. The general case
has regions where g,4 becomes negative as in the left
panel of Fig. 6.

FIG. 6 (color online).
—0.195752, 2) which satisfies the Eq. (36). The corresponding

general case the component becomes negative near the horizon,

We show the regions where g4 < 0 for different values
of B in Fig. 7. Note that the CTC region cannot touch with
the event horizon x = 1 except for the inner edge of the
ring, (x, y) = (1, —1). When the absolute values of 3 are
large, these regions become similar shapes with each other.

F. Excess (deficit) angles

Even if the closed timelike curve does not exist, i.e.,
B = B_, there exists a kind of strut structure in this space-
time. The reason for this is that the effect of rotation cannot
compensate for the gravitational attractive force. The peri-
ods of the coordinates ¢ and ¢ should be defined as

2 2
Ap = 2mlim+ 2522 and Ay = 2alim | |2-522
P=0\ 8¢ =0\ 8yy
(54)
ﬂ=—0.195752

The behavior of the ¢-¢ component of the metric in the cases of (a, 8, A) = (0.5,0.75,2) and (0.5,

component in the right panel is always non-negative, while for the
which means the existence of CTC regions.
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B=10 B=0.75
-0
1 1 _0.8 A
v 0 y 0 0.9
-1
_1 T T
53 4 1 CR o2 84
H H
B=-2.55425 . B=-4 . B=-10
- -
y 0 y 0 y 0
} / _1/_\ i
T°3 5 7 9 T 34 T2 3 &
o e o

FIG. 7. CTC regions. In the shaded regions the values of g4, are negative. Note that the y-range of the upper-right panel and the
x-range of the lower-left panel are different from the others. The lower-left panel corresponds to 8 = (..

to avoid a conical singularity. Both the value of Ay for x >
A and y = —1 and the value of A¢ for y =1, i.e., the
outside part of the ¢-axis plane, are 27r; while the period of
¢ inside the ring can be defined only when the condition
(35) holds. In this case the period becomes

A=1+OX+1DapB
VAZ=1(1 + ap)

which is less than 277 for 8 = B_ and larger than 27 for
B = B.. Hence, two-dimensional disklike struts, which
appear in the case of static black rings [34], are needed to
prevent the collapse of the S?-rotating black rings.

We have introduced four parameters A, o, «, and B in
our analysis. Also, we need the condition (36) for the
disappearance of CTC regions. As a result there are three
independent parameters for the S2-rotating black ring.
Here we take A, m, and

Ap =27

(55)

=/\—1+(A+1)a/3
VA2 =1(1 + ap)
as these physical parameters. From Egs. (35), (46), and

(56) we can obtain the relations between these parameters
and the other parameters o, «, and 8 as

h:

(56)

m2h
= , 57
T 11 -m) ©7
. 2 A—T1-hJAT1
a——Jh(/\H) JA+1—hJA =1 (58)

B (59)

_ - RA—=1DVA—1—hJa+1
2 JA+1-hJa—1

The condition that the parameters « and 8 should be real is

A—1
<h<,——<1 0
0 A+ (60)
or
A+
h>, ——>1. 61
P (61)

The former case corresponds to the case of 8 = B_ and
the latter to 8 = B.. Therefore the period of ¢ inside the
ring is always larger than 277 when the condition 8 = S
holds which corresponds to the lower-left panel of Fig. 7. It
should be noted that the mass parameter m? is negative in
this case.

G. Maximal rotation limit

In this subsection we investigate the rotational parame-
ter a for the S2-rotating black ring. The rotational parame-
ter ag in Eq. (46) can be rewritten by using the parameters
A, m, and h as

2. 1—h 2h A2
Y = - - 1). 62
m2 1+h 1—h2< A2 —1 > ©2)
When we fix the parameters m and h, the rotational pa-
rameter increases uniformly according to the value of A
and has a maximum value

024029-10
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_ m*(—h)
A0 max 1+ 4 .

The parameter A diverges at the maximum of a(, while o
goes to 0 with keeping the value of Ao finite. Then the
physical size of the ring is kept finite. The parameter «
goes to 0 at the maximum of a,, while 8 diverges to
infinity. The parameters behave around the maximum of
agp as

(63)

m2h L2
o , a~ *.—,
2A(1 — 12) hA
(64)
hA 2
~F l+aB~—" .
B~\7 BT

When we take this limit, we have to redefine the coordinate
x as, for example, ¥ — 1 = (x — 1)/ to extract the regular
form of the solution.

In Fig. 8, we plot the values of g, of the event horizon
at y = —1 (inner edge), y = 0 (middle), and y = 1 (outer
edge). Here we set the parameters as m> = 3 and h = 0.5.
The circumferences of the inner and the outer edge of the
ring approach each other as the parameter a, becomes
large. As we will see in IV I, the event horizon degenerates
at the maximum of aq. Then we call this limit the extreme
limit of the solution. In fact the rotational parameter ag .«
equals the mass parameter m when we take the five-
dimensional Kerr black hole limit 2z — 0.

H. Curvature invariants

In this section we consider the possibility of the naked

curvature singularity. Here we examine the scalar curvature
K = R;juR"™, (65)

which is usually called the Kretchman invariant.
The rod structure analysis shows that the solution sat-
isfies the necessary condition for the absence of the curva-

9y

FIG. 8 (color online). Plots of the - components of the
S2-rotating black ring for a, with m> =3 and h = 0.5. The
upper, middle, and lower lines correspond with the outer edge
(y = 1), middle (y = 0), and inner edge (y = —1) of the ring,
respectively.
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ture singularity on the z-axis. It was shown in the above,
however, that the function B becomes zero for some cases.
The curvature singularity appears at the point where B =
0. We plot K for the four representative cases in Fig. 9. The
upper-left panel corresponds to the case of 8 = B_ and
A > 1. There cannot be seen a curvature singularity in this
plot. The upper-right panel corresponds to the case of 8 =
B+ and A > 1. We can see that the value of curvature
grows disastrously around the point where B = 0 in this
plot.

When A = 1 there appears a directional curvature sin-

gularity. For the singular case B # B_ =0, the
Kretchman invariant diverges at x = 1 as
728
o« 66
1+ ap)o?(x—1)* (66)
along the plane y = —1; while this value is finite when we
approach y = —1 on the event horizon x = 1,
91 + aB)*
K=—7¢+--—-— 67
2B%0? ©7)
The lower-right panel of Fig. 9 shows the behavior K of
this case. For the regular case 8 = B_ = 0, there does not
appear curvature singularity at x = 1 and y = —1 and the
value of K is obtained as
9(1 + a?)?
K=—-+—. 68
= (68)

The lower-left panel of Fig. 9 shows the behavior K of the
single-rotational black hole.

I. C-metric expression

The metric (34) is rewritten by the C-metric coordinates
[26] as

o HA,v,u)[ o Aacv(l — u?) -2
ds H()\C, u, U) |: H(ACJ v, Ll) d¢i|
R? dv?
e “)[_ (1= )F(A, v)
(- v2)F(A,, u) - du?
Hoowo) U Y a =
(1= u?)F(A,v) -
i e } 69)
where
FMo &) = 1+ A&+ (‘;f)z
¢ (70)

ac£165\?
HO € 6) = 1+ A6y +(“552),
c
and —1<u <1 and —oo <v < —1. Here we give the
relation between the prolate-spheroidal coordinates (x, y)
and the C-metric coordinates (u, v). After a rather lengthy
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FIG. 9 (color online).

Plots of Kretchman invariants for the cases of (A, «, 8,) = (2,0.5, 8_), (2,0.5, 8 +), (1,0.5, 8 + ), and (1,

0.5, B — ). In the upper-right panel we plot the value of In|K|. We can see that K grows disastrously around the point where B = 0.

calculation, the metric (34) written by the prolate-
spheroidal coordinates can be transformed into the expres-
sion (69) by using the following coordinate transforma-
tions,

_ 20— v)(v —vy)

_ T, 71
(U — )(vy — v) 1)
y=r1l (72)

u v

qt) — aC\/(1 + vh)(l + vi) I

- : é, (73)
a~/(1 +v,)d +v;) -
g = 2 7 (74)
where
: 4a?
R? 4a?

In addition the relation between the parameters (o, A, a,
B) and (R., A, a,),

_ R%(Uh —v;)
T+ v + vy 77
A= L_l’ (78)
Up =V
o — V2w, — v,»), (79)
v; + 1
8= U”—H, (80)

\/Z(Uh - )

should be used there. We can easily confirm that the no
CTC condition 8 = B_ is satisfied. Also, when the event
horizon degenerates, v, = v;, the parameters show the
same behavior as the case of maximum rotation Eq. (64).
Inversely the parameters A., RZ, and a? can be written as

A — A=1—(QA+1)a?p?
(A1 +ap) - DA + aB) + ap)
2VAZ = 1(1 — K?)

- 1
WA=T+hrA+DNA+T+hJ/A=1) D)

) _ _4(TB _ m2h?
RC o 1 _ hz) (82)
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horizon

x

FIG. 10. The contour lines of x, y, u, and v in y — r plane. In the left panel, the solid lines and the dotted lines are x = const. and
y = const. lines, respectively. In the right panel, the solid lines and the dotted lines are # = const. and v = const. lines, respectively.

4o B?
(A1 + ap) = DA + ap) + ap)
ComPR: (VAT = AT D)W+ T = /A= 1)
IR AT+ hATDVAF T+ /A1)
(83)

By using Egs. (56) and (82) we can rewrite Eq. (55) as

2
c

a

27

N

Therefore the period of ¢ is determined only by the ratio of
the mass parameter m to the radius parameter R..

In Fig. 10 we present schematic pictures for the relations
between (x, y) and (r, ) coordinates and between (u, v)
and (r, y) coordinates. Here we use the relations

A =2mh = (84)

X’ = 0'(\/()62 — D1 =y + (xy + A+ xy + A), (85)

P = (/a2 = D1 = y2) + (xy + A2 — xy = A). (86)

The lines of u = const. and v = const. are denser than x
and y near the inner edge of the horizon.

V. SUMMARY

In this paper we have described the solution-generating
technique for the Einstein equation of five-dimensional
general relativity. Using this method we can systematically
construct axisymmetric stationary solutions with asymp-
totic flatness. If we prepare various seed solutions, we can
obtain different kinds of new solutions with the single
rotation. In our analysis we adopted the procedure given
by Castejon-Amenedo and Manko to derive the exact form
of the metric functions.

For the application of the method, we adopted the
Minkowski spacetime as the simplest seed solution.
Although the seed solution we adopted is so simple, the
obtained series of the solutions has scientific importance. It
includes two important limits, the Myers and Perry single-
rotational black hole and the rotational black string. More

significantly, the part of the series should be one single-
rotational limit of an undiscovered double-rotational black
ring which has the Emparan-Reall’s black ring as another
limit.

We have examined the qualitative features of the solu-
tions in detail. Generally, there are ergo regions around the
local black objects because of the rotation. In addition,
there exist regions where the metric function g 44 becomes
negative. In these regions closed timelike curves can exist.
However, we have confirmed that there is no CTC region
when the condition 8 = B_ holds. Even in this case, the
conical singularity is inevitable inside or outside the ring.
Therefore we need the strut structure inside the ring be-
cause the periods of ¢ inside the ring is always smaller
than those of ¢ outside the ring and of . In addition we
have shown that there is an upper limit of the rotation
parameter a, when we fix the mass parameter m and the
radius parameter R.. When the condition 8 = B, holds,
we can also define the period of ¢ inside the ring. In this
case there is positive deficit angles inside the ring in
contrast to the case of 8 = B_. We have investigated the
behavior of the curvature invariant. This variable is finite
when the condition 8 = B_ holds and can diverge where
B = 0 for other cases. We have also shown that there is a
directional curvature singularity for the case of A = 1.

By the rod structure analysis we have understood the
relation between the seed and the obtained solutions. By
analogy of this relation we can obtain a seed of the
S'-rotating black ring solution [36].

Finally, we derived the relations between the prolate-
spheroidal coordinates and the C-metric coordinates which
were derived by Figueras [26]. We confirmed the equiva-
lence between the metric (34) with the condition 8 = B_
and the expression given by Figueras.

In the method presented here we can also adopt other
seed spacetimes, so that we can generate some new solu-
tions. Although the solution obtained here has some path-
ologies including an inevitable one, i.e., conical
singularities, we can expect to obtain the new solution
without these pathologies by an adequate seed metric as
in the case of the S'-rotating black ring which is reduced
from the seed of the Wick rotated C-metric solution [36].
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However it should be noticed that the method introduced
here cannot be used for the solution generation of double-
rotational black rings because of the metric form (1). For
this purpose other methods may be used. One of the power-
ful tools would be the inverse scattering method [28].
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APPENDIX A: NEUGEBAUER AND KRAMER
REPRESENTATION

To derive the potential functions a and b, it is convenient
to use the Neugebauer and Kramer’s powerful representa-
tion for Ernst potential [17]. Adding the 2N solitons to a
static seed potential £, the new Ernst potential is given by

det(—“ﬁ,’jf"“ﬂRﬂ —1)

X
E=£0 (A1)
det(ia R Ry 4y’
where p=1,3,...,2N—1, g =2,4,...,2N, and Rj =
\/p? * (z — K;)*. The function «; is given by
I; + ie*?i
@; =" (A2)

I = ietdn

Here the quantity /; is an integral constant, and the function
¢ ; obeys the following Riccati equations,

=1{(y)'?9,mEQd{ + (y;))~/20;nE0d]],
(A3)

where { = p + iz,and y; = (K; — iZ)/(Kj + i/). For the
case of In€©® =11n[R, + (z — d)], the function ¢ ;s
given by

b=y = %ln[‘f—ﬁ"(ewf + e20n)], (A4)

where U, :=11n[R; + (z — d)]and U; :=
K;)].

Next we consider the relation between the Ernst poten-
tials (4) and (A1). The parameter K; and K, are set to o
and — o, respectively, so that the useful expression,

Ry =0 —=YR ;s =o0x+y) (A5)
is derived. Then the Eq. (A1) becomes
Eo= es(O) (X_Y)aa_(x+Y)a—a_2 (A6)
S (= Ya, — (x+ya_, +2’
where o, = oy, @_, = a,. When we rewrite Eq. (4), we

obtain the following expression for the Ernst potential,
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o5 (x—y) %fﬁz +(x+y) Pilﬁ -2

(= ite+ )+ 2

8S=

(A7)

Comparing Eqgs. (A6) and (A7), we obtain the following

relations,
1—a, 1 + a_(,
a=.i =

1+a, 1— o

(A8)

Here the functions «, and a_, are related to ¢, and ¢ _,,
respectively, through the equations

I, + ie*?s I_, + ie?®
do = l, —ie*?s’ G ™ 1, —ie??-<’ (&9)

so that a and b are expressed with ¢, and ¢ _,,,
a=1;'¢*-, b= —I_,e o, (A10)

Hence the functions a and b, and the corresponding full
metric can be determined, once the functions ¢, and ¢ _,,
are derived.

APPENDIX B: METRIC FUNCTIONS IN
CANONICAL COORDINATES

Here we rewrite the metric (34) in the canonical coor-
dinates p and z. At first, the last term of Eq. (34) can be
written into the following form,

2
cl)dﬂ

4 dx® — 20'6_5(0)9 +
B A

+ 2o 022 + o (ay)?

ds* =

C20'2 B
+
\/E(l + )\) Ra-Rfa'R*/\O'
o A= DR, + (A + DR, +2R_,,
R,+R_,+ 20

(dp? + dZ?),

(BI)

by using the definition of R,. To obtain the expressions of
A, B, and C, we use the following relations

Wer 4o R, +R_,+2
x+1=% ¢ o T2 (B2)
20 20
2We 4+ 2V R, +R_,—2
x—1=¢ ¢ e c 2% (B3
20 20
20y — 20, R _R.4+2
1+y="% T _Te TR TIT gy
200 200
o — Vv R, —R_,+2
l_y:e e _ o o 0-. (BS)
20 20
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In addition the forms of the potential functions (26) and
(27) are written as
o« 2o + 2010
B 2012 eU-io
_ o RU"_R_/\U.‘}'(A"‘])(T
20" JR_,, + (2 + Ao)

a

, (B6)

A

" Qo)

 (0)?
o 1
Qo)
o 1
(o)

B

c

" o)

— e2U-o)(b — a)((€U-o + ¢2Us) — (20 + ¢2U-o)ab)}

1
Qo)
—a)((R, + R_, +20) — (R, + R_, — 20)ab)}.

{(e2U-0 + ¢2Uo)(e2Ur + ¢2U-0)(1 + ab)? — (e2U-o
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eU*Aa'

— 1/2
b=2o 'Ber,[, + o200
\/R*)L(T + (Z + /\0')

g+ R, +(A— 1o’

= 201/23R (B7)

Using these functions, we obtained the functions A, B, and
C in the canonical coordinates as

_ 6200)(e2U0 _ e2U*”)(b _ a)z}

{(Ry + R_5)* = 20))(1 + ab)* + (R, — R_,)* — 20)*)(b — a)*},
{[(6217,0 + er,,) + (6200 + eZU,a)ab]z + [(620,,, _ era)a _ (er,, _ €2U*”)b]2}
{{(R, +R_, +20)+ (R, +R_, —20)ab* +[(R, — R_, + 20)b — (R, — R_, — 20)al*},

{(6217,0 + eZU”)(eZUU + eZU*”)(l + ab)((eZU” _ eZU*U)b _ (6217,0 _ ezﬁa)a) + (620,0 _ 6217,,)(62U,,

{((Rzr + R—o’)z - (20-)2)(1 + ab)((Rzr - R—o’ + 20—)17 + (R(r - R—o’ - 20—)(1) - ((RO' - R—(r)z - (20-)2)(17

From these results, the metric which corresponds to the static case a = b = 0 is reduced to

R, +z—0o (R_, +z+o0)R_,, — 72— A0O)
2 — g 0)2 + g [ 2 + _ + + 2
a5t =~ g ) e (@) + (R sy + 2 + Ao)dh)
C R,+R_,+2 A—1DR, +(A+1)R_, +2R_
+ 2 ( a a 0-)[( ) o ( ) o )m'] (dp2 + de). (B8)
V2(A+ 1) R,R_,R_,,

Here we used the following relations,

RU+R,U—20'=RU+z—(T, (BY)
R,+R_,+20 R ,+z+o
p>=R_,, + 2+ A0)(R_), — 2 — AO). (B10)

After a trivial coordinate transformation and change of
parameters, we see that the metric form is equivalent to
the form which was described in [35].

APPENDIX C: DIRECT GENERATION OF LIMIT
SOLUTIONS

The limit solutions (37) and the rotational black string
are obtained directly from the corresponding seed
solutions.

{
1. Single-rotational Myers and Perry black hole

The seed metric of the Myers and Perry black hole with a
single rotation can be derived from Eq. (23) with A = 1,

ds? = —(dx°)? + (/p* + (z + 0)* — (z + 0))dp?

+ (P’ + @+ o)+ (2 + 0)dy’
1
+
2T+ + o)

We can read out the seed functions from the above metric
as

SO =70 =1in[\[p> + (z+ 02+ + )] =U_,,

(C2)
Using Egs. (14) and (15) we obtain the functions a and b,

(dp? + dz2).

(CDH
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a:ax+1 b_B«/(x+l)(l+y)
1+ AT

x+y ©3)

The solution of the differential equations (16) and (17) can
be obtained as
oy @D+ Y)
V2(x* = y?)

Using these results and the no CTC condition 8 = 0 we
can rederive the metric (37).

(C4

2. Rotational black string

The seed metric of the rotational black string solution is
2

ds? = —(dx%? + 2 dg? + dp? + d? + ody?. (C5)
o

The corresponding seed functions become

SO =70 = lng. (C6)
The functions a and b can be obtained as
a=a, b= B, (e9))
trivially. The corresponding y' becomes
2 -1
w2 8
€ 2= (C8)

As a result, we can derive the corresponding metric form
A C 2 Bp?
s> = — E(dxo - (201/2Z + C1>dq§> +=Zag

2 2
dx + —dy ) + ody?,
1 —y?
where A, B, and C are obtained by replacing a and b to «
and B in Egs. (9)—(11), respectively. The four-dimensional
part of this solution corresponds with the Kerr-NUT solu-
tion [42]. In fact the complex potential & = (1 — Eg)/(1 +
Es) can be represented as

1+ aB ) a—f
xX—i
(I —ia)(1—iB) (1 —ia)(1—ip)
and then we can confirm that the Kerr and NUT solutions
correspond with the cases & = —f and a = 3, respec-

tively. Comparing this and the expression written by the
Kerr and NUT parameters 6 and ¢,

(C9)

+ CBl 5—
? <x2—1

&= y (Cl10)

£ = ei(cosfx — isinby), (C11)

we can obtain the following relations between the parame-
ters

tanf = 1a~|—_a[,38 and
tn(2g) = 2@ AlaB 1) (C12)

(@+ B —(af—17*

PHYSICAL REVIEW D 74, 024029 (2006)

Therefore we can rederive the metric (43) by using
Egs. (C7) and (C8) with the condition « = — 3.

APPENDIX D: ROD STRUCTURE ANALYSIS

In this appendix we give a brief explanation of the rod
structure analysis elaborated by Harmark [35]. See [35] for
complete explanations.

Here we denote the D-dimensional axially symmetric
stationary metric as

ds* = G;dx'dy’ + e”(dp* + dz?), (D1)
where G;; and v are functions only of p and z and i, j =
0,1,...,D—3.The D — 2 by D — 2 matrix field G sat-
isfies the following constraint

p = +/| detGl.

The equations for the matrix field G can be derived from
the Einstein equation R;; = 0 as

D2)

G 'VG = (G"'VG)?, (D3)
where the differential operator V is the gradient in three-
dimensional unphysical flat space with the metric
dp® + p*dw?* + dz*. (D4)
Because of the constraint p = +/| detG|, at least one
eigenvalue of G(p, z) goes to zero for p — 0. However it
was shown that if more than one eigenvalue goes to zero as
p — 0, we have a curvature singularity there. Therefore we
consider that solutions which have only one eigenvalue go
to zero for p — 0, except at isolated values of z. Denoting
these isolated values of z as ay, a, ..., ay, we can divide
the Z-axis into the N+1 intervals
[—o0,a,][a, arl ..., [ay, ], which are called rods.
These rods correspond to the source added to the
Eq. (D3) at p = 0 to prevent the breakdown of the equation
there.
The eigenvector for the zero eigenvalue of G(0, z)
1

(D3)

0
VvV =v —
ox'
which satisfies
G;;(0,2)v' =0 (D6)

determines the direction of the rod. If the value of G"’;I"j is

negative (positive) for p — 0 the rod is called timelike
(spacelike). Each rod corresponds to the region of the
translational or rotational invariance of its direction. The
timelike rod corresponds to a horizon. The spacelike rod
corresponds to a compact direction.
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