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We solve the effective Dirac equation for massless fermions during inflation in the simplest gauge,
including all one loop corrections from quantum gravity. At late times the result for a spatial plane wave
behaves as if the classical solution were subjected to a time-dependent field strength renormalization of
Z2�t� � 1� 17

4�GH
2 ln�a� �O�G2�. We show that this also follows from making the Hartree approxima-

tion, although the numerical coefficients differ.
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I. INTRODUCTION

Gravitons and massless, minimally coupled scalars can
mediate vastly enhanced quantum effects during inflation
because they are simultaneously massless and not confor-
mally invariant [1]. One naturally wonders how interac-
tions with these quanta affect themselves and other
particles. The first step in answering this question on the
linearized level is to compute the one particle irreducible
(1PI) 2-point function for the field whose behavior is in
question. This has been done at one loop order for grav-
itons in pure quantum gravity [2], for photons [3,4] and
charged scalars [5] in scalar quantum electrodynamics
(SQED), for fermions [6,7] and Yukawa scalars [8] in
Yukawa theory, for fermions in Dirac� Einstein [9] and,
at two loop order, for scalars in �4 theory [10]. The next
step is using the 1PI 2-point function to correct the line-
arized equation of motion for the field in question. That is
what we shall do here for the fermions of massless Dirac�
Einstein.

It is worth reviewing the conventions used in computing
the fermion self-energy [9]. We worked on de Sitter back-
ground in conformal coordinates,

 

ds2 � a2�����d�2 � d~x � d~x�

where a��� � �
1

H�
� eHt:

(1)

We used dimensional regularization and obtained the self-
energy for the conformally rescaled fermion field,

 ��x� � a��D�1�=2	 �x�: (2)

The local Lorentz gauge was fixed to allow an algebraic
expression for the vierbein in terms of the metric [11]. The
general coordinate gauge was fixed to make the tensor
structure of the graviton propagator decouple from its
spacetime dependence [12,13]. The result we obtained is
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where �2 � 16�G is the loop counting parameter of quan-
tum gravity. The various differential and spinor-differential
operators are

 @2 � ���@�@�; r2 � @i@i;

@6 � ��@� and �@6 � �i@i;
(4)

where ��� is the Lorentz metric and �� are the gamma
matrices. The conformal coordinate interval is basically
�x2 � �x� x0���x� x0�����, up to a subtlety about the
imaginary part which will be explained shortly.

The linearized, effective Dirac equation we will solve is

 i@6 ij�j�x� �
Z
d4x0�i�j	�x; x0��j�x0� � 0: (5)

In judging the validity of this exercise it is important to
answer five questions:

(1) What is the relation between the C-number, effec-
tive field Eq. (5) and the Heisenberg operator equa-
tions of Dirac� Einstein?

(2) How do solutions to (5) change when different
gauges are used?

(3) How do solutions to (5) depend upon the finite parts
of counterterms?

(4) What is the imaginary part of �x2?
(5) What can we do without the higher loop contribu-

tions to the fermion self-energy?
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Issues (1) and (2) are closely related, and require a lengthy
digression that we have consigned to Sec. II of this paper.
In this Introduction we will comment on issues (3)–(5).

Dirac� Einstein is not perturbatively renormalizable
[14], so we could only obtain a finite result by absorbing
divergences in the sense of Bogoliubov, Parasiuk, Hepp
and Zimmermann (BPHZ) [15–18] using three higher
derivative counterterms,

 � �2H2

�
	1

H2aa0
@6 @2 � 	2D�D� 1�@6 � 	3

�@6
�
�D�x� x0�:

(6)

No physical principle seems to fix the finite parts of these
counterterms so any result which derives from their values
is arbitrary. We chose to null local terms at the beginning of
inflation (a � 1), but any other choice could have been
made and would have affected the solution to (5). Hence,
there is no point in solving the equation exactly. However,
each of the three counterterms is related to a term in (3)
which carries a factor of ln�aa0�,

 

	1

H2aa0
@6 @2 ,

ln�aa0�

H2aa0
@6 @2; (7)

 	2D�D� 1�@6 ,
15

2
ln�aa0�@6 ; (8)

 	3
�@6 , �7 ln�aa0� �@6 : (9)

Unlike the 	i’s, the numerical coefficients of the right-
hand terms are uniquely fixed and completely independent
of renormalization. The factors of ln�aa0� on these right-
hand terms mean that they dominate over any finite change
in the 	i’s at late times. It is in this late time regime that we
can make reliable predictions about the effect of quantum
gravitational corrections.

The analysis we have just made is a standard feature of
low energy effective field theory, and has many distin-
guished antecedents [19–33]. Loops of massless particles
make finite, nonanalytic contributions which cannot be
changed by counterterms and which dominate the far
infrared. Further, these effects must occur as well, with
precisely the same numerical values, in whatever funda-
mental theory ultimately resolves the ultraviolet problems
of quantum gravity.

We must also clarify what is meant by the conformal
coordinate interval �x2�x; x0� which appears in (3). The in-
out effective field equations correspond to the replacement,

 �x2�x;x0� !�x2
���x;x0� � k ~x� ~x0k2��j���0 j �i��2:

(10)

These equations govern the evolution of quantum fields
under the assumption that the universe begins in free
vacuum at asymptotically early times and ends up the
same way at asymptotically late times. This is valid for
scattering in flat space but not for cosmological settings in
which particle production prevents the in vacuum from

evolving to the out vacuum. Persisting with the in-out
effective field equations would result in quantum correc-
tion terms which are dominated by events from the infinite
future. This is the correct answer to the question being
asked, which is, ‘‘what must the field be in order to make
the universe to evolve from in vacuum to out vacuum?’’
However, that question is not very relevant to any obser-
vation we can make.

A more realistic question is, ‘‘what happens when the
universe is released from a prepared state at some finite
time and allowed to evolve as it will?’’ This sort of ques-
tion can be answered using the Schwinger-Keldysh formal-
ism [34–40]. For a recent derivation in the position-space
formalism we are using, see [41]. We confine ourselves
here to noting four simple rules:

(i) The end points of lines in the Schwinger-Keldysh
formalism carry a 
 polarity, so every n-point 1PI
function of the in-out formalism gives rise to 2n 1PI
functions in the Schwinger-Keldysh formalism.

(ii) The linearized effective Dirac equation of the
Schwinger-Keldysh formalism takes the form (5)
with the replacement,
 

�i�j	�x;x0�!�i�j	���x;x0���i�j	���x;x0�: (11)

(iii) The �� fermion self-energy is (3) with the replace-
ment (10).

(iv) The �� fermion self-energy is,
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with the replacement,

 �x2�x; x0� ! �x2
���x; x0�

� k ~x� ~x0k2 � ��� �0 � i��2: (13)

The difference of the �� and �� terms leads to zero
contribution in (5) unless the point x0� lies on or within
the past light-cone of x�.

We can only solve for the one loop corrections to the
field because we lack the higher loop contributions to the
self-energy. The general perturbative expansion takes the
form
 

��x� �
X1
‘�0

�2‘�‘�x� and

��	�x; x0� �
X1
‘�1

�2‘��‘	�x; x0�: (14)
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One substitutes these expansions into the effective Dirac
equation (5) and then segregates powers of �2,
 

i@6 �0�x� � 0;

i@6 �1�x� �
Z
d4x0��1	�x; x0��0�x0� et cetera: (15)

We shall work out the late time limit of the one loop cor-
rection �1

i ��; ~x; ~k;s� for a spatial plane wave of helicity s,
 

�0
i ��; ~x; ~k; s� �

e�ik������
2k
p ui� ~k; s�e

i ~k� ~x

where k‘�‘ijuj� ~k; s� � k�0
ijuj� ~k; s�: (16)

In the next section we derive the effective field equation.
In Sec. III we derive some key simplifications. In Sec. IV
we solve for the late time limit of �1

i ��; ~x; ~k; s�. The result
takes the surprising form of a time-dependent field strength
renormalization of the tree order solution. In Sec. V we
show that this can be understood qualitatively using mean-
field theory. Our results are summarized and discussed in
Sec. VI.

II. THE EFFECTIVE FIELD EQUATIONS

The purpose of this section is to elucidate the relation
between the Heisenberg operators of Dirac� Einstein—
� i�x�,  i�x� and h���x�—and the C-number plane wave

mode solutions �i�x; ~k; s� of the linearized, effective Dirac
equation (5). After explaining the relation we work out an
example, at one loop order, in a simple scalar analogue
model. Finally, we return to Dirac� Einstein to explain
how �i�x; ~k; s� changes with variations of the gauge.

A. Heisenberg operators and effective field equations

The invariant Lagrangian of Dirac� Einstein in D
spacetime dimensions is

 L �
1

16�G
�R� �D� 1��D� 2�H2�

�������
�g
p

� � e�b�
b
�
i@� �

1

2
A�cdJcd

�
 

�������
�g
p

: (17)

Here e�b is the vierbein field and g�� � e�be�c�bc is the
metric. The metric and vierbein-compatible connections
are
 

�
�� �
1
2g

��g��;� � g��;� � g��;��

and A�cd � e�c�e�d;� � �
��e
d�: (18)

The Ricci scalar is

 R � g����
��;
 � �

�;� � �

����� � �
����
��:

(19)

The gamma matrices �bij have spinor indices i, j 2
f1; 2; 3; 4g and obey the usual anticommutation relations,

 f�b; �cg � �2�bcI: (20)

The Lorentz generators of the bispinor representation are

 Jbc �
i
4
��b; �c	: (21)

We employ the Lorentz symmetric gauge, e�b � eb�,
which permits one to perturbatively determine the vierbein
in terms of the metric and their respective backgrounds
(denoted with overlines) [11],

 e�b�g	 � �
�����������
g �g�1

0

q
��
� �e�b: (22)

We define the graviton field h�� in de Sitter conformal
coordinates as follows:

 g���x� � a2���� � �h���x�� where a � �
1

H�
: (23)

By convention the indices of h�� are raised and lowered
with the Lorentz metric. We fix the general coordinate
freedom by adding the gauge fixing term,
 

LGF � �
1
2a
D�2���F�F�

where F� � �
��h�
;� �
1
2h
�;�

� �D� 2�Hah�
�0
��: (24)

One solves the gauge-fixed Heisenberg operator equa-
tions perturbatively,

 h���x� � h0
���x� � �h1

���x� � �2h2
���x� � � � � ; (25)

  i�x� �  0
i �x� � � 

1
i �x� � �

2 2
i �x� � � � � : (26)

Because our state is released in free vacuum at t � 0 (� �
�1=H), it makes sense to express the operator as a func-
tional of the creation and annihilation operators of this free
state. So our initial conditions are that h�� and its first time
derivative coincide with those of h0

���x� at t � 0, and also
that  i�x� coincides with  0

i �x�. The zeroth order solutions
to the Heisenberg field equations take the form

 h0
���x� �

Z dD�1k

�2��D�1

X
�

f����; ~k; ��ei ~k� ~x	� ~k; ��

� �����; ~k; ��e�i ~k� ~x	y� ~k; ��g; (27)

 

 0
i �x� � a���D�1�=2	

Z dD�1k

�2��D�1

X
s

�
e�ik������

2k
p ui� ~k; s�e

i ~k� ~xb� ~k; s�

�
eik������

2k
p vi� ~k; ��e�i

~k� ~xcy� ~k; s�
�
: (28)

The graviton mode functions are proportional to Hankel
functions whose precise specification we do not require.
The Dirac mode functions ui� ~k; s� and vi� ~k; s� are precisely
those of flat space by virtue of the conformal invariance of
massless fermions. The canonically normalized creation
and annihilation operators obey
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 �	� ~k; ��; 	y� ~k0; �0�	 � ���0 �2��D�1�D�1� ~k� ~k0�; (29)

 fb� ~k; s�; by� ~k0; s0�g � �ss0 �2��D�1�D�1� ~k� ~k0�

� fc� ~k; s�; cy� ~k0; s0�g: (30)

The zeroth order Fermi field  0
i �x� is an anticommuting

operator whereas the mode function �0�x; ~k; s� is a
C-number. The latter can be obtained from the former by
anticommuting with the fermion creation operator,

 �0
i �x; ~k; s� � a�D�1�=2f 0

i �x�; b
y� ~k; s�g

�
e�ik������

2k
p ui� ~k; s�e

i ~k� ~x: (31)

The higher order contributions to  i�x� are no longer linear
in the creation and annihilation operators, so anticommut-
ing the full solution  i�x� with by� ~k; s� produces an opera-
tor. The quantum-corrected fermion mode function we
obtain by solving (5) is the expectation value of this
operator in the presence of the state which is free vacuum
at t � 0,

 �i�x; ~k; s� � a�D�1�=2h�jf i�x�; b
y� ~k; s�gj�i: (32)

This is what the Schwinger-Keldysh field equations give.
The more familiar, in-out effective field equations obey a
similar relation except that one defines the free fields to
agree with the full ones in the asymptotic past, and one
takes the in-out matrix element after anticommuting.

B. A worked-out example

It is perhaps worth seeing a worked-out example, at one
loop order, of the relation (32) between the Heisenberg
operators and the Schwinger-Keldysh field equations. To
simplify the analysis we will work with a model of two
scalars in flat space,

 L � �@�’�@�’�m2’�’� ��:’�’:� 1
2@��@

��:

(33)

In this model ’ plays the role of our fermion  i, and �
plays the role of the graviton h��. Note that we have
normal-ordered the interaction term to avoid the harmless
but time-consuming digression that would be required to
deal with � developing a nonzero expectation value. We
shall also omit discussion of counterterms.

The Heisenberg field equations for (33) are

 @2�� �:’�’: � 0; (34)

 �@2 �m2�’� ��’ � 0: (35)

As with Dirac� Einstein, we solve these equations per-
turbatively,

 ��x� � �0�x� � ��1�x� � �2�2�x� � � � � ; (36)

 ’�x� � ’0�x� � �’1�x� � �2’2�x� � � � � : (37)

The zeroth order solutions are

 �0�x� �
Z dD�1k

�2��D�1

�
e�ikt�����

2k
p ei ~k� ~x	� ~k� �

eikt�����
2k
p e�i ~k� ~x	y� ~k�

�
;

(38)

 ’0�x� �
Z dD�1k

�2��D�1

�
e�i!t�������

2!
p ei ~k� ~xb� ~k� �

ei!t�������
2!
p e�i ~k� ~xcy� ~k�

�
:

(39)

Here k � k ~kk and ! �
�����������������
k2 �m2
p

. The creation and anni-
hilation operators are canonically normalized,

 �	� ~k�; 	y� ~k0�	 � �b� ~k�; by� ~k0�	 � �c� ~k�; cy� ~k0�	

� �2��D�1�D�1� ~k� ~k0�: (40)

We choose to develop perturbation theory so that all the
operators and their first time derivatives agree with the
zeroth order solutions at t � 0. The first few higher order
terms are

 �1�x� �
Z t

0
dt0

Z
dD�1x0

�
x
								 1

@2

								x0



ret
:’0��x0�’0�x0�:;

(41)

 

’1�x� �
Z t

0
dt0

Z
dD�1x0

�
x
								 1

@2 �m2

								x0



ret

� �0�x0�’0�x0�; (42)

 ’2�x� �
Z t

0
dt0

Z
dD�1x0

�
x
								 1

@2 �m2

								x0



ret

�f�1�x0�’0�x0� � �0�x0�’1�x0�g: (43)

The commutator of ’0�x� with by� ~k� is a C-number,

 �’0�x�; by� ~k�	 �
e�i!t�������

2!
p ei ~k� ~x � �0�x; ~k�: (44)

However, commuting the full solution with by� ~k� leaves
operators,

 

�’�x�; by� ~k�	 ��0�x; ~k� ��
Z t

0
dt0

Z
dD�1x0

�
x
								 1

@2�m2

								x0



ret
�0�x0��0�x0; ~k� ��2

Z t

0
dt0

Z
dD�1x0

�
x
								 1

@2�m2

								x0



ret

� f��1�x0�; by� ~k�	’0�x0� ��1�x0��0�x0; ~k� ��0�x0��’1�x0�; by� ~k�	g �O��3�: (45)

The commutators in (45) are easily evaluated,
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 ��1�x0�; by� ~k�	’0�x0� �
Z t0

0
dt00

Z
dD�1x00

�
x0
								 1

@2

								x00



ret
’0��x00�’0�x0��0�x00; ~k�; (46)

 �0�x0��’1�x0�; by� ~k�	 �
Z t0

0
dt00

Z
dD�1x00

�
x0
								 1

@2 �m2

								x00



ret
�0�x0��0�x00��0�x00; ~k�: (47)

Hence, the expectation value of (45) gives

 h�j�’�x�; by� ~k�	j�i � �0�x; ~k� � �2
Z t

0
dt0

Z
dD�1x0

�
x
								 1

@2 �m2

								x0



ret

Z t0

0
dt00

Z
dD�1x00

��
x0
								 1

@2

								x00



ret

�h�j’0��x00�’0�x0�j�i �
�
x0
								 1

@2 �m2

								x00



ret
h�j�0�x0��0�x00�j�i

�
�0�x00; ~k� �O��4�: (48)

To make contact with the effective field equations we must first recognize that the retarded Green’s functions can be
written in terms of expectation values of the free fields,

 �
x0
								 1

@2

								x00



ret
� �i��t0 � t00���0�x0�; �0�x00�	 (49)

 � �i��t0 � t00�fh�j�0�x0��0�x00�j�i � h�j�0�x00��0�x0�j�ig; (50)
 �

x0
								 1

@2 �m2

								x00



ret
� �i��t0 � t00��’0�x0�; ’0��x00�	 (51)

 � �i��t0 � t00�fh�j’0�x0�’0��x00�j�i � h�j’�0�x00�’0�x0�j�ig: (52)

Substituting these relations into (48) and canceling some terms gives the expression we have been seeking:

 h�j�’�x�; by� ~k�	j�i � �0�x; ~k� � i�2
Z t

0
dt0

Z
dD�1x0

�
x
								 1

@2 �m2

								x0



ret

Z t0

0
dt00

Z
dD�1x00fh�j�0�x0��0�x00�j�i

� h�j’0�x0�’0��x00�j�i � h�j�0�x00��0�x0�j�ih�j’0��x00�’0�x0�j�ig�0�x00; ~k� �O��4�: (53)

We turn now to the effective field equations of the
Schwinger-Keldysh formalism. The C-number field corre-
sponding to ’�x� at linearized order is ��x�. If the state is
released at t � 0 then the equation ��x� obeys is

 

�@2 �m2���x� �
Z t

0
dt0

Z
dD�1x0fM2

���x; x0�

�M2
���x; x0�g��x0� � 0: (54)

The one loop diagram for the self-mass-squared of ’ is
depicted in Fig. 1.

Because the self-mass-squared has two external lines,
there are 22 � 4 polarities in the Schwinger-Keldysh for-
malism. The two we require are [8,41]

 

�iM2
���x;x0�� ��i��2

�
x
								 i

@2

								x0


��

�
x
								 i

@2�m2

								x0


��

�O��4�; (55)

 

�iM2
���x; x0� � ��i����i��

�
x
								 i

@2

								x0


��

�

�
x
								 i

@2 �m2

								x0


��
�O��4�: (56)

To recover (53) we must express the various Schwinger-
Keldysh propagators in terms of expectation values of the
free fields. The �� polarity gives the usual Feynman
propagator [41],
 �
x
								 i

@2

								x0


��
� ��t� t0�h�j�0�x��0�x0�j�i

� ��t0 � t�h�j�0�x0��0�x�j�i; (57)

 

�
x
								 i

@2 �m2

								x0


��
� ��t� t0�h�j’0�x�’0��x0�j�i

� ��t0 � t�h�j’0��x0�’0�x�j�i:

(58)

The �� polarity propagators are [41]

x x

FIG. 1. Self-mass-squared for ’ at one loop order. Solid lines
stand for ’ propagators while dashed lines represent � propa-
gators.
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�
x
								 i

@2

								x0


��
� h�j�0�x0��0�x�j�i; (59)

 

�
x
								 i

@2 �m2

								x0


��
� h�j’0��x0�’0�x�j�i: (60)

Substituting these relations into (55) and (56) and making
use of the identity 1 � ��t� t0� � ��t0 � t� gives
 

M2
���x;x0��M2

���x;x0���i�2��t� t0�fh�j�0�x��0�x0�j�i

�h�j’0�x�’0��x0�j�i

�h�j�0�x0��0�x�j�i

�h�j’0��x0�’0�x�j�ig�O��4�:

(61)

We now solve (54) perturbatively. The free plane wave
mode function (44) is of course a solution at order �0. With
(61) we easily recognize its perturbative development as
 

��x; ~k���0�x; ~k�� i�2
Z t

0
dt0
Z
dD�1x0

�
x
								 1

@2�m2

								x0



ret

�
Z t0

0
dt00

Z
dD�1x00fh�j�0�x0��0�x00�j�i

�h�j’0�x0�’0��x00�j�i�h�j�0�x00��0�x0�j�i

�h�j’0��x00�’0�x0�j�ig�0�x00; ~k��O��4�: (62)

That agrees with (53), so we have established the desired
connection,

 ��x; ~k� � h�j�’�x�; by� ~k�	j�i; (63)

at one loop order.

C. The gauge issue

The preceding discussion has made clear that we are
working in a particular local Lorentz and general coordi-
nate gauge. We are also doing perturbation theory. The
function �0

i �x; ~k; s� describes how a free fermion of wave
number ~k and helicity s propagates through classical de
Sitter background in our gauge. What �1

i �x; ~k; s� gives is
the first quantum correction to this mode function. It is
natural to wonder how the effective field �i�x; ~k; s�
changes if a different gauge is used.

The operators of the original, invariant Lagrangian
transform as follows under diffeomorphisms (x� ! x0�)
and local Lorentz rotations (�ij):

1

  0i�x� � �ij�x0�1�x�� j�x0�1�x��; (64)

 e0�b�x� �
@x�

@x0�
�b

c�x0�1�x��e�c�x0�1�x��: (65)

The invariance of the theory guarantees that the transfor-
mation of any solution is also a solution. Hence, the
possibility of performing local transformations precludes
the existence of a unique initial value solution. This is why
no Hamiltonian formalism is possible until the gauge has
been fixed sufficiently to eliminate transformations which
leave the initial value surface unaffected.

Different gauges can be reached using field-dependent
gauge transformations [42]. This has a relatively simple
effect upon the Heisenberg operator  i�x�, but a compli-
cated one on the linearized effective field �i�x; ~k; s�.
Because local Lorentz and diffeomorphism gauge condi-
tions are typically specified in terms of the gravitational
fields, we assume x0� and �ij depend upon the graviton
field h��. Hence so too does the transformed field,

  0i�h	�x� � �ij�h	�x
0�1�h	�x�� j�x

0�1�h	�x��: (66)

In the general case that the gauge changes even on the
initial value surface, the creation and annihilation opera-
tors also transform,

 b0�h	� ~k; s� �
1�����
2k
p u�i � ~k; s�

Z
dD�1xe�i ~k� ~x 0i�h	��i; ~x�;

(67)

where �i � �1=H is the initial conformal time. Hence,
the linearized effective field transforms to

 �0i�x; ~k; s� � a�D�1�=2h�jf 0i�h	�x�; b
0y�h	� ~k; s�gj�i:

(68)

This is quite a complicated relation. Note, in particular,
that the h�� dependence of x0��h	 and �ij�h	 means that

�0i�x; ~k; s� is not simply a Lorentz transformation of the
original function �i�x; ~k; s� evaluated at some transformed
point.

III. SOME KEY REDUCTIONS

The purpose of this section is to derive three results that
are used repeatedly in reducing the nonlocal contributions
to the effective field equations. We observe that the non-
local terms of (3) contain 1=�x2. We can avoid denomi-
nators by extracting another derivative,
 

1

�x2 �
@2

4
ln��x2� and

ln��x2�

�x2 �
@2

8
�ln2��x2� � 2 ln��x2�	: (69)

The Schwinger-Keldysh field equations involve the differ-
ence of �� and �� terms, for example,

1Of course the spinor and vector representations of the local
Lorentz transformation are related as usual, with the same
parameters !cd�x� contracted into the appropriate representation
matrices,

 �ij � �ij �
i
2
!cdJ

cd
ij � � � � and �b

c � �b
c �!b

c � � � � :

S. P. MIAO AND R. P. WOODARD PHYSICAL REVIEW D 74, 024021 (2006)

024021-6



 

ln��2�x2
���

�x2
��

�
ln��2�x2

���

�x2
��

�
@2

8
fln2��2�x2

��� � 2 ln��2�x2
���

� ln2��2�x2
��� � 2 ln��2�x2

���g: (70)

We now define the coordinate intervals �� � �� �0 and
�x � k ~x� ~x0k in terms of which the �� and �� intervals
are
 

�x2
�� � �x2 � �j��j � i��2

and �x2
�� � �x2 � ���� i��2: (71)

When �0 >� we have �x2
�� � �x2

��, so the �� and ��
terms in (70) cancel. This means there is no contribution
from the future. When �0 <� and �x > �� (past space-
like separation) we can take � � 0,
 

ln��2�x2
��� � ln��2��x2 � ��2�	 � ln��2�x2

���

��x > ��> 0�: (72)

So the �� and �� terms again cancel. Only for �0 <� and
�x < �� (past timelike separation) are the two logarithms
different,
 

ln��2�x2
�
� � ln��2���2 � �x2�	 
 i�

���> �x > 0�: (73)

Hence, Eq. (70) can be written as

 

ln��2�x2
���

�x2
��

�
ln��2�x2

���

�x2
��

�
i�
2
@2f����� �x��ln��2���2 � �x2� � 1	g: (74)

This step shows that the Schwinger-Kledysh formalism is
causal.

To integrate (74) up against the plane wave mode func-
tion (16) we first pull the x� derivatives outside the inte-
gration, then make the change of variables ~x0 � ~x� ~r and
perform the angular integrals,

 Z
d4x0

�
ln��2�x2

���

�x2
��

�
ln��2�x2

���

�x2
��

�
�0
i ��

0; ~x; ~k; s� �
i2�2

k
ui� ~k; s�@

2ei ~k� ~x
Z �

�i
d�0

e�ik�
0

�����
2k
p

�
Z ��

0
drr sin�kr�fln��2���2 � r2�	 � 1g

�
i2�2

k
�����
2k
p ei ~k� ~xui� ~k; s���@

2
0 � k

2	
Z �

�i
d�0��2e�ik�

0

�
Z 1

0
dzz sin�	z�

�
ln�1� z2� � 2 ln

�
�	
k

�
� 1

�
: (75)

Here 	 � k�� and �i � �1=H is the initial conformal
time, corresponding to physical time t � 0. The integral
over z is facilitated by the special function,

 ��	� �
Z 1

0
dzz sin�	z� ln�1� z2�

�
2

	2 sin�	� �
1

	2 �cos�	� � 	 sin�	�	
�

si�2	� �
�
2

�

� �sin�	� � 	 cos�	�	
�

ci�2	� � �� ln
�
	
2

��
:

(76)

Here � is the Euler-Mascheroni constant and the sine and
cosine integrals are

 si �x� � �
Z 1
x
dt

sin�t�
t
� �

�
2
�
Z x

0
dt

sint
t
; (77)

 ci �x� � �
Z 1
x
dt

cost
t
� �� ln�x� �

Z x

0
dt
�

cos�t� � 1

t

�
:

(78)

After substituting the � function and performing the ele-
mentary integrals, (75) becomes

 Z
d4x0

�
ln��2�x2

���

�x2
��

�
ln��2�x2

���

�x2
��

�
�0
i ��

0; ~x; ~k; s�

�
i2�2

k
�����
2k
p ei ~k� ~xui� ~k; s��@

2
k� � 1�

Z �

�i
d�0e�ik�

0

�
	2��	�

�

�
2 ln

�
�	
k

�
� 1

�
�sin�	� � 	 cos�	�	

�
: (79)

One can see that the integrand is of order 	3 ln�	� for
small 	, which means we can pass the derivatives through
the integral. After some rearrangements, the first key iden-
tity emerges,
 Z
d4x0

�
ln��2�x2

���

�x2
��

�
ln��2�x2

���

�x2
��

�
�0��0; ~x0; ~k; s�

� �i4�2k�1�0��; ~x; ~k; s�

�
Z �

�i
d�0eik��

�
� cos�k���

Z 2k��

0
dt

sin�t�
t

� sin�k���
�Z 2k��

0
dt
�
cos�t� � 1

t

�
� 2 ln�2����

��
:

(80)
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Note that we have written e�ik�
0
� e�ik� � e�ik�� and

extracted the first phase to reconstruct the full tree order
solution �0��; ~x; ~k; s� � e�ik�����

2k
p ui� ~k; s�ei

~k� ~x.

The second identity derives from acting a d’Alembertian
on (80). The d’Alembertian passes through the tree order
solution to give

 @2�0��; ~x; ~k; s� � �0��; ~x; ~k; s�@��@� � 2ik�: (81)

Because the integrand goes like 	 ln�	� for small 	, we
can pass the first derivative through the integral to give
 

@2
Z
d4x0

�
ln��2�x2

���

�x2
��

�
ln��2�x2

���

�x2
��

�
�0��0; ~x0; ~k; s�

� i4�2�0��; ~x; ~k; s�@�
Z �

�i
d�0

�Z 2	

0
dt
�
eit � 1

t

�

� 2 ln
�
2�	
k

��
: (82)

We can pass the final derivative through the first integral
but, for the second, we must carry out the integration. The
result is our second key identity,
 

@2
Z
d4x0

�
ln��2�x2

���

�x2
��

�
ln��2�x2

���

�x2
��

�
�0��0; ~x0; ~k; s�

� i4�2�0��; ~x; ~k; s�
�
2 ln

�
2�
H
�1�H��

�

�
Z �

�i
d�0

�
ei2k�� � 1

��

��
: (83)

The final key identity is derived through the same pro-
cedures. Because they should be familiar by now we
simply give the result,

 

Z
d4x0

�
1

�x2
��

�
1

�x2
��

�
�0��0; ~x0; ~k; s�

� �i4�2k�1�0��; ~x; ~k; s�
Z �

�i
d�0eik�� sin�k���:

(84)

IV. SOLVING THE EFFECTIVE DIRAC EQUATION

In this section we first evaluate the various nonlocal
contributions using the three identities of the previous
section. Then we evaluate the vastly simpler and, as it
turns out, more important, local contributions. Finally,
we solve for �1��; ~x; ~k; s� at late times.

The various nonlocal contributions to (5) take the form
 Z
d4x0

X5

I�1

UI
ij

�
ln�	2

I�x
2
���

�x2
��

�
ln�	2

I�x
2
���

�x2
��

�
�0
j ��

0; ~x0; ~k; s�

�
Z
d4x0U6

ij

�
1

�x2
��

�
1

�x2
��

�
�0
j ��

0; ~x0; ~k; s�: (85)

The spinor-differential operators UI
ij are listed in Table I.

The constants 	I are� for I � 1, 2, 3, and 1
2H for I � 4, 5.

As an example, consider the contribution from U2
ij:

 

15

2

�2H2

28�4 @6 @
2
Z
d4x0

�
ln��2�x2

���

�x2
��

�
ln��2�x2

���

�x2
��

�
�0��0; ~x0; ~k; s�

�
15

2

�2H2

28�4 @6 � i4�
2�0��; ~x; ~k; s�

�

�
2 ln

�
2�
H
�1�H��

�
�
Z �

�i
d�0

�
e2ik�� � 1

��

��
; (86)

 

�
�2H2

26�2
iH�0�0��; ~x; ~k;s��

15

2

1

1�H�
fe2i�k=H��1�H���1g:

(87)

In these reductions we have used i@6 �0��; ~x; ~k; s� �

i�0�0��; ~x; ~k; s�@� and (83). Recall from the
Introduction that reliable predictions are only possible for
late times, which corresponds to �! 0�. We therefore
take this limit,

 

15

2

�2H2

28�4 @6 @
2
Z
d4x0

�
ln��2�x2

���

�x2
��

�
ln��2�x2

���

�x2
��

�
�0��0; ~x0; ~k; s�

!
�2H2

26�2
iH�0�0��; ~x; ~k; s� �

15

2

�
exp

�
2i
k
H

�
� 1

�
:

(88)

The other five nonlocal terms have very similar reduc-
tions. Each of them also goes to �2H2

26�2 � iH�0�0��; ~x; ~k; s�
times a finite constant at late times. We summarize the
results in Table II and relegate the details to an appendix.

The next step is to evaluate the local contributions. This
is a straightforward exercise in calculus, using only the
properties of the tree order solution (16) and the fact that
@�a � Ha2�0

�. The result is

TABLE I. Derivative operators UI
ij: Their common prefactor is

�2H2

28�4 .

I UI
ij I UI

ij

1 �H2aa0��1@6 @4 4 �8�@6 @2

2 15
2 @6 @

2 5 4@6 r2

3 � �@6 @2 6 7@6 r2
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i�2H2

26�2

Z
d4x0

�
ln�aa0�

H2aa0
@6 @2 �

15

2
ln�aa0�@6

� 7 ln�aa0� �@6
�
�4�x� x0��0��0; ~x0; ~k; s�

�
i�2H2

26�2

�
ln�a�

H2a
@6 @2

�
1

a
�0��; ~x; ~k; s�

�

�
1

H2a
@6 @2

�
ln�a�
a

�0��; ~x; ~k; s�
�
�

15

2
�ln�a�@6

� @6 ln�a���0��; ~x; ~k; s� � 14 ln�a� �@6 �0��; ~x; ~k; s�
�
;

(89)

 �
�2H2

26�2
iH�0�0��; ~x; ~k; s�

�
17

2
a� 14i

k
H

ln�a� � 2i
k
H

�
:

(90)

The local quantum corrections (90) are evidently much
stronger than their nonlocal counterparts in Table II.
Whereas the nonlocal terms approach a constant, the lead-
ing local contribution grows like the inflationary scale
factor, a � eHt. Even factors of ln�a� are negligible by
comparison. We can therefore write the late time limit of
the one loop field equation as

 i@6 �2�1��; ~x; ~k; s� !
�2H2

26�2

17

2
iHa�0�0��; ~x; ~k; s�: (91)

The only way for the left-hand side to reproduce such rapid
growth is for the time derivative in i@6 to act on a factor of
ln�a�,

 i��@� ln�a� � i��
Ha2

a
�0
� � iHa�0: (92)

We can therefore write the late time limit of the tree plus
one loop mode functions as

 �0��; ~x; ~k; s� � �2�1��; ~x; ~k; s�

!

�
1�

�2H2

26�2

17

2
ln�a�

�
�0��; ~x; ~k; s�: (93)

All other corrections actually fall off at late times. For
example, those from the ln�a� terms in (90) go like ln�a�=a.

There is a clear physical interpretation for the sort of
solution we see in (93). When the corrected field goes to
the free field times a constant, that constant represents a
field strength renormalization. When the quantum-
corrected field goes to the free field times a function of
time that is independent of the form of the free field
solution, it is natural to think in terms of a time-dependent
field strength renormalization,

 ���; ~x; ~k; s� !
�0��; ~x; ~k; s������������

Z2�t�
p

where Z2�t� � 1�
17�2H2

26�2
ln�a� �O��4�:

(94)

Of course we only have the order �2 correction, so one
does not know if this behavior persists at higher orders. If
no higher loop correction supervenes, the field would
switch from positive norm to negative norm at ln�a� �
26�2=17�2H2. In any case, it is safe to conclude that
perturbation theory must break down near this time.

V. HARTREE APPROXIMATION

The appearance of a time-dependent field strength re-
normalization is such a surprising result that it is worth
noting we can understand it on a simple, qualitative level
using the Hartree, or mean-field, approximation. This tech-
nique has proved useful in a wide variety of problems from
atomic physics [43] and statistical mechanics [44], to
nuclear physics [45] and quantum field theory [46]. Of
particular relevance to our work is the insight the Hartree
approximation provides into the generation of photon mass
by inflationary particle production in SQED [47–49].

The idea is that we can approximate the dynamics of
Fermi fields interacting with the graviton field operator,
h��, by taking the expectation value of the Dirac
Lagrangian in the graviton vacuum. To the order we shall
need it, the Dirac Lagrangian is [9]
 

LDirac� ��i@6 ��
�
2
fh ��i@6 ��h�� ����i@��

�h�
;� ����J
��g��2

�
1

8
h2�

1

4
h
�h
�

�
��i@6 �

��2

�
�

1

4
hh���

3

8
h�
h
�

�
����i@��

��2

�
�

1

4
hh�
;��

1

8
h�
h��;��

1

4
�h��h�
�;�

�
1

4
h��h�
;�

�
����J
���O��3�: (95)

Of course the expectation value of a single graviton field is
zero, but the expectation value of the product of two fields
is the graviton propagator [12,13],

TABLE II. Nonlocal contributions to
R
d4x0��	�x; x0��

�0��0; ~x0; ~k; s� at late times. Multiply each term by �2H2

26�2 �

iH�0�0��; ~x; ~k; s�.

I Coefficient of the late time contribution from each UI
ij

1 0
2 15

2 fexp�2i kH� � 1g

3 �i kH f2 ln�2�H � �
R

0
�i d�

0�exp��2k�0��1
�0 �g

4 8i kH
R

0
�i d�

0�exp��2k�0��1
�0 �

5 4 k2

H

R
0
�i d�

0e�2ik�0 f
R�2k�0

0 dt�exp��it��1
t � � 2 ln�H�0�g

6 � 7
2 i

k
H fexp�2i kH� � 1g
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h� j T�h���x�h
��x
0�	 j �i

� i�A�x; x0����TA
�	 � i�B�x; x0����TB
�	

� i�C�x; x0����TC
�	: (96)

The various tensor structures are

 ���T
A

�	 � 2 ����
 ����� �

2

D� 3
���� ��
�;

���TB
�	 � �4�0
�� �����
�

0
��;

(97)

 

���T
C

�	 �

2

�D� 2��D� 3�
��D� 3��0

��
0
� � ����	

� ��D� 3��0

�0

� � ��
�	: (98)

Parenthesized indices are symmetrized and a bar over a
common tensor such as the Kronecker delta function de-
notes that its temporal components have been nulled,

 

���
� � ��� � �

�
0 �

0
�; ���� � ��� � �

0
��

0
�: (99)

The three scalar propagators that appear in (96) have
complicated expressions which we omit in favor of simply
giving their coincidence limits and the coincidence limits
of their first derivatives [50],
 

lim
x0!x

i�A�x; x0� �
HD�2

�4��D=2

��D� 1�

��D2�

�
�� cot

�
�
2
D
�

� 2 ln�a�
�
; (100)

 lim
x0!x

@�i�A�x; x0� �
HD�2

�4��D=2

��D� 1�

��D2�
�Ha�0

�

� lim
x0!x

@0�i�A�x; x0�; (101)

 lim
x0!x

i�B�x; x0� �
HD�2

�4��D=2

��D� 1�

��D2�
� �

1

D� 2
; (102)

 lim
x0!x

@�i�B�x; x0� � 0 � lim
x0!x

@0�i�B�x; x0�; (103)

 lim
x0!x

i�C�x; x0� �
HD�2

�4��D=2

��D� 1�

��D2�
�

1

�D� 2��D� 3�
;

(104)

 lim
x0!x

@�i�C�x; x0� � 0 � lim
x0!x

@0�i�C�x; x0�: (105)

We are interested in terms which grow at late times.
Because the B-type and C-type propagators go to con-
stants, and their derivatives vanish, they can be neglected.
The same is true for the divergent constant in the coinci-
dence limit of the A-type propagator. In the full theory it
would be absorbed into a constant counterterm. Because
the remaining, time-dependent terms are finite, we may as

well take D � 4. Our Hartree approximation therefore
amounts to making the following replacements in (95):

 h��h
� !
H2

4�2 ln�a�� ���
 ���� � ���� ���
 � 2 ���� ��
�	;

(106)

 h��h
�;	!
H2

8�2Ha�
0
	� ���
 ����� ���� ���
�2 ���� ��
�	:

(107)

It is now just a matter of contracting (106) and (107)
appropriately to produce each of the quadratic terms in
(95). For example, the first term gives
 

�2

8
h2 ��i@6 �!

�2H2

25�2
ln�a������
�	� ���
 ���� � ���� ���


� 2 ���� ��
�	 ��i@6 �; (108)

 �
�2H2

25�2
ln�a��3� 3� 18	 ��i@6 �: (109)

The second quadratic term gives a proportional result,

 

��2

4
h
�h
� ��i@6 �!

��2H2

24�2 ln�a��9� 3� 6	 ��i@6 �:

(110)

The total for these first two terms is �3�2H2

4�2 ln�a� ��i@6 �.
The third and fourth of the quadratic terms in (95) result

in only spatial derivatives,

 

��2H2

4
hh�� ����i@��!

��2H2

24�2 ln�a��1�1�6	 ��i �@6 �;

(111)

 

3

8
�2h�
h�
 ����i@��!

3�2H2

25�2
ln�a��3� 1� 2	 ��i �@6 �:

(112)

The total for this type of contribution is 7�2H2

24�2 ln�a� ��i �@6 �.
The final four quadratic terms in (95) involve derivatives

acting on at least one of the two graviton fields,
 

�
�2

4
hh�
;� ����J
��!

��2H2

25�2
Ha�1� 1� 6	 ���


� ����J
0�; (113)

 

�2

8
h�
h��;� ����J
��!

�2H2

26�2
Ha�3� 1� 2	 ��
�

� ���0J
��; (114)

 

�2

4
�h��h�
�;� ����J
��!

�2H2

24�2 Ha�3� 1� 2	��


� ����J
0�; (115)
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�2

4
h��h�
;� ����J
��! 0: (116)

The second of these contributions vanishes owing to the
antisymmetry of the Lorentz representation matrices,
J�� � i

4 ��
�; ��	, whereas ���
�

�J
0 � � 3i
2 �

0. Hence,
the sum of all four terms is �3�2H2

8�2 Ha ��i�0�.
Combining these results gives

 

hLDiraci� ��i@6 ��
3�2H2

4�2 ln�a� ��i@6 ��
3�2H2

8�2 Ha ��i�0�

�
7�2H2

16�2 ln�a� ��i �@6 ��O��4�; (117)

 � ��
�

1�
3�2H2

8�2 ln�a�
�
i@6
�

1�
3�2H2

8�2 ln�a�
�

�

�
7�2H2

16�2 ln�a� ��i �@6 ��O��4�: (118)

If we express the equations associated with (118) accord-
ing to the perturbative scheme of Sec. I, the first order
equation is
 

i@6 �2�1��; ~x; ~k; s� �
�2H2

26�2
iH�0�0��; ~x; ~k; s�

�

�
24a� 28i

k
H

ln�a�
�
: (119)

This is similar, but not identical to, what we got in ex-
pression (90) from the delta function terms of the actual
one loop self-energy (3). In particular, the exact calculation
gives 17

2 a� 14i kH ln�a�, rather than the Hartree approxi-
mation of 24a� 28i kH ln�a�. Of course the ln�a� terms
make corrections to �1 which fall like ln�a�=a, so the
real disagreement between the two methods is limited to
the differing factors of 17

2 versus 24.
We are pleased that such a simple technique comes so

close to recovering the result of a long and tedious calcu-
lation. The slight discrepancy is no doubt due to terms in
the Dirac Lagrangian (95) which are linear in the graviton
field operator. As described in relation (32) of Sec. II, the
linearized effective field �i�x; ~k; s� represents a�D�1�=2

times the expectation value of the anticommutator of the
Heisenberg field operator  i�x� with the free fermion cre-
ation operator b� ~k; s�. At the order we are working, quan-
tum corrections to �i�x; ~k; s� derive from perturbative
corrections to  i�x�which are quadratic in the free graviton
creation and annihilation operators. Some of these correc-
tions come from a single hh �  vertex, while others derive
from two h �  vertices. The Hartree approximation recov-
ers corrections of the first kind, but not the second, which is
why we believe it fails to agree with the exact result.
Yukawa theory presents a fully worked-out example
[6,7,51] in which the entire lowest-order correction to the
fermion mode functions derives from the product of two

such linear terms, so the Hartree approximation fails com-
pletely in that case.

VI. DISCUSSION

We have used the Schwinger-Keldysh formalism to in-
clude one loop, quantum gravitational corrections to the
Dirac equation, in the simplest local Lorentz and general
coordinate gauge, in the locally de Sitter background
which is a paradigm for inflation. Because Dirac�
Einstein is not perturbatively renormalizable, it makes no
sense to solve this equation generally. However, the equa-
tion should give reliable predictions at late times when the
arbitrary finite parts of the BPHZ counterterms (6) are
insignificant compared to the completely determined fac-
tors of ln�aa0� on terms (7)–(9) which otherwise have the
same structure. In this late time limit we find that the one
loop corrected, spatial plane wave mode functions behave
as if the tree order mode functions were simply subject to a
time-dependent field strength renormalization,
 

Z2�t� � 1�
17

4�
GH2 ln�a� �O�G2�

where G � 16��2: (120)

If unchecked by higher loop effects, this would vanish at
ln�a� ’ 1=GH2. What actually happens depends upon
higher order corrections, but there is no way to avoid
perturbation theory breaking down at this time, at least in
this gauge.

Might this result be a gauge artifact? One reaches differ-
ent gauges by making field-dependent transformations of
the Heisenberg operators. We have worked out the change
(68) this induces in the linearized effective field, but the
result is not simple. Although the linearized effective field
obviously changes when different gauge conditions are
employed to compute it, we believe (but have not proven)
that the late time factors of ln�a� do not change.

It is important to realize that the 1PI functions of a gauge
theory in a fixed gauge are not devoid of physical content
by virtue of depending upon the gauge. In fact, they
encapsulate the physics of a quantum gauge field every
bit as completely as they do when no gauge symmetry is
present. One extracts this physics by forming the 1PI
functions into gauge independent and physically mean-
ingful combinations. The S-matrix accomplishes this in
flat space quantum field theory. Unfortunately, the S-
matrix fails to exist for Dirac� Einstein in de Sitter back-
ground, nor would it correspond to an experiment that
could be performed if it did exist [52–54].

If it is conceded that we know what it means to release
the universe in a free state then it would be simple
enough—albeit tedious—to construct an analogue of
 i�x� which is invariant under gauge transformations that
do not affect the initial value surface. For example, one
might extend to fermions the treatment given for pure
gravity by [55]:
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(i) Propagate an operator-valued geodesic a fixed in-
variant time from the initial value surface.

(ii) Use the spin connection A�cdJcd to parallel trans-
port along the geodesic.

(iii) Evaluate  at the operator-valued geodesic, in the
Lorentz frame which is transported from the initial
value surface.

This would make an invariant, as would any number of
other constructions [56]. For that matter, the gauge-fixed
1PI functions also correspond to the expectation values of
invariant operators [57]. Mere invariance does not guaran-
tee physical significance, nor does gauge dependence pre-
clude it.

What is needed is for the community to agree upon a
relatively simple set of operators which stand for experi-
ments that could be performed in de Sitter space. There is
every reason to expect a successful outcome because the
past few years have witnessed a resolution of the similar
issue of how to measure quantum gravitational backreac-
tion during inflation, driven either by a scalar inflaton [58–
61] or by a bare cosmological constant [62]. That process
has begun for quantum field theory in de Sitter space
[53,54,56] and one must wait for it to run its course. In
the meantime, it is safest to stick with what we have
actually shown: perturbation theory must break down for
Dirac� Einstein in the simplest gauge.

This is a surprising result but we were able to understand
it qualitatively using the Hartree approximation in which
one takes the expectation value of the Dirac Lagrangian in
the graviton vacuum. The physical interpretation seems to
be that fermions propagate through an effective geometry
whose ever-increasing deviation from de Sitter is con-
trolled by inflationary graviton production. At one loop
order the fermions are passive spectators to this effective
geometry.

It is significant that inflationary graviton production
enhances fermion mode functions by a factor of ln�a� at
one loop. Similar factors of ln�a� have been found in the
graviton vacuum energy [63,64]. These infrared logarithms
also occur in the vacuum energy of a massless, minimally
coupled scalar with a quartic self-interaction [65,66], and
in the VEV’s of almost all operators in Yukawa theory [51]
and SQED [67]. A recent all orders analysis was not even
able to exclude the possibility that they might contaminate
the power spectrum of primordial density fluctuations [68].

The fact that infrared logarithms grow without bound
raises the exciting possibility that quantum gravitational
corrections may be significant during inflation, in spite of
the minuscule coupling constant of GH2 & 10�12.
However, the only thing one can legitimately conclude
from the perturbative analysis is that infrared logarithms
cause perturbation theory to break down, in our gauge, if
inflation lasts long enough. Inferring what happens after
this breakdown requires a nonperturbative technique.

Starobinski	
 has long advocated that a simple stochastic
formulation of scalar potential models serves to reproduce

the leading infrared logarithms of these models at each
order in perturbation theory [69]. This fact has recently
been proved to all orders [70,71]. When the scalar potential
is bounded below it is even possible to sum the series of
leading infrared logarithms and infer their net effect at
asymptotically late times [72]. Applying Starobinski	
’s
technique to more complicated theories which also show
infrared logarithms is a formidable problem, but solutions
have recently been obtained for Yukawa theory [51] and
for SQED [67]. It would be very interesting to see what this
technique gives for the infrared logarithms we have exhib-
ited, to lowest order, in Dirac� Einstein. And it should be
noted that even the potentially complicated, invariant op-
erators which might be required to settle the gauge issue
would be straightforward to compute in such a stochastic
formulation.
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APPENDIX: NONLOCAL TERMS FROM SEC. IV

It is important to establish that the nonlocal terms make
no significant contribution at late times, so we will derive
the results summarized in Table II. For simplicity we
denote as �UI	 the contribution from each operator UI

ij in

Table I. We also abbreviate �0��; ~x; ~k; s� as �0�x�.
Owing to the factor of 1=a0 in U1

ij, and to the larger
number of derivatives, the reduction of �U1	 is atypical,

 �U1	 �
�2

28�4

1

a
@6 @4

Z
d4x0

1

a0

�
ln��2�x2

���

�x2
��

�
ln��2�x2

���

�x2
��

�
�0�x0�; (A1)

 �
�i�2

26�2a
�0�0�x���2ik@� � @

2
�	

�
@�

Z �

�i
d�0��H�0�

�

�
e2ik�� � 1

��

�
� @2

�

Z �

�i
d�0��2H�0� ln�2����

�
;

(A2)

 �
�i�2

26�2a
�0�0��2ik� @��

�
�
e2ik����1=H�� � 1

��� 1
H�

2

�
�2ik�H�e2ik����1=H��

�� 1
H

�
3H2

�1�H��
�

2H3�

�1�H��2

�
;

(A3)
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�
�2H2

26�2
�H��iH�0�

�
2�e�2ik=H��1�H�� � 1� 2H�	

�1�H��3

�
�1� 2ik

H �e
�2ik=H��1�H��

�1�H��2
�

5� 4ik�� 2ik
H

�1�H��2

�
6ik
H

1�H�

�
: (A4)

This expression actually vanishes in the late time limit of
�! 0�.
�U2	 was reduced in Sec. IV so we continue with �U3	,

 �U3	 � �
�2H2

28�4
�@6 @2

Z
d4x0

�
ln��2�x2

���

�x2
��

�
ln��2�x2

���

�x2
��

�
�0�x0�; (A5)

 � �
�2H2

28�4
�@6 i4�2�0�x�

�
2 ln

�
2�
H
�1�H��

�

�
Z �
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d�0
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��
; (A6)
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�2H2

26�2
k�0�0�x�

�
2 ln

�
2�
H
�1�H��

�

�
Z �

�i
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 !
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iH�0�0�x� � �

ik
H

�
2 ln

�
2�
H

�

�
Z 0

�i
d�0

�
e�2ik�0 � 1

�0

��
: (A8)

U4
ij has the same derivative structure asU3

ij, so �U4	 follows
from (A8),

 �U4	 � �
�2H2

28�4 � 8�@6 @2
Z
d4x0

�
ln�14H

2�x2
���

�x2
��

�
ln�14H
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(A11)

U5
ij has a Laplacian rather than a d’Alembertian so we

use identity (80) for �U5	. We also employ the abbreviation
k�� � 	,

 �U5	 � 4
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28�4 @6 r
2
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(A15)

U6
ij has the same derivative structure as U5

ij but it acts on a
different integrand. We therefore apply identity (84) for
�U6	,

 �U6	 � 7
�2H2
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2
Z
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1
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1
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