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Even though the energy carried by a gravitational wave is not itself gauge invariant, the interaction with
a gravitational antenna of the gravitational wave which carries that energy is. It therefore has to be
possible to make some statements involving the energy which are in fact gauge invariant, and it is the
objective of this paper to provide them. In order to develop a gauge invariant treatment of the issues
involved, we construct a specific action for gravitational fluctuations which is gauge invariant to second
perturbative order. Then, via variation of this action, we obtain an energy-momentum tensor for
perturbative gravitational fluctuations around a general curved background whose covariant conservation
condition is also fully gauge invariant to second order. Contraction of this energy-momentum tensor with a
Killing vector of the background conveniently allows us to convert this covariant conservation condition
into an ordinary conservation condition which is also gauge invariant through second order. Then, via
spatial integration we are able to obtain a relation involving the time derivative of the total energy of the
fluctuation and its asymptotic spatial momentum flux which is also completely gauge invariant through
second order. It is only in making the simplification of setting the asymptotic momentum flux to zero that
one would actually lose manifest gauge invariance, with only invariance under those particular gauge
transformations which leave the asymptotic momentum flux zero then remaining. However, if one works
in an arbitrary gauge where the asymptotic momentum flux is nonzero, the gravitational wave will then
deliver both energy and momentum to a gravitational antenna in a completely gauge invariant manner, no
matter how badly behaved at infinity the gauge function might be.
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I. INTRODUCTION

In standard treatments of the energy carried by a gravi-
tational fluctuation, the use of a noncovariant energy-
momentum pseudotensor totally obscures the covariance
and gauge issues involved, while additionally forcing one
to only admit those particular gauge transformations which
are asymptotically flat. However, the full gauge invariance
of general relativity equally holds for asymptotically badly
behaved gauge transformations as well, with the response
of a gravitational antenna to a gravitational wave needing
to be invariant under all gauge transformations both well-
behaved or badly behaved if such a response is to be
physically meaningful. Consequently, it is necessary to
provide a treatment of gravitational fluctuations which
takes the badly behaved gauge transformations into ac-
count as well. Thus, despite the fact that there is no gen-
erally covariant description of the energy carried by a
gravitational wave (and not even one which is good to
second perturbative order), one still has to be able to
make gauge invariant statements regarding the interaction
of the gravitational wave with a gravitational antenna and
the energy which the gravitational wave transmits to it. It is
thus the objective of this paper to provide a gauge invariant
treatment of the issues involved, using an approach which
retains full gauge invariance to second order at every step
of the way. In particular, we develop a new technique (one
based on a particularly chosen gauge invariant action for

gravitational fluctuations) for constructing the energy-
momentum tensor associated with a second order gravita-
tional fluctuation. And even though the particular energy-
momentum tensor we construct will not itself prove to be
gauge invariant, because of the gauge invariance of our
chosen fluctuation action, its covariant derivative nonethe-
less will be. However, the total energy and momentum
carried by the gravitational wave are associated not with
the fluctuation energy-momentum tensor itself but rather
with the spatial integrals of its derivatives. Consequently,
the gauge invariance of the covariant conservation condi-
tion for the energy-momentum tensor is all that we need in
order to be able to obtain an integral relation which in-
volves both the total energy and the total momentum of the
gravitational wave which itself is fully gauge invariant
through second order. The key point of this paper is,
thus, that in order to secure the gauge invariance of the
integral relations one does not actually need the gauge
invariance of the fluctuation energy-momentum tensor it-
self but rather only that of its covariant conservation con-
dition. Finally, once one has secured the gauge invariance
of the integral relations, while one can then choose to work
in a gauge in which the asymptotic momentum flux ac-
tually vanishes, the utility of our work is that we can
instead go to some other (typically asymptotically badly
behaved) gauge in which the asymptotic momentum flux
does not then vanish. In such a badly behaved gauge the
energy will then readjust since the relation between its time
derivative and the asymptotic momentum flux is fully
gauge invariant, with the gravitational wave then deliver-*Electronic address: philip.mannheim@uconn.edu
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ing both energy and momentum to a gravitational antenna
in a fully gauge invariant manner [1].

II. FLUCTUATIONS IN FIRST ORDER

If we start off knowing only that there is some general
Einstein tensor G�� � R�� � �1=2�g��g��R�� and some
general energy-momentum tensor T�� both of which are
independently covariantly conserved with respect to an
arbitrary gravitational metric g�� (i.e. on nonstationary
gravitational paths which are not required to obey the
Einstein equations), the quantity ��� � G�� � �2

4T
��

will then be covariantly conserved even for gravitational
paths which do not obey ��� � 0. If we now break up all
these various tensors into zeroth and first order parts so that
the metric can be written as g�� � g�0��� � g

�1�
�� � g�0��� �

h��, g�� � g�0��� � h�� (we use h�� to denote g�1���), the
covariant conservation of the zeroth order ��0��� with
respect to g�0��� (which we shall require) and the covariant
conservation of the full ��� with respect to the full g��
will then entail that the first order ��1��� defined as

 ��1��� � R�1��� � 1
2h��g

�0���R�0��� �
1
2g
�0�
��g�0���R

�1�
��

� 1
2g
�0�
��h��R

�0�
�� � �

2
4T
�1�
�� (1)

will then obey
 

@���1��� ���1�����0���� ���1�����0���� � ��0�����1����

� ��0�����1���� � 0; (2)

where ��1���� and R�1��� are given by ��1���� �

�1=2�g�0����r�h�� �r�h�� �r�h��� and R�1�����1=2��
�r�r�h�r�r�h���r�r�h���r�r�h���, and
where the covariant r� derivatives are evaluated with

respect to the zeroth order metric g�0���. For stationary zeroth
order paths which obey a zeroth order Einstein equation
��0��� � 0, it then follows that all first order paths will obey

 r���1��� � 0 (3)

even without the imposition of any equation of motion for
the first order h��. As introduced, the quantity ��1���

transforms as a true tensor with respect to the zeroth order
g�0���, and remains unchanged if h�� is replaced by �h�� �
h�� �r��� �r���, with the r���1��� � 0 condition
thus being gauge invariant to first order in ��.

The value of breaking ��� into zeroth and first order
parts is that, if we perturb the zeroth order background g�0���
with some first order perturbation 	�1��� which is also con-
served with respect to the background, the perturbation
will induce changes in both the background Einstein tensor
and the background energy-momentum tensor, with the
first order h�� then being fixed as the solution to

 ��1��� � ��2
4	
�1�
�� (4)

once the first order Einstein equations are imposed. As
such, Eq. (4) is automatically fully gauge invariant to first
order in ��.

III. FLUCTUATIONS IN SECOND ORDER

The presence of the perturbation will also lead to a
second order effect, namely, the emission of a gravitational
wave, and Weinberg [2] has suggested that we identify its
energy-momentum tensor as (1=�2

4 times) that part, viz.
��2����h�, of the full ��� which is second order in h��. Since
the Einstein equations take the form

 ��0��� ���1��� ���2��� � ��2
4	
�1�
�� (5)

through second order, in solutions to Eq. (5) which obey
both ��0��� � 0 and ��1��� � ��2

4	
�1�
��, the second order ��2���

and r���2��� (as evaluated with respect to the background
g�0���) would both have to vanish identically. Since the full
second order ��2��� does vanish, the only way for that piece
of it which is second order in h�� to not itself vanish when
h�� is itself a solution to the first order Eq. (4) is if, in

addition to ��2����h�, the full ��2��� contains some other,
intrinsically second order, term [to be labeled ��2����g�2��]
which would have to be equal to ���2����h�. However, in
that case it would only be the conservation of the sum of
��2����h� and ��2����g�2�� which would be secured by the
imposition of Eq. (5), to thus not immediately ensure that
��2����h� itself would in fact be able to serve as a conserved
gravitational wave energy-momentum tensor. However, as
we now show, on explicitly constructing the additional
��2����g�2�� term in the explicit case of fluctuations around
a flat background, we will find it to be conserved all on its
own, so that it does not in fact exchange energy and
momentum with ��2����h�, to thereby allow ��2����h� to be
independently conserved after all. Then, guided by this
decoupling of the h�� and g�2��� sectors in the flat back-
ground case, using an action principle we shall then gen-
eralize the decoupling to general curved backgrounds as
well [3].

When we perturb a system with a first order perturbation
	�1��� we not only induce a first order change in the metric,
we also induce higher order changes in it as well. To
second order then we must take the perturbed metric to
be of the form

 g�� � g�0��� � h�� � g
�2�
��: (6)

Through second order the associated inverse metric and
determinant are given by
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g�� � g�0��� � h�� � h�
h
� � g�2���;

g � g�0�
�

1� h�
h2

2
�
h��h��

2
� g�0���g�2���

�
;

(7)

with the second order term in the Einstein tensor being
given by
 

G�2��� � R�2��� � 1
2g
�0�
���g�0���R

�2�
�� � h

��R�1��� � h
�

h
�R

�0�
��

� g�2���R�0���� �
1
2h���g

�0���R�1��� � h
��R�0����

� 1
2g
�2�
��g�0���R

�0�
��: (8)

To identify the specific role played by the intrinsically
second order g�2��� it is sufficient to descend to the flat
background case where g�0��� � ���. On recalling that the
general curved space Riemann tensor is given by R���� �
�1=2��@�@�g�� � @�@�g�� � @�@�g�� � @�@�g��� �
g�
��

�
���
�� � �����
���, in the flat background case we

see that the g�2��� dependent term in Eq. (8) is given by
 

G�2����g�2�� � 1
2�@�@�g

�2��
� � @�@�g�2��� � @�@�g�2���

� @�@�g
�2�
��� � 1

2����@�@
�g�2���

� @�@�g
�2����: (9)

As such, this expression is quite remarkable. Specifically it
says that the dependence of the second order G�2����g�2�� on
g�2��� is precisely the same as the dependence of the first
order G�1��� on h�� [viz. G�1��� � �1=2��@�@�h�
@�@�h�� � @�@�h�� � @�@�h��� � �1=2�����@�@�h�
@�@�h

���] in the same flat background. However, since

G�1��� kinematically obeys a linearized Bianchi identity
without any need to impose any equation of motion, it
follows that G�2����g�2�� must do so too, and thus we con-
clude that the condition @�G�2����g�2�� � 0 not only holds,
but that it does so without needing to impose any statio-
narity condition on g�2��� whatsoever. If, however, we now
do impose Eq. (5), we will then find that G�2����h� [and thus
��2����h� in the flat background case] will be conserved also.
After the fact then we conclude that in the flat background
case we can set

 @���2����h� � 0 (10)

after all, just as we want.
An additional feature of the form of Eq. (9) is that, once

we have fixed h�� from the first order Eq. (4), the vanishing

of the full ��2��� in solutions to Eq. (5) would then enable us
to determine g�2��� as a closed form function which would
indeed be quadratic in h��, just as it should be. And not
only that, from the explicit form of Eq. (9), we see that the
equation for g�2��� would be in the form of none other than an

Einstein equation whose source term is ��2����h�. Finally,
with the change in the second order g�2��� under an
infinitesimal gauge transformation x� ! x� � �� being
given by g�2���!g�2����h���x�@����h���x�@����
��@�h���x��@���

�@�����@���
�@�����@���@��

�, we
infer that the vanishing of @���2����g�2�� is itself gauge
invariant, with the vanishing of @���2����h� then being
gauge invariant through second order too. Thus, even
though ��2����h� is not itself gauge invariant, its derivative
is, with the associated integral condition

 

@
@t

Z
d3x��2�00�h� � �

Z
dSni��2�0i�h� (11)

then being gauge invariant too [4]. Without any loss of
gauge invariance one can thus arrive at an integral relation
which relates the time derivative of the energy to an
asymptotic momentum flux, no matter how badly behaved
a gauge one might choose to work in. The only place where
gauge invariance could be lost would be in dropping the
asymptotic momentum flux term, as its vanishing does not
occur in asymptotically badly behaved gauges. None-
theless, in gauges where the asymptotic momentum flux
is nonvanishing, the gravitational wave would deliver not
just energy but momentum also to a gravitational antenna,
doing so in a completely gauge invariant manner [5].

IV. THE REASON FOR THE DECOUPLING

To understand and to then be able to generalize the
above found decoupling of the two second order sectors,
we recall a very useful property of the Einstein-Hilbert
action IEH � ��1=2�2

4�
R
d4x��g�1=2R��, namely, that

under integration by parts it can brought to the form [6]

 IEH �
1

2�2
4

Z
��g�1=2g����������� � ���������: (12)

For our purposes here the great utility of Eq. (12) is that for
a flat background an expansion of IEH through second order
can only involve terms which are no higher than first order
in the Christoffel symbols, to thus involve h�� but not g�2���
at all. The entire dependence of R�2��� on g�2��� can thus be

removed from the second order I�2�EH by an integration by
parts which would then put the g�2��� dependence entirely in
irrelevant surface terms. Further, on explicitly evaluating
Eq. (12) in a flat background, I�2�EH is found to take the form

 

I�2�EH �
1

8�2
4

Z
d4xh���@�@�h� @�@�h�� � @�@�h��

� @�@
�h�� � ���@�@

�h� ���@�@�h
���: (13)

We recognize Eq. (13) to be of none other than the form
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 I�2�EH �
1

4�2
4

Z
d4xh��G�1���; (14)

whereG�1��� � R�1��� � �1=2����R�1� is the first order change
in the Einstein tensor in the flat background. As such, the
stationary variation of Eq. (14) with respect to the fluctua-
tion h�� would thus yield the source-free region version of
Eq. (4) as evaluated in a flat background, viz. the first order
G�1��� � 0. As an action, the second order I�2�EH is gauge
invariant under h�� ! h�� � @��� � @��� since G�1��� is
itself gauge invariant and @�G�1��� is kinematically zero,

and thus has to lead to a first order wave equation G�1��� � 0
which is gauge invariant too. In other words, since the first
order wave equation is gauge invariant, there has to exist
some second order action from which it can be derived, an
action which would itself need to be gauge invariant to
second order in ��. Moreover, since the first order wave

equation cannot depend on the second order g�2���, the
requisite gauge invariant second order action could not
depend on g�2��� either. Via Eq. (14) the discussion of the
sector which is second order in h�� can thus be conducted

without reference to g�2��� at all.

Since the I�2�EH action provides us with an equation of
motion when we vary with respect to the fluctuation h��,

we can view I�2�EH as describing a field theory in which a spin
two field h�� propagates in some background ���. For
such a spin-two field theory we can construct an energy-
momentum tensor. Specifically, in Eq. (13) we replace the
metric ��� by a general g��, replace ordinary derivatives
by covariant ones, and then do a functional variation of the
I�2�EH action with respect to g�� to construct the rank-two

tensor t�2��� � �2=��g�1=2��I�2�EH=�g��, with the flat space

limit of this t�2��� then being the requisite flat spacetime
energy-momentum tensor associated with the propagation
of h�� in the flat background. Moreover, with the action

I�2�EH being a general coordinate scalar, in solutions to the
first order h�� wave equation, the second order t�2��� con-
structed this way will automatically be covariantly
conserved.

To actually perform the requisite variation of the action
of Eqs. (13) and (14), we must vary with respect to g��
without yet imposing the first order flat backgroundG�1��� �
0 equation of motion for h��, with a fair amount of algebra

then being found to yield an associated t�2��� of the form

 

4�2
4t
�2�
�� � h��@�@�h�� � h��@�@�h�� � h��@�@�h�� � h��@�@�h�� � 2���h��@�@
h
� � h��@�@

�h��

� h��@�@�h�� � h��@�@�h� h��@�@�h� h��@�@�h� ���h��@�@�h� @�h��@�h�� � @�h��@�h��

� @�h��@�h�� � @�h��@�h�� � 2@�h��@�h�� � 2@�h��@�h�� � ���@�h��@
h
�
 � @�h��@�h��

� 1
2���@
h��@


h�� � @�h
�
�@�h� @�h

�
�@�h� @�h��@

�h� @�h@�h�
1
2���@�h@

�h: (15)

With the covariant derivative of this t�2��� evaluating to

 4�2
4@�t

�2��� � �@�h�� � 2@�h����@�@�h�� � @�@�h�� � @�@�h�� � @�@�h� ����@�@�h� @�@
h�
��

� 2�@�h�� � 2@�h���G�1���; (16)

we readily confirm that for any on-shell h�� which then obeys the first order equation of motionG�1��� � 0, the second order
energy-momentum tensor does indeed obey @�t�2��� � 0, just as it should. Under a gauge transformation of the form
h�� ! h�� � @��� � @���, we note that, while t�2��� itself will then acquire terms which are both linear and quadratic in
��, because of the gauge invariance ofG�1���, the covariant derivative of t�2��� will only acquire a term which is linear in ��,
viz. the term �4�@�@����G�1���. With this specific term vanishing when G�1��� vanishes, and with G�1��� vanishing for every
h�� � @��� � @��� if it already vanishes for any given h��, the on-shell vanishing of @�t�2��� is thus seen to be fully
gauge invariant to second order in ��.

Some simplification of Eq. (15) can be obtained by working in the convenient harmonic gauge where @�h�� �
�1=2�@�h � 0, with t�2��� then reducing to [7]

 

4�2
4t
�2�
�� � �@�h��@�h�� � @�h��@�h�� � @�h��@�h�� �

1
4���@�h@

�h� h��@�@�h�� � h��@�@�h��

� 1
2h��@�@

�h� 1
2h��@�@

�h� 1
2���@
h��@


h�� � 1
2@�h��@

�h� 1
2@�h��@

�h� 1
2@�h@�h� h��@�@

�h��

� h��@�@�h�� � h��@�@�h: (17)

With a typical box-normalized solution to the harmonic gauge wave equation @�@�h�� � �1=2����@�@�h being of the
form h�� � 2�4eip	xe���p��=�2p0�1=2L3=2 � c:c: where p�p� � 0 and where the polarization tensor obeys p�e�� �
�1=2�p�e��, in such solutions the asymptotic momentum flux is found to vanish, with the on-shell fluctuation energy then
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being found to be given by the time-independent

 E�2� �
Z
d3xt�2�00 � p0

�
e��e�� �

1

2
�e���

2

�
; (18)

just as one would want of an energy [8]. Interestingly, the
value obtained for E�2� is precisely the same as that which
would be obtained via the relevant Weinberg prescription,
viz. �1=�2

4�
R
d3x�R�2�00 � �1=2��00R�2����, when eval-

uated under exactly the same conditions [9].

V. GENERAL ENERGY-MOMENTUM TENSOR

In order to extend the above analysis to a general curved
space background, we first need to find a fluctuation
energy-momentum tensor which is covariantly conserved,
and then we need to manipulate the covariant conservation
condition in a way which will yield an ordinary conserva-
tion condition while not losing gauge invariance. As re-
gards the first issue, the solution is immediately at hand,
since variation with respect to h�� of the fully covariant
extension of Eq. (14), viz.

 I�2�EH �
1

4�2
4

Z
d4x��g�1=2h����1���; (19)

leads directly to ��1��� � 0. With the energy-momentum
tensor t�2��� � �2=��g�1=2��I�2�EH=�g�� constructed from

this I�2�EH being covariantly conserved when ��1��� � 0, and
with I�2�EH being invariant under h�� ! h�� �r��� �
r���, the r�t�2��� � 0 condition is thus fully gauge in-
variant to second order.

To use the covariant conservation condition to extract an
ordinary one, we follow Abbot and Deser [10] and contract
the general t�2��� with a Killing vector K� of the curved
background [11]. With Killing vectors obeying the
antisymmetric r�K� � �r�K�, and with t�2��� being
symmetric [our very construction of it as
�2=��g�1=2��I�2�EH=�g�� obliges it to be symmetric], the
covariant conservation of the 4-vector J� � t�2���K� im-
mediately follows since r�J� � �r�t�2����K� �
t�2���r�K� � 0. Consequently, with r�J� �
��g��1=2@����g�1=2J��, Eq. (11) generalizes to

 

@
@t

Z
d3x��g�1=2t�2�0�K� � �

Z
d3x

@���g�1=2t�2�i�K��
@xi

� �
Z
dSni��g�

1=2t�2�i�K�;

(20)

to yield the gauge invariant integral relation we seek [12].

To illustrate the utility of our formalism, we apply it to
the recently introduced AdS5=Z2 based brane world of
Randall and Sundrum [13]. In a brane world with maxi-
mally 4-symmetric branes the background geometry is
taken to be of the separable form ds2 � dw2 �

e2A�jwj�q��dx
�dx� where w is the fifth coordinate, A�jwj�

is the so-called warp factor, and the w-independent q�� is
the induced metric on the brane. One is interested in the
propagation in this background of axial gauge, transverse-
traceless tensor fluctuations which obey the first order
wave equation �G�1�MN � �1=2��rAr

AhMN � 2b2hMN� �
0 where �b2 is the curvature of AdS5 and M �
�0; 1; 2; 3; 5�. Calculation of the t�2�MN associated with
the five-dimensional action I�2�EH � �1=4�2

5��R
d5x��g�1=2hMN�G�1�MN is rather lengthy, and is found

[14] to take the form

 

4�2
5t
�2�MN � hBArBr

MhNA � hBArBr
NhMA

�rMhABrNhAB �
1
2g
MNrShABrShAB

�rMhABrBhNA �r
NhABrBhMA

� b2gMNhABhAB � 10b2hMAhNA (21)

on shell, with rMt�2�MN indeed being found to vanish
identically in modes which obey rArAhMN � 2b2hMN �
0. Separable mode solutions to the wave equation have a
dependence on jwj of the generic form fm�jwj� where m is
a separation constant, so that, with KM � ��1; 0; 0; 0; 0�
being a timelike AdS5 Killing vector, modes with a vanish-
ing asymptotic momentum flux t�2�05 will then have a time-
independent energy. For the case where the induced metric
on the brane is an M4 or AdS4 geometry, t�2�05 is found to
behave asymptotically as fm�jwj��f0m�jwj� � 2A0fm�jwj��,
with the vanishing of this quantity leading to a time-
independent energy whose dependence on the fifth coor-
dinate is given by

R
1
0 djwje

�2Af2
m�jwj� [15]. With the

energy being a bilinear function of h��, we recognize the
finiteness of this integral as being none other than the
normalization condition which is ordinarily used in the
brane world [16], just as needed to enable us to construct
a propagator with which to integrate Eq. (4) [17,18].
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