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We study the semiclassical fluctuation problem around bounce solutions for a self-interacting scalar
field in curved space. As in flat space, the fluctuation problem separates into partial waves labeled by an
integer l, and we determine the large l behavior of the fluctuation determinants, a quantity needed to define
a finite fluctuation prefactor. We also show that while the Coleman-De Luccia bounce solution has a single
negative mode in the l � 0 sector, the oscillating bounce solutions also have negative modes in partial
waves higher than the s-wave, further evidence that they are not directly related to quantum tunneling.

DOI: 10.1103/PhysRevD.74.024018 PACS numbers: 04.62.+v, 11.27.+d, 98.80.Cq

I. INTRODUCTION

The problem of false vacuum decay in the presence of
gravity [1] provides an important window into the behavior
of interacting quantum fields in curved space-time, and is
also important for our understanding of string theory and
quantum gravity [2–4], and inflationary models of cos-
mology [5]. Since the pioneering work of Coleman and De
Luccia [1], much has been learned regarding the existence
and properties of bounce solutions for interacting scalar
fields coupled to gravity [2,6–15], and consequently the
exponential factor in the false vacuum decay rate. On the
other hand, relatively little is known about the prefactor in
the decay rate. This is in distinct contrast to the flat-space
case where the entire computation is well understood
physically and mathematically; analytically in the thin-
wall limit [16–20], and numerically in general [21–24].
Here we begin to address this prefactor question with
coupling to gravity by studying the problem of quantum
fluctuations about the bounce solutions. A full solution to
this problem is not possible at present for the simple reason
that computing the renormalized fluctuation prefactor
would require an understanding of the renormalization of
quantum gravity. However, we argue that certain interest-
ing things can be learned, in particular, in the limit where
the gravitational background is fixed to be de Sitter space.

In the flat-space false vacuum decay problem, the fluc-
tuation operator separates into partial waves labeled by an
integer l, and there are three important types of modes. In
the l � 0 sector there is a single negative mode and this is
responsible for the decaying nature of the problem [16–
19]. In the l � 1 sector there are four zero modes corre-
sponding to translational invariance in four-dimensional
Euclidean space, and these zero modes lead to collective
coordinate contributions to the overall fluctuation determi-
nant. For l � 2 the eigenvalues are all positive, and since
for each l the fluctuation operator is a one-dimensional
radial operator, one can compute the determinant straight-
forwardly using the Gel’fand-Yaglom method (described
below in Sec. IV). Formally, the determinant of the full
fluctuation operator is a product of the determinants for all
l, including degeneracies, so the large l behavior is crucial

for defining a finite renormalized fluctuation determinant.
In the thin-wall limit, where the energy gap between the
true and false vacua is small, the computation can essen-
tially be done analytically [16–19], and one has a beautiful
physical picture of this process as nucleation of bubbles.
Away from the thin-wall limit, the computation can be
done by various approximate or numerical approaches
[21–24]. Our main motivation here is to investigate how
the behavior of the fluctuation operator is affected by the
inclusion of coupling to gravity.

With the inclusion of gravity, Coleman and De Luccia
argued [1] that the bounce solutions are still radially sym-
metric (although this has not been rigorously proved, as it
has been in flat space [25]). Interestingly, new classes of
bounce solutions arise, with different physical interpreta-
tions. The Coleman-De Luccia (CDL) bounce generalizes
the flat-space bounce and is presumed to be associated with
quantum tunneling [1]. There also exists the Hawking-
Moss (HM) bounce [6] which is interpreted physically in
terms of a thermal transition [5,13]. More recently it has
been shown that there are also ‘‘oscillating bounce’’ solu-
tions in which the scalar field passes over the barrier more
than once [12–15]. As emphasized in [13], these oscillat-
ing bounces interpolate between the CDL and HM boun-
ces, and reflect the thermal character of quantum field
theory in de Sitter space. Since all these bounces are radial,
a similar separation of the fluctuation problem into ‘‘partial
waves’’ is possible, with the physically plausible assump-
tion that such radial fluctuations dominate. But even with
this separation, the fluctuation problem is still considerably
more subtle with the inclusion of gravity, as it requires a
detailed constraint analysis to disentangle the physical
fluctuation fields. Here we consider the scalar fluctuations
in the formalism developed in [26–29]. The existence of
negative modes in the l � 0 sector for these scalar fluctua-
tions has been investigated in [26–29]. We extend this
fluctuation analysis in several ways by considering the
behavior for higher l. We study two main questions:
First, we investigate the large l behavior of the fluctuation
determinants within each partial wave sector. We find an
explicit expression for the leading large l behavior, and a
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numerically accurate estimate for the subleading behavior.
Second, we analyze the existence of negative modes not
just in the l � 0 sector, but also for higher l, and show that
the oscillating bounce solutions have negative modes for
higher l. This is further evidence for the physical picture in
[13] that these oscillating bounces are not directly related
to quantum tunneling, but rather reflect the thermal nature
of quantum field theory in de Sitter space. We are not able
to study the l � 1 sector, as this fluctuation formalism does
not apply here [26,27], and so this requires a separate
study.

In Sec. II we review the model and the construction of
bounce solutions to the classical equations of motion. In
Sec. III we summarize the scalar fluctuation problem to be
studied. Section IV is devoted to the study of the large l
behavior of the fluctuation determinant, in which we re-
view the flat-space approach. In Sec. V we count the
negative modes for various l for fluctuations about bounce
solutions. Section VI contains our conclusions and an
appendix gives the relation of our fluctuation operator to
other forms considered in the literature.

II. CLASSICAL BOUNCE SOLUTIONS

Before discussing quantum fluctuations, we briefly re-
view the derivation of the bounce solutions themselves. We
consider the four-dimensional self-interacting scalar field
system with Euclidean action

 SE �
Z
d4x

���
g
p

�
1

2
r��r

��� V��� �
1

2�
R
�
; (2.1)

where the gravitational coupling is expressed as � �
8�=M2

pl. In terms of the proper time �, the metric has
the form

 ds2 � d�2 � a2���d�2
3: (2.2)

The classical Euclidean equations of motion are

 

��� 3
_a
a

_�� V 0��� � 0; (2.3)

 _a 2 �
�a2

3

�
1

2
_�2 � V���

�
� K; (2.4)

where the overdot denotes d
d� , and V0��� � �V���

�� . K � 0,
�1 corresponding to flat, closed/open universes, respec-
tively. The boundary conditions for the bounce solutions
are
 

_��0� � 0; _���max� � 0;

a�0� � 0; a��max� � 0;
(2.5)

where �max is defined by the last equation: a��max� � 0. In
this paper we consider K � 1, which leads to the normal-
ization condition

 _a�0� � 1: (2.6)

We choose the standard quartic scalar field potential
[13,15]:
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; (2.7)

which is sketched in Fig. 1. The function f is a function of
the dimensionless field ’ � �

v :

 f�’� � �
1

2
’2 �

b
3
’3 �

1

4
’4: (2.8)

The potential V��� has two local minima, a false vacuum
�fv, and a true vacuum �tv, separated by a local maximum
�top, chosen to be at �top � 0. A crucial difference be-
tween the flat-space case and the gravitational case is that
the overall constant Vtop in the potential is now significant,
as it plays the role of a cosmological constant [1]. A
corresponding mass scale is defined as

 Htop �

������������
�Vtop

3

s
�

���������������
8�Vtop

3M2
pl

vuut : (2.9)

The dimensionless parameter � in (2.7) characterizes the
ratio of the barrier curvature (at �top � 0) to H2

top

 � �
jV00�0�j

H2
top

; (2.10)

and is an important quantity in determining the existence
and form of bounce solutions [1,8,9,12,13]. Another useful
dimensionless quantity is the ratio of the field scale v to the
Planck mass Mpl:
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V(ϕ)

ϕ
fv

ϕ
top

ϕ
tv

FIG. 1 (color online). The scalar field potential V�’� with the
parameters: � � 45, b � 0:25, � � 0:23.
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������������
8�v2

3M2
pl

vuut �

���������
�v2

3

s
; (2.11)

and we consider here values such that the potential is
everywhere positive.

The three critical points of V��� correspond to three
trivial solutions to the bounce Eqs. (2.3), (2.4), (2.5), and
(2.6), in which � is constant at one of these critical values
�c such that V0��c� � 0:

 ���� � �c a��� �
1

H
sin�H��: (2.12)

The three solutions of this form are: (i) the false vacuum
constant solution with � � �fv, and Hfv �

�����������������������
�V��fv�=3

p
;

(ii) the true vacuum constant solution with � � �tv, and
Htv �

����������������������
�V��tv�=3

p
; (iii) the Hawking-Moss [6] solution

with � � �top � 0, and Htop given by (2.9).
More interesting are the bounce solutions in which � is

not constant. For definiteness, we restrict our attention to
bounces beginning near the true vacuum and ending near
the false vacuum:

 ��0� 	 �tv; ���max� 	 �fv: (2.13)

Other bounces exist [12,13] and can be treated with com-

pletely analogous methods. Bounces can be labeled by an
integer n characterizing how many times they cross the
barrier. We will refer to the Coleman-De Luccia bounce [1]
as a ‘‘single-bounce’’ solution, and the n � 2 bounces will
be termed ‘‘oscillating bounces’’ [13]. In the flat-space
limit, only single-bounce solutions have finite action. The
explicit bounce solutions can be found numerically by a
straightforward shooting technique, as follows.

The shooting parameter is the initial value ��0� of the
scalar field. This value is chosen near the true vacuum
value and adjusted until the coupled initial value problem
(2.3), (2.4), (2.5), and (2.6) has a solution satisfying both
a��max� � 0 and _���max� � 0, for some �max. The value
of �max is determined by this shooting procedure, and so
depends on the bounce. Since the metric field behaves as
a��� 
 � for small �, we cannot directly start integrating
(2.3) at � � 0. Instead, we Taylor expand both a��� and
���� about 0, and use these Taylor expansions to begin the
integration at a point very close to 0. We then do a shooting
scan of��0�, adjusting it digit by digit, in a rational form to
preserve precision. This computation is simple to imple-
ment in Mathematica. In a few minutes one can determine
��0� to 32 decimal places. We found that the shooting went
faster with the following simple rescaling of the differen-
tial equations, as in [15]: we rescale ’ � �=v, and � and

a��� as: s �
�������������
�H2

top

q
�, and 	�s� �

�������������
�H2

top

q
a���, so that

the parameters v and Htop scale out of the classical equa-
tions of motion.

Representative examples of bounce solutions with
��0� 	 �tv and ���max� 	 �fv are shown in Figs. 2–4.
These plots are for � � 45. For larger � more oscillations
are possible in the bounce solutions. Note that the metric
field a��� deviates significantly from the sinusoidal form
of (2.12) for the single and triple bounce, but less so for the
quintuple bounce. This, together with the fact that the
scalar field� is closer to the Hawking-Moss constant value
of �top � 0, is another reflection of the fact that the highly
oscillating bounce solutions tend towards the Hawking-
Moss solution [13].
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FIG. 3 (color online). Triple bounce solution to (2.3), (2.4),
(2.5), and (2.6), for parameter values: � � 45, b � 0:25, � �
0:23. The shooting procedure determines the initial scalar field
value ’3�0� � ’tv � 0:008 860 088 903 713 227, Htop�

3b
max �

3:1243. Here sin3 �
1
H3

sin�H3��, and �max is given by: H3 �

�=�3b
max.
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FIG. 2 (color online). Single-bounce solution to (2.3), (2.4),
(2.5), and (2.6), for parameter values: � � 45, b � 0:25, � �
0:23. The shooting procedure determines the initial scalar field
value ’1�0� � ’fv � 0:000 145 223 243 267 576 9, and �max is
given by: Htop�

1b
max � 3:7475. Here sin1 �

1
H1

sin�H1��, and
H1 � �=�1b

max.
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FIG. 4 (color online). Quintuple bounce solution to (2.3), (2.4),
(2.5), and (2.6), for parameter values: � � 45, b � 0:25, � �
0:23. The shooting procedure determines the initial scalar field
value ’5�0� � ’tv � 0:337 102 748 195 264 1, Htop�

5b
max �

3:1264. Here sin5 �
1
H5

sin�H5��, and �max is given by: H5 �

�=�5b
max.
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III. FLUCTUATION OPERATOR

Having reviewed how to find the classical bounce solu-
tions, we now turn to the problem of fluctuations about
these solutions. With the inclusion of gravity, the fluctua-
tion problem becomes more subtle, and the fluctuation
operator about such cosmological instantons has been
widely studied [26–30]. The variation of the action under
fluctuations of the scalar field and the metric field requires
a nontrivial constraint analysis, with different possible
gauge fixing procedures. For the purpose of this paper,
we choose the gauge fixing scheme described in Sec. 4.3
of [29], and Sec. IV of [27]. In this scheme, the only
physical degree of freedom is the fluctuation of the scalar
field, and the second variation of the action can be ex-
pressed as (compare with Eq. (12) in [27] and Eq. (18) in
the second reference of [31]):

 S�2����� � �2
Z
d���

�
�

d
d�

�
a3���
Q���

d
d�

�

� a3���U����; �����
�
��: (3.1)

Here

 Q ��� � 1�
�a2��� _�2���
2���3 � 3K�

; (3.2)

and

 U�a;�� �
1

Q
V 00��� �

��3

Qa2 � �
�
2 _�2

Q

�
�a2�V 0����2 � 5a _a _�V 0��� � 6 _a2 _�2

Q2���3 � 3K�

�
:

(3.3)

Here we have temporarily reinstated the K dependence,
although in our numerical studies we return to K � 1, and
�3 is the Laplacian on S3.

To pass from this secondary action to the Jacobi equa-
tion [32], a Sturm-Liouville differential equation whose
eigenvalues will define the determinant of the fluctuation
operator, we need to specify the weight function. The
weight function is determined by defining

 jj��jj2 �
Z
d4x

���
g
p
����2 � 2�2

Z
d�a3����������2:

(3.4)

Then in terms of the perturbation function � � ��, the
fluctuation equation (the Jacobi equation [32]) is

 �
1

a3

d
d�

�
a3

Q

d�

d�

�
�U�a;��� � 
�; (3.5)

which is defined on the interval � 2 �0; �max�, with
Dirichlet boundary conditions, and where 
 denotes the
eigenvalue. The ‘‘fluctuation potential’’ U�a;�� is the
function in (3.3). The S3 Laplacian �3 appearing in (3.2)

and (3.3) can be replaced by its eigenvalue: ��3 ! l�l�
2�, so we obtain a fluctuation equation as an ordinary
differential equation for each integer value of l (l � 1).

In the flat-space limit, �! 0, Q! 1, a! �, and
�max ! 1; in which case we recover the familiar flat-
space fluctuation equation [19]

 �
1

r3

d
dr

�
r3 d�

dr

�
�U���r��� � 
�;

U��� � V 00��� �
l�l� 2�

r2 ;

(3.6)

where � becomes identified with the Euclidean length r,
which ranges from 0 to 1. Much is known about solutions
to this flat-space fluctuation Eq. (3.6). Our goal now is to
study some properties of the more general fluctuation
equation in (3.5).

For completeness, we note here that for the purposes of
discussing the existence of negative modes it is possible to
make other choices of the weight function, which yield
superficially different-looking Jacobi operators. In the ap-
pendix we give the explicit transformation between our
choice (3.4) of weight function and those made in [26–
29,31].

IV. LARGE l BEHAVIOR OF FLUCTUATION
DETERMINANTS

Both���� and a��� are functions just of the proper time
�, so the fluctuation problem separates into partial waves,
which can be labeled by an integer l, just as in the flat-
space case. Then formally we can write the log determinant
of the fluctuation operator � as

 ln
�

Det���

Det��free�

�
�
X1
l

�l� 1�2 ln
�

Det���l��

Det���l�free�

�
�formal�;

(4.1)

where ��l� is the differential operator in (3.5), for each l,
and the eigenvalue of ��3 is l�l� 2�, with degeneracy
�l� 1�2. This formal expression (4.1) must be interpreted
with caution, because as in the flat-space case, for low l
values there may be negative and zero modes.
Nevertheless, for generic l, since each ��l� is a one-
dimensional differential operator, the determinant ratio
�Det���l��=Det���l�free�� is finite, and can be computed effi-
ciently using the Gel’fand-Yaglom technique [33–37]. In
this approach one simply numerically integrates both
Jacobi equations, ��l���l� � 0 and ��l�free��l�free � 0, for
zero eigenvalue and with suitable common initial value
boundary conditions, ��l���� 
 �l at � � 0. Then the
ratio of the determinants is the ratio of these two functions
evaluated at �max:

 

Det���l��

Det���l�free�
�

��l���max�

��l�free��max�
: (4.2)
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This technique provides a simple computational method
for evaluating the finite determinant for each l, without
ever having to compute any eigenvalues. However, of
course, even though each term on the RHS of (4.1) is finite,
the sum over l diverges [35]. This is clearly because we
have not regularized and renormalized the determinant.
This divergence is not a feature of the gravitational cou-
pling—exactly the same thing happens in flat space
[23,24], where one can indeed extract a finite renormalized
determinant by subtracting certain known contributions
from ln�Det���l��=Det���l�free�� for each l, rendering the
sum finite. The precise form of the subtractions can be
found in various ways, using Feynman diagram techniques
[23], zeta function regularization [36], or radial WKB [24].
The finite part of these subtractions is related to the specific
renormalization prescription [22–24,38,39]. In [24], in flat
space, it was checked explicitly that the result of this
procedure connects smoothly to the analytic thin-wall limit
results for the renormalized fluctuation determinant.

A key element of this approach is knowledge of the large
l behavior of ln�Det���l��=Det���l�free��, which must be sub-
tracted to make the l sum finite (renormalization involves a
further step). In flat space the radial WKB analysis leads to
the following expression for the large l behavior [24]:
 

ln
�

Det���l��

Det���l�free�

�



1
2

R
1
0 drrW

�l� 1�
�

1
8

R
1
0 drr

3W�W� 2V00��fv��

�l� 1�3

�O
�

1

�l� 1�5

�
; l!1: (4.3)

Here W � V 00��� � V 00��fv�. Subtracting these terms
makes the sum over l in (4.1) finite, and is one part of
the analysis leading to a finite renormalized fluctuation
determinant. We now turn our attention to the large l
behavior of these determinants in the gravitational case.

It is immediately clear that with gravitational coupling
such a computation cannot be done for the renormalized
fluctuation determinant, as we do not know how to renor-
malize gravity. Nevertheless, we can study this question in
the de Sitter limit, where the gravitational background is
fixed to be of the de Sitter form in (2.12). This limit is
physically appropriate when the variation of the potential
on the scale of the barrier is much less than Vtop [41]. For
the moderate values of the cubic coupling b in (2.7) con-
sidered here, this amounts to the condition ��2  1,
which means that the potential is large and positive, with:

 Hfv 	 Htop 	 Htv 	 H: (4.4)

Thus, fixing the metric to have the de Sitter form

 a��� �
1

H
sin�H��; (4.5)

the classical equations of motion reduce to a single equa-
tion for ����:

 

��� 3
_a
a

_�� V0��� � 0: (4.6)

Even though a��� is determined, one still finds various
different types of oscillating bounce solutions for ����, as
described in the previous section. These have been exten-
sively studied recently in [13] with a different choice of
parameter � � 70:03.

To compute the determinant ratio in (4.2), consider first
the false vacuum case, which is the appropriate ‘‘free’’
reference operator: ��l�free � ��l�fv . Since � � �fv is con-
stant, and V 0��fv� vanishes, the fluctuation potential (3.3)
simplifies dramatically, and the Jacobi Eq. (3.5) for zero
eigenvalue becomes

 � ���l�fv � 3
_a
a

_��l�fv �

�
V 00��fv� �

l�l� 2�

a2

�
��l�fv � 0;

(4.7)

with a��� � 1
Hfv

sin�Hfv��. The zero mode solution with

the correct initial value behavior, ��l�fv ��� 
 �
l, is an asso-

ciated Legendre function (essentially derivatives of a coni-
cal function)

 ��l�fv ��� �
Nfv

sin�Hfv��
Pl�1
��1=2��i

��������������������������������
�V00��fv�=H2

fv���9=4�
p �cos�Hfv���;

(4.8)

where Nfv is an unimportant normalization constant. This
function is positive definite and diverges as Hfv�! �.

Now consider the same computation but for a bounce
solution. Immediately we find a significant difference be-
tween the flat and gravitational cases. In flat space both free
and bounce solutions are defined on the same interval r 2
�0;1�. But with gravity, a nontrivial bounce solution is
defined on the interval �0; �bounce

max �, where the interval is
determined by the second zero of the metric function a���.
So, in general, for solutions of the full bounce Eqs. (2.3),
(2.4), and (2.5), the false vacuum solution and a nontrivial
bounce are defined on different intervals. Fortunately, this
problem goes away precisely in the de Sitter limit being
considered here, where we can take the metric field to be of
the form in (4.5) with H � Hfv, so that both solutions live
on the same interval.

As in the flat-space case [23,24], given that the free
solution (4.8) is known analytically, it is better to consider
the ratio of the functions appearing in (4.2):

 T�l���� �
��l����

��l�fv ���
; (4.9)

because this ratio remains finite as �! �max. This ratio
satisfies the following differential equation with simple
initial value boundary conditions:

FLUCTUATIONS ABOUT COSMOLOGICAL INSTANTONS PHYSICAL REVIEW D 74, 024018 (2006)

024018-5



 

� �T�
�

2
_�fv

�fv
�3

_a
a
�

_Q

Q

�
_T�

�
QU�

_Q

Q

_�fv

�fv
�Ufv

�
T� 0;

T�0�� 1; _T�0�� 0: (4.10)

This also shows why the normalization of the false vacuum
solution �fv in (4.8) is not important. It is conventional to
compute the logarithm of the determinant ratio, in which
case the Gel’fand-Yaglom result (4.2) can be written sim-
ply as

 ln
�

Det���l��

Det���l�free�

�
� ln�T�l���max��: (4.11)

We have computed these determinants as a function of l,
by numerically integrating the initial value problem (4.10)
for various bounce solutions, using the fluctuation equation
in (3.5), with metric field given by the de Sitter form (4.5),
and the scalar field given by solutions to the bounce
Eq. (4.6). The scalar field bounce solutions in this de
Sitter case with same parameter � � 45 are very close to
those shown in Figs. 2– 4, so we do not bother plotting
them again. The results for the logarithm of the determi-
nant ratio are shown as diamond points in Figs. 5 through 8.
The first empirical observation is that the large l behavior is
very similar to that (4.3) found in the flat-space case [24]:

 ln
�

Det���l��

Det���l�free�

�



�
l� 1

�
�

�l� 1�3
� . . . ; l! 1:

(4.12)

To extract the leading coefficient �, we consider the lead-

ing and subleading large l behavior of the Jacobi Eq. (3.5):

 

� ���l� � 3
_a
a

_��l� �
�
V 00��� � 2� _�2 �

l�l� 2�

a2

�
��l�

� 
�l���l�; �l� 1�: (4.13)
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FIG. 5 (color online). ln�Det��l�=Det��l�free� for the single
bounce, for parameter values: � � 45, b � 0:25, � � 0:046,
’�0� � ’tv � 0:000 551 736 739 278 415 5, ’��� �
’fv � 0:000 001 929 113 943 772 119 407 698 5. Diamond points
denote the numerical results using the Gel’fand-Yaglom tech-
nique as in (4.10) and (4.11); the (blue) dash line denotes the
leading large l behavior in (4.12) with � defined in (4.14) and
� � 0; the (red) solid line denotes the leading and subleading
large l behavior in (4.14) with � in (4.12) and � defined in (4.15).
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FIG. 6 (color online). ln�Det��l�=Det��l�free� for the triple
bounce, for parameter values: � � 45, b � 0:25, � � 0:046,
’�0� � ’tv � 0:007 517 937 804 678 529, ’��� � ’fv �
0:001 906 935 294 979 618. Diamond points denote the numeri-
cal results using the Gel’fand-Yaglom technique as in (4.10) and
(4.11); the (blue) dash line denotes the leading large l behavior in
(4.12) with � defined in (4.14) and � � 0; the (red) solid line
denotes the leading and subleading large l behavior in (4.12)
with � in (4.14) and � defined in (4.15).
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FIG. 7 (color online). ln�Det��l�=Det��l�free� for the quintuple
bounce, for parameter values: � � 45, b � 0:25, � � 0:046,
’�0� � ’tv � 0:303 787 546 677 413 1, ’��� � ’fv �
0:187 525 348 746 153 5. Diamond points denote the numerical
results using the Gel’fand-Yaglom technique as in (4.10) and
(4.11); the (blue) dash line denotes the leading large l behavior in
(4.12) with � defined in (4.14) and � � 0; the (red) solid line
denotes the leading and subleading large l behavior in (4.12)
with � in (4.14) and � defined in (4.15).

GERALD V. DUNNE AND QING-HAI WANG PHYSICAL REVIEW D 74, 024018 (2006)

024018-6



Adapting the WKB analysis of [24,38] leads to the follow-
ing result for the leading large l dependence of the log of
the determinant ratio:

 � �
1

2

Z �max

0
d�a����V00��� � 2� _�2 � V 00��fv��;

(4.14)

Notice the close similarity to the leading term in the flat-
space large l behavior in (4.3). This curved-space leading
behavior �=�l� 1�, with � given by (4.14), is shown in
Figs. 5–8 as dashed (blue) curves, and we see that the
agreement at large l is very good. It is much harder to find
the next-to-leading behavior because the subleading l de-
pendence of the Jacobi equation is very complicated.
Nevertheless, by analogy with the flat-space case (4.3)
we propose the estimate

 

� 	 �
1

8

Z �max

0
d�a3����V 00��� � 2� _�2 � V 00��fv��

� �V 00��� � 2� _�2 � V00��fv��: (4.15)

Including this subleading behavior in (4.12) produces the
solid (red) curves in Figs. 5 through 8, and we see that the
agreement with the exact numerical results is noticeably
improved and is excellent at large l, and is characteristic of
an asymptotic large l expansion in its behavior at small l.
Thus, the estimate in (4.15) is very close to the exact
answer. We found similar behavior for other bounces.

V. NEGATIVE MODES

In this section we turn to another important property of
the fluctuation operator, namely, the existence of negative
modes. Here, to be more general we can return to the
general bounce solutions, not needing to work in the de
Sitter limit any more (although we find the results to be the
same in either case). In the flat-space false vacuum decay
problem, it has been shown that the fluctuation problem
(3.6) has one and only one negative mode, and that this
occurs in the l � 0 sector [42]. This single negative mode
plays an important physical role in the semiclassical quan-
tization, accounting for the decaying nature of the process
[16,18,19]. In the gravitational case, there has been con-
siderable effort analyzing the appearance of negative
modes in the l � 0 sector [26–31]. For the scalar field
fluctuations characterized by the secondary action (3.1),
the oscillating n-bounce solution has n negative modes in
the l � 0 sector [31]. Here we show that the higher n
oscillating bounce solutions also can have negative modes
in higher l sectors, while the single-bounce solution, the
Coleman-De Luccia solution, has precisely one negative
mode, which is for l � 0.

A direct numerical method for counting negative modes
is based on an important theorem in the calculus of varia-
tions due to Morse [32]. It states that the number of
negative modes of the fluctuation operator � is given by
the number of zeros of the solution of the initial value
Jacobi equation �� � 0. This is consistent with the re-
lated Gel’fand-Yaglom result (4.2) for the computing the
determinant as the value of ���max�, since an odd number
of zeros leads to a negative determinant. This Morse analy-
sis has been applied to the counting of negative modes in
the flat-space false vacuum decay problem in [43].

So to count the number of negative modes for a given
bounce solution, we numerically integrate the fluctuation
Jacobi Eq. (3.5), with initial value boundary condition
��l� 
 �l, and count how many times this function changes
sign on the interval �0; �max�. In this case we can do this
computation using the full bounce solutions as obtained in
Sec. II, not just in the de Sitter limit where the metric
function a��� is chosen to take the sinusoidal form (4.5). In
this way, we confirm the results of [27,31] that the
n-bounce solution has n negative modes in the l � 0 sector.
More surprisingly, we find that for l � 2 there are some

0 10 20 30 40 50 60
l

-25

-20

-15

-10

-5

0
ln

(D
et

Λ
H

M
/D

et
Λ

fv
)

ln(DetΛ
HM

/DetΛ
fv

)
α

HM
/(l+1)

α
HM

/(l+1)+γ
HM

/(l+1)
3

FIG. 8 (color online). ln�Det��l�=Det��l�free� for the Hawking-
Moss bounce, for parameter values: � � 45, b � 0:25, � �
0:046. Diamond points denote the numerical result using the
Gel’fand-Yaglom technique as in (4.10) and (4.11); the (blue)
dash line denotes the leading large l behavior in (4.12) with �
defined in (4.14) and � � 0; the (red) solid line denotes the
leading and subleading large l behavior in (4.12) with � in (4.14)
and � defined in (4.15).

TABLE I. The number of negative modes without including
the degeneracy factor �l� 1�2, for the parameter values: � � 45,
� � 0:23.

l 0 2 3 4 5 6 7

1-bounce 1 0 0 0 0 0 0
3-bounce 3 2 2 1 1 0 0
5-bounce 5 4 3 2 1 0 0
HM 6 4 3 2 1 0 0
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negative modes for the higher n oscillating bounce solu-
tions. The precise pattern depends on the parameters in the
potential, but a representative counting is shown in Table I.
As the oscillation number of the bounce increases there are
more negative modes, and they extend to higher values of l.
In studying many single-bounce solutions we have always
found only one negative mode, and always in the l � 0
sector. We also found the same negative mode counting
pattern using Lavrelashvili et al.’s fluctuation operator in
(A2).

To put this result of extra negative modes at higher l in
some perspective, consider the Hawking-Moss solution,
which is the large n limit of the n-bounce solution [13].
Here, we can write the exact solution to the zero eigenvalue
Jacobi equation, �� � 0, with initial behavior �
 �l, as
an associated Legendre function, analogous to the false
vacuum solution in (4.8):

 ��l�HM��� �
NHM

sin�Htop��
Pl�1

��1=2��
�����������
��9=4
p �cos�Htop���:

(5.1)

Here � is the parameter defined in (2.10), and NHM is an
unimportant normalization constant. The counting of the
zeros of this function can be done precisely, and one finds
that the number of zeros depends critically on the value of
�. For N�N � 3�<� � �N � 1��N � 4�, there are N � 1
zeros. By the Morse theorem the number of nodes of this
zero mode solution is equal to the number of negative
modes in the perturbation. This counting is also shown as
the last row in Table I, and we have also confirmed that the
numerical integration and the exact result give the same
counting. Since the oscillating bounce solutions tend to this
Hawking-Moss solution, this goes some way towards ex-
plaining the origin of these new negative modes for the
oscillating bounce solutions at higher l. Physically, this is
extra evidence that these higher n oscillating bounce solu-
tions are not directly related to quantum tunneling, as
suggested already in [13].

VI. CONCLUSION

In this paper we have analyzed several issues concerning
the quantum fluctuations about classical bounce solutions
in the theory of a self-interacting scalar field interacting
with gravity. In flat space the semiclassical fluctuation
analysis can be done completely, both analytically in the
thin-wall limit and numerically for more general poten-
tials. In the gravitational case, the fluctuation problem still
separates into a set of one-dimensional fluctuation prob-
lems labeled by an integer l. We found the leading large l
behavior (4.12), (4.13), and (4.14), and an estimate (4.15)
for the subleading behavior, of the logarithm of the deter-
minant of the fluctuation operator. The agreement with the
numerical computations is impressive. We also analyzed
the existence of negative modes using Morse’s theorem,
confirming that the single-bounce Coleman-De Luccia

solution has a single negative mode, which lies in the l �
0 sector, and that the oscillating n-bounce solution has n
negative modes in the l � 0 sector. We also found new
negative modes for the oscillating n-bounce solutions for
higher n with l � 2. This adds further weight to the physi-
cal interpretation suggested in [13] that these bounces are
not directly related to quantum tunneling, but rather are
related to the thermal character of quantum field theory in
de Sitter space, and interpolate to the Hawking-Moss so-
lution for large n.

Many problems remain. The standard scalar fluctuation
analysis [26–29] in the gravitational case precludes con-
sideration of the l � 1 sector, and so we cannot yet say
anything about the collective coordinate contribution to the
renormalized fluctuation determinant. In the flat-space
case it was recently shown how this l � 1 contribution,
combining the determinant with the zero modes removed
and the collective coordinate contribution, could be ex-
pressed simply in terms of the asymptotic properties of the
classical bounce solution [24]. Whether something like this
can be found for the gravitational case depends on a differ-
ent analysis of the l � 1 fluctuation problem. Perhaps the
most challenging problem is that the renormalization of
quantum gravity is not understood. In the flat-space case,
without gravity, the subtractions made from the regularized
determinant for each l include a finite piece depending on
the regularization scale. These can be associated with
renormalization, permitting the computation of a finite
and renormalized fluctuation determinant [23,24]. An im-
portant preliminary step for the gravitational case would be
to develop fully this approach in the limit where the
gravitational background is fixed to be de Sitter, in which
case the large l behavior of the log determinants is given by
(4.12), and where the perturbative renormalization of the
scalar field in a fixed curved background is known [40].
Hopefully this can shed further light on the important
question of the nature of the semiclassical path integral
approximation in the presence of de Sitter gravity
[41,44,45].
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APPENDIX: RELATED FORMS OF THE
FLUCTUATION OPERATOR

In discussing the existence of negative modes it is pos-
sible to make other choices than (3.4) for the weight
function, yielding superficially different-looking Jacobi
equations [26–29,31]. But for the purposes of computing
the determinant, where the magnitude of the eigenvalues is
also relevant, the choice in (3.5) is the most direct. For
completeness, the choice of Lavrelashvili et al. is to use the

perturbation function �L �
�������������
a3=Q

p
��, and weight func-
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tion a3=Q, leading to the Jacobi equation [28,29,31]

 �
d2�L

d�2 �UL�a;���L � 
L�L; (A1)

where
 

UL�a;�� �
1

Q
V00��� �

3�a2

2Q2���3 � 3K�
�V 0����2

�
6�a _a _�

Q2���3 � 3K�
V0���

�
�
6
� _�2 � V���� �

_a2

a2

�
�

1

4
�

10

Q
�

12

Q2

�

�
1

a2

�
���3 � 3K��Q� 2� �

�2�3 � 8K
Q

�
;

(A2)

which agrees with Eq. (19) in the second reference in [30]
when K � 1 and �3 � 0. Furthermore, this potential sat-
isfies

 UL�a;�� �QU�a;�� �

�����
Q

a3

s
d2

d�2

�����
a3

Q

s
: (A3)

Using this fluctuation operator, we found the same pattern
of negative modes shown in Table I.

Another choice, yielding an elegant result for the exis-
tence of negative modes, was made by Turok et al, who
chose the perturbation function �T � ��= _�, and weight
function 1= _�2, leading to the Jacobi equation [26,27]

 �
d
d�

�
a3 _�2

Q

d�T

d�

�
�UT�a;���T � 
T�T: (A4)

Here

 UT�a;�� � a _�2���3 � 3K�; (A5)

and it is related to our U�a;�� by

 UT�a;�� � a3 _�2U�a;�� � _�
d
d�

�
a2 ��
Q

�
: (A6)
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