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The holographic description in the presence of the gravitational Chern-Simons term is studied. The
modified gravitational equations are integrated by using the Fefferman-Graham expansion, and the
holographic stress-energy tensor is identified. The stress-energy tensor has both conformal anomaly
and gravitational or, if reformulated in terms of the zweibein, Lorentz anomaly. We comment on the
structure of anomalies in two dimensions and show that the two-dimensional stress-energy tensor can be
reproduced by integrating the conformal and gravitational anomalies. We study the black hole entropy in
theories with a gravitational Chern-Simons term and find that the usual Bekenstein-Hawking entropy is
modified. For the Banados-Teitelboim-Zanelli (BTZ) black hole, the modification is determined by the
area of the inner horizon. We show that the total entropy of the BTZ black hole is precisely reproduced in a
boundary conformal field theory calculation using the Cardy formula.
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I. INTRODUCTION

It is amazing how much of physics is encoded in ge-
ometry of asymptotically anti-de Sitter (AdS) space-time.
This includes the information on the ultraviolet divergen-
ces, quantum effective action, and the conformal anomaly.
The latter is an important element in the holographic
description and is due to the peculiar nature of the asymp-
totic diffeomorphisms that generate conformal symmetry
[1,2]. The gravitational Einstein-Hilbert action, in which
the metric is fixed on the boundary, breaks the asymptotic
conformal symmetry and is thus the source of the anoma-
lies. This and other related issues were much studied in
recent years [3–12].

In a recent interesting paper [13], Kraus and Larsen have
modified the gravitational action in three dimensions by
adding the gravitational Chern-Simons term. The resultant
theory is known as the topologically massive gravity
[14,15]. The appearance of the Chern-Simons terms is
generically predicted in string theory. The gravitational
Chern-Simons term, explicitly depending on connection,
is gauge invariant only up to some boundary terms, so
that the presence of the Chern-Simons term necessarily
breaks the asymptotic coordinate invariance. The appear-
ance of the gravitational anomaly1 in the boundary theory
should be expected in addition to the already existing
conformal anomaly. Alternatively, if the Chern-Simons
term is defined in terms of the Lorentz connection, the
asymptotic local Lorentz symmetry is broken and the
Lorentz anomaly should appear. All these expectations
were explicitly confirmed in [13] by looking at how the
gravitational action changes under the gauge transforma-
tions. On the boundary side, the anomaly arises due to

different central charge in holomorphic and antiholomor-
phic sectors. Such theories were studied some time ago, see
in particular [18,19].

In the present note, inspired by [13], we take a different
route to anomalies and show that they follow directly from
the bulk gravitational equations. The latter are integrated
by expanding the bulk metric in powers of distance from
the boundary. This is much in the spirit of [2,5,8]. The
integration procedure involves the fixing of the boundary
data. The data are the boundary metric and the holographic
stress-energy tensor. This helps to determine explicitly the
structure of the stress-energy tensor in terms of the coef-
ficients in the expansion and completely fix the form of the
anomalies. The gravitational anomaly we get agrees with
the one obtained in [16,18]. In the dual picture, the holo-
graphic stress-energy tensor should be identified with the
quasilocal stress-energy tensor which determines the val-
ues of mass and angular momentum.

The gravitational Chern-Simons term is an eligible grav-
itational action which produces covariant equations of
motion that are, in particular, solved by the Banados-
Teitelboim-Zanelli (BTZ) metric. It is therefore an inter-
esting question whether the black hole entropy is modified
when the Chern-Simons term is included. We study this
question and obtain a contribution to the entropy due to the
gravitational Chern-Simons term. This contribution de-
pends on the value of the Lorentz connection at the horizon
and is, nevertheless, gauge invariant. For the BTZ black
hole the entropy due to the Chern-Simons term is propor-
tional to the area of the inner horizon. This is surprising,
considering that in any theory nonlinear in Riemann cur-
vature the entropy of BTZ black hole is always, as we
argue in the paper, determined by area of the outer horizon.
In the theory at hand, the total entropy has dual meaning in
terms of the boundary conformal field theory (CFT) and is
precisely reproduced by means of the Cardy formula, as we
show.

*Electronic address: s.solodukhin@iu-bremen.de
1For review on the gravitational anomalies, see the original

works [16,17].
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II. FEFFERMAN-GRAHAM EXPANSION AND
GRAVITATIONAL ANOMALY

The gravitational theory on three-dimensional space-
time is given by the action

 Igr � IEH � ICS; (2.1)

which is the sum of ordinary Einstein-Hilbert action (with
cosmological constant)

 Igr � �
1

16�GN

�Z
M
�R�G� � 2=l2� �

Z
@M

2K
�
; (2.2)

where K is the trace of the second fundamental form of
boundary @M, and the gravitational Chern-Simons term

 ICS �
�

64�GN

Z
M
dx3����

�
Rab��!ab

;�

�
2

3
!a

b;�!
b
c;�!c

a;�

�
: (2.3)

Parameter l in (2.2) sets the AdS scale. To simplify things,
on an intermediate stage of calculation, we take liberty to
use units l � 1 restoring l explicitly in the final expres-
sions. Parameter � has dimension of length. We use the
following definition for the curvature Rab�� � @�!

a
b;� �

!a
c;�!

c
b;� � ��$ ��. The torsion-free Lorentz connec-

tion !a
b � !a

b;�dx
� is determined as usual by the equa-

tion

 dea �!a
b ^ e

b � 0; (2.4)

where the orthonormal basis ea � ha�dx�, a � 1, 2, 3 is
the ‘‘square root’’ of the metric, G�� � ha�h

b
��ab.

Equation (2.4) can be used to express components of the
Lorentz connection in terms of ha� and their derivatives2

 !ab;� �
1
2�Ca��h

�
b � Cb��h

�
a � Cd��h

�
ah

�
b h

d
��;

Ca�� � @�ha� � @�ha�:
(2.5)

The Levi-Cività symbol is determined as ���� �
h�a h�bh

�
c �abc. To complete our brief diving into theory of

gravity in the orthonormal basis, we remind the reader that
ha� is covariantly constant,

 r�ha� � @�ha� � ����ha� �!
a
b;�h

b
� � 0; (2.6)

that is of course equivalent to Eq. (2.4). The latter property
is useful in that we may freely manipulate with ha� by
pulling it inside the covariant derivative or taking it out.
This property also means that the Levi-Cività symbol is
covariantly constant, r	���� � 0.

The theory described by the action (2.1) is quite well
known and belongs to the class of theories with topological

mass [14,15]. A remarkable property of this theory is that it
describes a propagating degree of freedom although each
term in (2.1) taken separately is topological and thus does
not contain local degrees of freedom. Another interesting
property of (2.1) is that the gravitational Chern-Simons
term explicitly breaks the asymptotic coordinate invariance
if expressed in terms of the metric connection ���� or the
asymptotic local Lorentz invariance if the term is written
using the Lorentz connection as in (2.3). The violation of
the gauge symmetry happens only asymptotically because
the variation of the Chern-Simons term under local gauge
symmetry generates terms on the boundary of the space-
time. This violation thus should be manifest in the bound-
ary theory. Indeed, in [13] this was related to the appear-
ance of the gravitational or Lorentz anomalies in the
boundary theory. Such anomalies are natural when cL �

cR in the boundary conformal field theory. Such theories
were studied some time ago, see for example [19]. In the
present context, these anomalies are obtained holographi-
cally and are encoded in the dynamics of the gravitational
field in the bulk. In [13] the anomalies were derived by
looking at how the gravitational action (2.1) changes under
the gauge symmetries. Here we look at the problem at a
somewhat different angle. We demonstrate that anomalies
show up in the process of the holographic reconstruction of
the bulk metric from the boundary data. In the absence of
the gravitational Chern-Simons term, the bulk metric is
uniquely determined once the holographic boundary data,
the boundary metric representing the conformal class, and
the boundary stress tensor are specified. Usually the
boundary stress tensor is not entirely arbitrary. It is cova-
riantly conserved and its trace should reproduce the con-
formal anomaly. The anomaly itself is completely specified
by the boundary metric. The details of this analysis can be
found in [3,5,8]. The presence of the gravitational Chern-
Simons term in the bulk action manifests itself in an
interesting way: the boundary stress tensor is no more
covariantly conserved. This is how the gravitational anom-
aly in the boundary theory shows up. In order to see this
explicitly, we solve the gravitational bulk equations modi-
fied by the presence of the Chern-Simons term starting
from the boundary and finding the bulk metric as an
expansion, well known in the physics and mathematics
literature as the Fefferman-Graham expansion [2].

The gravitational bulk equations obtained by varying the
action (2.1) with respect to metric takes the form

 R�� �
1
2G��R�G�� � �C�� � 0; (2.7)

where all curvature tensors are determined with respect to
the bulk metric G��. The tensor C�� is the result of the
variation of the gravitational Chern-Simons term. It is
known as the Cotton tensor and takes the form

 C�� � ��
��r��R�� �

1
4G��R�: (2.8)

Although the Chern-Simons (2.3) is defined in terms of the

2We use the Latin letters �a; b; c; d� for the inner Lorentz
indices and Greek letters ��; �; �; �; . . .� for the coordinate
indices.
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Lorentz connection which is not a gauge invariant object,
its variation is presented in the covariant and gauge invari-
ant form (2.8). This is just a manifestation of the fact that
the ‘‘noninvariance’’ of the Chern-Simons term resides on
the boundary and does not appear in the bulk field equa-
tions. By virtue of the Bianchi identities this quantity is
symmetric, manifestly traceless, and identically cova-
riantly conserved,

 C��G�� � 0; r�C�� � 0; ����C�� � 0:

Because of these properties, we find that solution to the
Eq. (2.7) is space-time with constant Ricci scalar R � �6.
This is exactly what we had when the Chern-Simons term
was not included in the action. In that case we had more-
over that R�� � �2G�� and the solution was the constant
curvature space. It is no longer the case in the presence of
the Chern-Simons term and we have

 R�� � �2G�� � �C��: (2.9)

This is that equation which we are going to solve. We start
with choosing the bulk metric in the form

 ds2 � G��dX�dX� � dr2 � gij�r; x�dxidxj (2.10)

that always can be done by using appropriate normal
coordinates. The quantity gij�r; x� is the induced metric
on the hypersurface of constant radial coordinate r. The
following expansion,

 g�r; x� � e2r�g�0� � g�2�e�2r � g�4�e�4r � 	 	 	�; (2.11)

is assumed so that the metric (2.10) describes asymptoti-
cally anti-de Sitter space-time with g�0� being the metric on
its two-dimensional boundary. In the case of pure general
relativity (GR), described by action (2.2), the solution to
the gravitational equations contains [5] only these three
terms in the expansion (2.11). This is no more true when
the Chern-Simons term is turned on and the whole infinite
series should be expected in (2.11). The presence of an
infinite number of terms in the expansion (2.11) generically
seems to be related to the presence of local propagating
degrees of freedom in the theory.

Now the routine is to insert the expansion (2.11) into the
gravitational equations (2.9) and equate the coefficients
appearing in front of the same power of er on both sides
of the equation. This gives certain constraints on the co-
efficients g�2n� appearing in the expansion (2.11) allowing
express g�2n� in terms of the coefficients g�2k� with k < n.
Generically, in odd dimension �d� 1� there may appear
also a ‘‘logarithmic’’ term h�d�re�dr in (2.11). h�d� is trace-
less and covariantly conserved and is the local function of
boundary metric g�0�. In d � 2 no such local function of
two-dimensional metric exists so that h�2� identically van-
ishes (see [5,8]). When the gravitational Chern-Simons
term is present the same arguments are valid so that no
logarithmic term is likely to appear. In any event, it would

not affect our calculation of the anomalies. Appendices A
and B contain details of calculation of the expansion for the
Ricci tensor and the Cotton tensor. A good starting point in
the analysis is to look at the expansion for the Ricci scalar
(A4). Since the Ricci scalar is constant for the solution of
Eq. (2.9), the subleading terms in the expansion for R
should vanish. In the first subleading order, as it is seen
from (A4), this gives constraint

 Tr g�2� � �
1
2R�g�0��: (2.12)

Note that hereafter we define trace with the help of metric
g�0�. Now looking at the Eq. (2.9) for components ���� �
�ij�, we find that the leading term vanishes identically and
the first subleading term vanishes provided constraint
(2.12) is taken into account. Thus, no new constraint on
g�2� appears. Further order terms in the expansion give
constraint on higher order terms g�2k�, k > 2. At present
we are not interested in those terms. A simple relation of
this sort comes from the component ���� � �rr� of
Eq. (2.9),

 Tr g�4� �
1
4 Trg2

�2� � ��
ijrirkgk�2�j; (2.13)

and indicates that (2.11) is not a ‘‘total square’’ as it
happened to be in the case of pure GR [5]. The most
important constraint comes from components ���� �
�r; i� of the equation (2.9). As it follows from (A4) and
(B3), we have that

 �rjg
j
�2�i� @iTrg�2� ����i

j��rkg
k
�2�j� @j Trg�2��� � 0:

(2.14)

This can be represented in the form

 rjtji �
�
2
�i
j@j Trg�2�; (2.15)

where we have introduced symmetric tensor

 tij � g�2�ij � g
�0�
ij Trg�2� �

�
2
��i

kg�2�kj � �j
kg�2�ki�: (2.16)

Equations (2.12) and (2.14) are the only restrictions on
coefficient g�2�ij . Obviously, we cannot redefine tij, provided
it remains symmetric, to include the right-hand side of
(2.15) so that tij would be covariantly conserved. That it
is impossible means that in fact we deal with an anomaly.
Indeed, the holographic boundary stress tensor defined as

 Tij �
1

8�GN
tij (2.17)

has both conformal and gravitational anomalies

 TrT �
l

16�GN
R; rjTji ��

�
32�GN

�i
j@jR: (2.18)
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When � � 0, the stress tensor defined as in (2.17) agrees
with the stress tensor introduced earlier in [4,5,8]. In
particular, this fixes the coefficient in front of (2.17). The
stress tensor (2.17) also agrees with the one suggested in
[13].3 We see that the conformal anomaly is not affected by
the presence of the Chern-Simons term. Taking that con-
formal symmetry on the boundary of AdS appears as part
of bulk diffeomorphisms [7] which are broken by the
gravitational Chern-Simons term, it is rather nontrivial
that the conformal anomaly remains unchanged. On the
other hand, the gravitational anomaly (2.18) is entirely due
to the Chern-Simons.

The holographic stress tensor is defined as variation of
the on-shell gravitational action (which may include also
the boundary counterterms) with respect to the boundary
metric. In a theory with covariant and gauge invariant
action, the tensor defined this way is covariantly con-
served. The theory described by the gravitational action
(2.1) is however not gauge invariant. The Chern-Simons
(CS) term is invariant under the local Lorentz transforma-
tions only up to the boundary terms, the noninvariance of
the action thus is concentrated on the boundary, and this
leads to the anomalous nonconservation of the holographic
stress tensor. This is most obvious in the case when the CS
term is expressed in terms of the Christofell symbols rather
than in terms of spin connection. The CS action then is
Lorentz invariant but not coordinate invariant. Actually,
looking at how the action changes under the coordinate
transformations in this case, one can get the explicit struc-
ture of the nonconservation of the stress tensor. This is an
alternative to the approach in this paper. This analysis was
done by Kraus and Larsen [13] and is not repeated here.
Expressing the CS term in terms of the spin connection as
in (2.3), one has the action which is coordinate invariant
but not invariant under the local Lorentz transformations.
One then gets the stress tensor with either the gravitational
anomaly or the Lorentz anomaly depending on whether the
stress tensor in question is the metric stress tensor or a
zweibein stress tensor.

The stress tensor Tij which appears in (2.17) and (2.18)
is what is usually called the metric stress tensor defined as
variation of the action with respect to the boundary metric
gij. Since we have at our disposal the objects hai (and their
inverse hia) which are the ‘‘square root’’ of metric, gij �
hiahaj, we can define what might be called the zweibein
stress tensor Tai considering variation of the action with
respect to the zweibein hia. Obviously, we have 
=�
hia� �

2haj 


gij and hence Tai � 2hajTij. In the Lorentz invariant

case antisymmetric part T�a;b�, where Tab � hbiTai, van-
ishes. For the price of losing the local Lorentz symmetry
the zweibein stress tensor Tai can be redefined so that the
new stress tensor would be covariantly conserved. Indeed,

a new stress tensor

 T̂ a
i � Tai �

�l
16�GN

�aiR; rjT̂aj � 0 (2.19)

is covariantly conserved. However, anomaly does not dis-
appear. It reappears as the local Lorentz anomaly. Indeed,
we have for the new tensor

 �aiT̂
a
i �

�
8�GN

R (2.20)

that is a clear violation of the local Lorentz symmetry
under which 
hia � 
��a

bhib. This is of course well
known: the coordinate invariance can be restored for the
price of losing the local Lorentz invariance.

It is of obvious interest to analyze the gravitational
anomaly which may appear in higher dimension d � 4n�
2 when gravitational Chern-Simons term4 is added to the
(d� 1)-dimensional Einstein-Hilbert action. This is
studied in [20].

III. REMARKS ON ANOMALIES IN TWO
DIMENSIONS

A. Local counterterms, conformal and Lorentz
anomalies

Once the Lorentz symmetry is broken anyway, it is
allowed to add local counterterms to the boundary action
that are not Lorentz invariant. Appropriate counterterms
depend on the zweibein hai , a � 1, 2 rather than on the
metric. It is interesting that by adding such local counter-
terms we can shift the value of the conformal anomaly—
the possibility which we did not have when dealing only
with metric. The counterterm of this sort was suggested in
[21]

 Ict �
1

4

Z
d2xhCaijC

ij
a ; (3.1)

where Caij � @ihaj � @jh
a
i is the anholonomity object for

the zweibein hai , a � 1; 2 on the boundary and h � dethai .
Notice that this term added on the regulated boundary (at
fixed value of radial coordinate r) is finite in the limit when
r is infinite.

The Lorentz group in two dimensions is Abelian so that
the Lorentz connection has only one component,

 !a
b;i � �ab!i; !i �

1
2!ab;i�

ab:

Under local Lorentz and conformal transformation 
hai �

	hai � 
��

a
bh

b
i , the Lorentz connection transforms as

 
!i � @i
�� �i
j@j
	: (3.2)

3Note that our coupling � differs from the one used in [13], the
exact relation being � � 32�GN�KL.

4We mean here the Chern-Simons term for the local Lorentz
group SO�1; d�. Other possible Chern-Simons terms, for instance
for group SO�2; d�, do not seem to produce gravitational anom-
aly on the boundary of AdS [12].
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The counterterm (3.1) changes as follows:

 
Ict �
1

2

Z
d2xh�
	R� 
�K�: (3.3)

R is the two-dimensional Ricci scalar which can be ex-
pressed in terms of the Hodge dual to the Lorentz connec-
tion one-form

 R � 2ri� ~!
i�; ~!i � �ij!

j:

The quantity K that appears in (3.3) has a similar expres-
sion in terms of the Lorentz connection itself:

 K � 2ri�!i�: (3.4)

It is invariant under conformal transformations and
changes under the local Lorentz transformations. There is
a certain similarity between R and K well discussed in
[21]. It is important that both R and K may appear in
conformal and/or Lorentz anomaly. Obviously, adding
(3.1) with an appropriate coefficient to the boundary effec-
tive action, we can always shift the value of the conformal
anomaly and even remove it completely. As a price for that,
the quantity K would appear in the Lorentz anomaly.

B. Stress-energy tensor from anomalies

The two-dimensional black hole can be put on the
boundary of the three-dimensional anti-de Sitter, the two-
dimensional Hawking effects then would be encoded in the
bulk three-dimensional geometry [5]. It is well known that
conformal anomaly plays an important role in two dimen-
sions and eventually is responsible for the Hawking effect.
An important element in this demonstration [22] is the
observation that the conformal anomaly can be integrated
to determine the covariantly conserved stress-energy ten-
sor. In this subsection, we analyze whether this is still true
when the gravitational anomaly is present. Thus, we would
like to see whether the equations

 Tijgij � aR; rjTji � �b�i
j@jR; (3.5)

where a and b are some constants, can be integrated and
determine the stress-energy tensor Tij. Constants a and b
can be further related to the central charge in left- and
right-moving sectors of two-dimensional theory as we
discuss in Sec. V. The exact relation is a � c�

24� and b �
c�

48� , c
 � �cL 
 cR�=2.
We start with the two-dimensional static metric in the

Schwarzschild-like form

 ds2 � �g�x�dt2 �
1

g�x�
dx2; (3.6)

where g�x� is some function of the spatial coordinate x.
The only nonvanishing Christoffel symbols for this metric
are

 �ttx �
g0

2g
; �xtt �

gg0

2
;

where g0 � @xg, and the scalar curvature takes the simple
form R � �g00�x�. Assuming that components of the stress
tensor Tij do not depend on time t, we get that Eqs. (3.5) are
equivalent to a set of differential equations:

 Txx � T
t
t � �ag

00 @xT
x
x �

g0

2g
�Txx � T

t
t� � 0

@xT
x
t � bgg000:

(3.7)

We chose orientation in which �tx � �1 when deriving
(3.7). These equations can be solved and the solution reads

 Ttt � a
�
�g00 �

g02

4g
�
C1

g

�
Txt � b

�
g00 �

g02

2g
�
C2

g

�
;

(3.8)

where C1 and C2 are integration constants. The Hawking
temperature of the two-dimensional black hole is TH �
g0�x��=4�, where x� is the location of horizon defined as a
simple root of function g�x�� � 0. The condition of regu-
larity (see for instance [23]) of Ttt and Txt at horizon fixes
the constants C1 � �

1
4g
02�x�� and C2 �

1
2g
02�x��. The

stress tensor thus can be uniquely reproduced from the
anomaly equations (3.5). We see that the gravitational
anomaly shows up only in the component Txt which is
now nonvanishing and proportional to b. If the two-
dimensional space-time is asymptotically flat, i.e. g�x� !
1 when x! 1, then (3.8) describes at infinity a nonvan-
ishing flow

 Ttt � c�
�
6
T2
H; Txt � c�

�
6
T2
H (3.9)

due to the Hawking particles radiated by the black hole.

IV. BLACK HOLE ENTROPY FROM
GRAVITATIONAL CHERN-SIMONS TERM

The gravitational Chern-Simons term is a legitimate
action for gravitational field. It produces covariant field
equations which might have sensible solutions.5 In particu-
lar, the constant curvature space-time is always the solution
of these equations and remains to be a solution when the
gravitational dynamics is governed, as in (2.1), by the sum
of Einstein-Hilbert action and the Chern-Simons term. The
BTZ black hole is thus a solution to the equations (2.7), as
was first noted in [24]. On the other hand, it is well known
that the expression for the Bekenstein-Hawking entropy is
modified if gravitational action is nonlinear or even a
nonlocal function of curvature. In general, the entropy is
not just a quarter of the horizon area but depends also on
the way the horizon is embedded in the space-time. It is

5The corresponding equations of motion C�� � 0 are satisfied
for any conformally flat 3D metric.
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thus an interesting question whether the gravitational
Chern-Simons (2.3) leads to any modifications of the en-
tropy. The tricky point here is that the Chern-Simons is
defined with respect to the Lorentz connection so that one
might worry whether the corresponding entropy is gauge
invariant. In this section we analyze this issue.

There are various ways to compute the entropy for a
given gravitational action. The most popular is the Wald’s
Noether charge method [25]. It is however an on-shell
method which is valid on the equations of motion. Below
we use another method which is universal and does not rely
on the equations of motion. This is the method of conical
singularity [23,26,27]. The idea is to allow the black hole
to have a temperature different from the Hawking one. In
the Euclidean description this leads to the appearance of
deficit angle 
 � 2��1� ��,� � TH=T at horizon �. The
geometry of manifolds with conical singularities was ana-
lyzed in detail in [27]. In particular, it was found that
components of the Riemann tensor contain a singular,
delta-function–like, part

 R���� � �R�����reg � 2��1� ����n�n���n�n��

� �n�n���n
�n���
�; (4.1)

where �R�����reg is the nonsingular part of the curvature;
�n�n�� � n�1 n

1
� � n

�
2 n

2
�, n1 and n2 is a pair of vectors

normal to � and orthogonal to each other. Obtained origi-
nally in [27] for the static nonrotating metric, this formula
was later shown in [28] to be correct in the case of the
stationary metric.

Taking into account (4.1), the gravitational action in
question is now a function of�. The entropy then is defined
as

 S �
�
�
@
@�
� 1

�����������1
Igr���: (4.2)

Applying this formula to the Chern-Simons term (2.3), we
get6

 SCS � �
�

8GN

Z
�
!ab;	h

a
�h

b
��

��	�n�n���n
�n�� (4.3)

for the entropy. Note that indices a, b run values from 1 to
3. In the case of the (2� 1)-dimensional black hole, the
horizon � is a circle. Suppose ’ is the angular coordinate
on �, then vector @’ is orthogonal to n1 and n2. We assume
that vector @’ together with vector @� form a pair of Killing
vectors at horizon. (Outside the horizon, the Killing vectors
are linear combinations of these two vectors.) It follows
that the integrand in (4.3) is nonvanishing only if index
	 � ’. Introducing �̂�� � ���’�n�n���n�n��, expression

(4.3) can be rewritten as

 SCS � �
�

8GN

Z
�
!ab;’h

a
�h

b
��̂

��: (4.4)

As far as we are aware, the result (4.3) and (4.4) for the
Chern-Simons entropy is new. Under local Lorentz trans-
formations parametrized by �ab, the expression (4.4)
changes as

 
SCS � �
�

8GN

Z
�
�@’��ab��̂ab�
d’; (4.5)

where 
 is an induced measure on �. Since @’ is the
Killing vector the quantity �̂ab � ha�h

b
��̂

��, being consid-
ered on �, does not depend on ’. Therefore, integrating by
parts in (4.5) we find that 
SCS � 0, i.e. entropy (4.4) is
Lorentz invariant in spite of the fact that the Lorentz
connection enters explicitly in (4.4).

A. The BTZ black hole

The BTZ black hole is an important, and in fact the only
one known, example of black hole in three dimensions.7

Therefore it is interesting to see how our formulas work in
this case. The orthonormal basis ea � ha�dx� for the BTZ
metric is

 e1 �
���������
f�r�

q
dt; e2 �

1���������
f�r�

p dr;

e3 � r�d’� N�r�dt�;

(4.6)

where

 f�r� �
r2

l2
�
j2

r2 �m �
�r2 � r2

���r
2 � r2

��

l2r2 ;

N�r� � �
j

r2 :

(4.7)

We have that

 m �
r2
� � r

2
�

l2
; j �

r�r�
l

: (4.8)

Here we work in the Lorentzian signature. The analytic
continuation to the Euclidean signature was analyzed in
[30,31]. The vectors orthogonal to the horizon are

 n1 �
1���
f
p �@t � N@’�; n2 �

���
f

p
@r (4.9)

so we have that
6For spin connection, one has that ! � !reg �!sing so that

Rreg � d!reg � 	 	 	 is regular and Rsing � d!sing is the singular
part in (4.1). Therefore, schematically, one has

R
!R �R

!regRreg � 2
R
!regRsing. This gives an extra factor of 2

when (4.1) is applied to action (2.3).

7For a recent review on the BTZ black hole, conformal field
theory, and three-dimensional gravity, see [29].
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 �ntnt� � �n
rnr� � 1; �n�nt� � �N�r��;

�̂tr �
1

r�
; �̂’r �

N�r��
r�

; �̂12 �
1

r�
;

�̂13 � �̂23 � 0:

(4.10)

Taking into account that measure 
 � r� on �, we find
that the expression for entropy takes a simple form:

 SCS � �
�

4GN

Z 2�

0
!12;’d’: (4.11)

Explicit calculation, making use of Eq. (2.5), shows that

 !12;’ �
j
r�
: (4.12)

The contribution to the entropy due to the Chern-Simons
term

 SCS � �
�

4GN

2�r�
l

(4.13)

is thus proportional to the area 2�r� of the inner horizon.
That is a curious property of the gravitational Chern-
Simons term. Its entropy is apparently due to degrees of
freedom at inner horizon rather that at the horizon which
may be seen by an external observer. We will comment on
this interesting feature later in the paper. Summing the
contributions to the entropy that come from each term in
the gravitational action (2.1), the total entropy of the BTZ
black hole is

 SBH �
2�r�
4GN

�
�
l

2�r�
4GN

: (4.14)

Depending on the sign of �, the contribution of the Chern-
Simons term to the entropy may be negative. This is not a
problem as soon as the total entropy (4.14) is positive. This
imposes a certain bound on possible values of �. We
discuss this in the next section.

V. THE BOUNDARY THEORY CALCULATION

In this section we use the representation when the
Lorentz symmetry is broken but the theory is diffeomor-
phism invariant, so that the stress-energy tensor of the dual
theory is covariantly conserved. The boundary theory in
question is characterized by different values of the central
charge for holomorphic and antiholomorphic fields. The
zweibein stress tensor of the theory has both conformal and
Lorentz anomalies. Summarizing our analysis in Sec. 4, we
have

 hiaT̂
a
i �

c�
12�

R; �aiT̂
a
i �

c�
12�

R; (5.1)

where c
 �
1
2 �cL 
 cR� and cL (cR) is central charge for

the left(right)-moving sector. Expressions (2.18) and (2.20)
give precise values for the central charge in each sector8

 cL �
3

2

�l� ��
GN

; cR �
3

2

�l� ��
GN

: (5.2)

The BTZ black hole corresponds to the sector in the
boundary theory characterized by conformal weights [1]

 hL �
Ml� J

2
; hR �

Ml� J
2

(5.3)

that are determined by mass M and angular momentum J
of the black hole. These two parameters are the integrals

 M � l
Z 2�

0
d’Ttt; J � �l

Z 2�

0
d’Tt’

of the components of the stress tensor defined in (2.16) and
(2.17). The coefficients in the Fefferman-Graham expan-
sion of BTZ metric are collected in Appendix C. These are
needed for computing the stress tensor using (2.16) and
(2.17). We then get

 M � M0 �
�

l2
J0; J � J0 � �M0; (5.4)

where quantities

 M0 �
r2
� � r

2
�

8GNl
2 ; J0 �

r�r�
4GNl

(5.5)

are values of mass and angular momentum in the absence
of the Chern-Simons term. The shift (5.4) has been recently
found in [13]. In fact it was known for some time (see
[32,33]) that mass and angular momentum in topologically
massive gravity are linear combinations of mass and an-
gular momentum obtained in pure GR.

The entropy in the boundary theory is computed by the
Cardy formula

 SCFT � 2�
� �����������
cLhL

6

s
�

�����������
cRhR

6

s �
: (5.6)

Plugging here the known values for the central charge and
conformal weight in each sector, we find

 SCFT �
2�r�
4GN

�
�
l

2�r�
4GN

(5.7)

that is in perfect agreement with the black hole entropy
(4.14) computed in the previous section. When the bulk
theory is pure GR the agreement is well known [34]. The
gravitational and CFT entropies still agree when the gravi-
tational Chern-Simons term is added in the bulk, as we
have just shown. Notice that this bulk theory is much richer
than GR since it now contains propagating degrees of
freedom.

Apparently, large values (of any sign) of the coupling �
are not allowed in the theory. There are two obvious signals
of instability for large�. Central charge in either of the two
sectors may become negative. Also, entropy becomes
negative when � is ‘‘too large.’’ These bad things do not
happen if parameter � is within the range

8A similar shift in central charge was observed in [32] within
the Brown-Henneaux approach.
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 j�j � l: (5.8)

This ‘‘stability bound’’ guarantees that both the bulk theory
with the gravitational Chern-Simons term and the bound-
ary CFT with cL � cR are well defined.

VI. DOES THE CHERN-SIMONS TERM LOOK
DEEP INTO THE BLACK HOLE?

In theories of gravity involving higher powers of
Riemann tensor, the black hole entropy is no longer the
usual A=4GN and is always modified. This is well known
and quite well understood. We refer the reader to [35] for
the Noether charge calculation and to [27] for the calcu-
lation that uses the conical singularity method. For black
holes arising in string theory this issue was much studied,
see review in [36]. For the BTZ black hole and higher-
dimensional black holes that reduce to BTZ, this issue was
studied in [37] and recently in [38]. We would like to
discuss here some interesting peculiarities of higher cur-
vature modifications of the entropy of the BTZ black hole.

The general action of the local theory of gravity with
higher derivatives can be represented as a power series in
Riemann curvature. This in fact is true also for a nonlocal
theory, however each term in such an expansion then would
contain nonlocal factors. Keeping theory local, the qua-
dratic term in our action would be something like this:

 W �
Z � a1

24�
R2 �

a2

16�
R2
�� �

a3

16�
R2
����

�
: (6.1)

The corresponding contribution (see [27,35] for more de-
tail) to the entropy is

 S��
Z

�

�
a1

3
R�

a2

4
R���n

�n���
a3

2
R�����n

�n���n�n��
�

(6.2)

as can be easily obtained using the method outlined in
Sec. IV. Applying this to the BTZ black hole, we notice
that the BTZ metric is locally AdS and hence the Riemann
tensor factorizes R���� �

1
l2
�G��G�� �G��G���. This

factorization and that vectors n1 and n2 are orthonormal
lead to an interesting conclusion that nothing in the inte-
grand in (6.2) depends on the parameters of the black hole.
Those parameters enter (6.2) only via the area of �, i.e. via
r�,

 S � �a1 � a2 � a3�
2�r�
l

: (6.3)

Obviously this property remains in place when higher
powers of curvature are included in the action. In fact we
can state that any local theory of gravity that is nonlinear in
curvature results in the entropy which takes the form

 Snon � ��ai; l�
2�r�
l

; (6.4)

where ��ai; l� is some function of higher curvature cou-

plings ai and the AdS scale l but not of the parameters of
black hole. A similar result was recently derived in [38].
The higher derivative theory of gravity, provided it is
formulated in terms of gauge invariant objects, i.e. the
Riemann tensor, thus sees only the radius r� of outer
horizon of the BTZ black hole and leaves r� unnoticed.9

The gravitational Chern-Simons term, as we have seen
in Sec. V, shows radically different behavior. Its entropy is
proportional to the area 2�r� of the inner horizon so that it
is r� that is now unnoticed. This is despite the fact that the
entropy is actually given by integral (4.3) over the outer
horizon. This is an interesting feature of the gravitational
Chern-Simons term that it seems to see the interior of the
black hole. The Lorentz connection apparently does the
trick. Most dramatically this feature manifests itself when
the gravitational action contains the Chern-Simons term
only. The BTZ metric is still a solution to the field equa-
tion. Its temperature, mass, and angular momentum are
nonvanishing and, hence thermodynamically, there must
be some entropy and that entropy is precisely SCS defined
in (4.13) and determined by the area of inner horizon.
Notice that it constitutes the entire entropy of the black
hole in this case. This observation poses interesting ques-
tions that may be challenging to our present understanding
of the black hole entropy. The obvious one is whether there
should be some degrees of freedom associated with the
inner (rather than with the outer) horizon which would be
responsible for this entropy? We leave this and other
questions for the future.
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APPENDIX A: CURVATURE COMPONENTS AND
THEIR EXPANSION

Components of the Riemann tensor are

 Rrirj �
1
2��g

00 � 1
2g
0g�1g0�ij

Rrikj � �
1
2�rkg

0
ij �rjg

0
ik�

Rlikj � Rlikj�g� �
1
4g
0
ijg

lng0nk �
1
4g
0
ikg

lng0nj;

(A1)

where g0 � @rg. Components of Ricci tensor are

9In general, this may be different in the case of the nonlocal
theory of gravity. Such a theory may produce logarithmic terms
in the entropy and both lnr� and lnr� are a priori possible. The
concrete calculation in [31] however shows that to the leading
order such an entropy is determined by r� only, r� appearing in
the subleading terms.

SERGEY N. SOLODUKHIN PHYSICAL REVIEW D 74, 024015 (2006)

024015-8



 

Rij � Rij�g� �
1
2g
00
ij �

1
4g
0
ij Tr�g�1g0� � 1

2�g
0g�1g0�ij

Rri �
1
2�r

k�g�1g0�ki �ri Tr�g�1g0��

Rrr � �
1
2 Tr�g�1g00� � 1

4 Tr�g�1g0g�1g0�

(A2)

and the Ricci scalar is

 R � R�g� � Tr�g�1g00� � 1
4�Tr�g�1g0��2

� 3
4 Tr�g�1g0g�1g0�: (A3)

The leading terms in the Fefferman-Graham expansion of
the curvature tensors are

 Rri � ��rngn�2�i � @i Trg�2��e�2r � 	 	 	

Rki � �2
ki � �R
k
i �g�0�� � 


k
i Trg�2��e

�2r � 	 	 	

Rrr � �2� ��4 Trg�4� � Trg2
�2��e

�4r � 	 	 	

R � �6� �R�g�0�� � 2 Trg�2��e
�2r � 	 	 	 :

(A4)

For the constant curvature R � �6 metric, we have a
constraint

 Tr g�2� � �
1
2R�0�: (A5)

APPENDIX B: COMPONENTS OF THE COTTON
TENSOR AND THEIR EXPANSION

In space-time with constant Ricci scalar R � �6, the
Cotton tensor is defined as

 C�� � ��
��r�R��: (B1)

For the Levi-Cività symbol we have that �rij � �ij where
�ij is defined for the 2D metric gij�r; x�.

In terms of gij�r; x�, we get for the components of (B1)

 Cri � ��nkrkRni �
1
2�
kng0kiRrn

Crr � �ij�riRrj �
1
2�g
�1g0�ki Rkj�

Cij � ��i
k�@rRkj �

1
2�g
�1g0�njRkn �rkRrj �

1
2g
0
kjRrr�:

(B2)

Taking into account the constraint (A5), we find the fol-
lowing expansion for the components of the Cotton tensor:

 Cri � �i
j��rkg

k
�2�j � @j Trg�2��e

�2r � 	 	 	

Crr � ��ijrirkgk�2�je
�4r � 	 	 	

Cij � 0�O�e�2r�;

(B3)

where the leading term (of order e0r) in the expansion of
Cij vanishes due to constraint (A5).

APPENDIX C: THE BTZ METRIC IN NORMAL
COORDINATES

The BTZ metric can be brought to the normal coordi-
nates in the form (2.10) as follows:

 

ds2 � dr2 �

�
r2
�

l2
sinh2 r

l
�
r2
�

l2
cosh2 r

l

�
dt2

�

�
r2
�

l2
cosh2 r

l
�
r2
�

l2
sinh2 r

l

�
d’2 �

2r�r�
l

dtd’;

(C1)

where r� (r�) is radius of outer (inner) horizon. The
coefficients in the expansion (2.11) of this metric are

 g�0�tt � �
1

l2
g�0�’’ � �

�r2
� � r

2
��

4l2
;

g�2�tt �
1

l2
g�2�’’ �

�r2
� � r

2
��

2l2
; g�2�t’ � �

r�r�
l

:

(C2)

We choose orientation in which �t’ � �1=l.
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