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The periodic standing-wave approach to binary inspiral assumes rigid rotation of gravitational fields
and hence helically symmetric solutions. To exploit the symmetry, numerical computations must solve for
‘‘helical scalars,’’ fields that are functions only of corotating coordinates, the labels on the helical Killing
trajectories. Here we present the formalism for describing linearized general relativity in terms of helical
scalars and we present solutions to the mixed partial differential equations of the linearized gravity
problem (and to a toy nonlinear problem) using the adapted coordinates and numerical techniques
previously developed for scalar periodic standing-wave computations. We argue that the formalism
developed may suffice for periodic standing-wave computations for post-Minkowskian computations and
for full general relativity.
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I. INTRODUCTION

The computational study of the inspiral of binary black
holes is important for the understanding of gravitational
wave signals, and is of inherent interest as a question in
general relativity that can be answered only with compu-
tation. It has therefore become the focus of supercomputer
codes that evolve Einstein’s field equations forward in time
from initial conditions chosen to represent a starting con-
figuration of the inspiralling objects. The evolution codes,
however, typically become unstable on a time scale (set by
the size of the hole) short compared to a full orbit. A review
of numerical relativity has been given by Lehner [1] in
2002. Since then progress has made feasible reliable cal-
culations of the final few orbits and merger [2–6]. The
early inspiral is well approximated with post-Newtonian
computations [7]. What cannot be handled well is the
intermediate phase of the inspiral, the late epoch during
which nonlinear effects are too strong for a post-
Newtonian approximation, but for which too many orbits
remain for stable numerical evolution.

It has long been recognized that the basis of an approxi-
mation scheme should be the slow rate of inspiral, the
small ratio of the orbital time to the radiation damping
time [8,9]. Through an adiabatic treatment of the slow
inspiral, such an approximation could give answers about
the radiation and rate of inspiral in the intermediate epoch.
In addition, when the rate of inspiral becomes too rapid, the
intermediate approximation could hand the problem off to
numerical evolution codes to do the final orbit or two and
the plunge. Along with the problem being handed off

would be the ideal initial data for the subsequent evolution.
The need for and the concept of an intermediate approxi-
mation have been clear, but such an approximation has not
been easy to implement. Along with several others [10–
13], we have based an approximation for slow inspiral on a
numerical computation of no inspiral. That is, we seek a
numerical solution of Einstein’s equations for binary ob-
jects that are in circular periodic motion, and whose ‘‘hel-
ically symmetric’’ fields rotate rigidly with the source
objects. (For a definition of helical symmetry, see Sec. II
of Ref. [14].)

The universality of gravitation suggests that the un-
changing motion of such a system is not compatible with
outgoing radiation, and this intuitive suggestion is con-
firmed by the mathematics of the theory. We therefore
seek a helically symmetric solution for the sources coupled
to standing waves, not to outgoing waves. In a linear
theory, standing waves, in the sense that we use the term,
are a superposition of half-ingoing and half-outgoing so-
lutions. From the fact that the solution, in linear theory, is
half the superposition of the ingoing and outgoing solu-
tions, one could extract the outgoing solution. The crux of
our periodic standing-wave (PSW) method is that even for
highly nonlinear binary inspiral fields there is an ‘‘effective
linearity’’ [10]. The standing-wave solution, to good accu-
racy, is half the sum of the outgoing plus ingoing solutions
despite the nonlinearities. In general relativity, therefore,
our goal is to solve the standing-wave numerical problem
and from that solution to extract an approximation to the
outgoing solution.
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It is important to understand why effective linearity can
be correct for inspiral. In the strong-field regions very close
to the sources, the solution is very insensitive to the choice
of distant radiative boundary conditions (ingoing, out-
going, standing wave). In this near-source region a super-
position of half the ingoing and half the outgoing solution
gives a good approximation solution, because it amounts to
averaging two samples of the same thing. In the wave zone
where the outgoing and the ingoing solutions are very
different, the fields are weak enough that nonlinear effects
are negligible, and once again we can superpose. The
strong-field region and the boundary-influenced region
should be widely separated unless the sources are rotating
very close to c, in which case the wave zone will start just
outside the sources. It is, however, not expected that ultra-
relativistic source motion can occur during the slow inspi-
ral epoch of motion.

We have recently [15] been able to confirm effective
linearity. This confirmation has been achieved with a
model problem, since the validity of effective linearity
can only be carried out in a model problem. In general
relativity, there can be no ‘‘true outgoing’’ solution avail-
able for confirmation until numerical evolution codes are
fully developed. In addition, the numerical features of the
helically symmetric standing-wave calculation pose new
challenges very different from those of evolution codes,
and are best resolved in the simplest context possible.

The model problem in Ref. [15] used a nonlinear scalar
field theory with a pair of diametrically opposite pointlike
scalar charges. The imposition of helical symmetry on the
problem leads to a boundary value problem for a system of
mixed (hyperbolic and elliptical) partial differential equa-
tions. To solve that boundary value problem efficiently, a
set of numerical techniques was developed that we called
the ‘‘eigenspectral’’ method. In the present paper we report
two important steps toward using the PSW method for full
general relativity: First, we develop the infrastructure for
describing gravitational fields. In previous work with sca-
lar toy models, helical symmetry was imposed by simply
requiring that the scalar field be a function only of three
corotating coordinates (labels on the Killing trajectories).
We find it useful to use the expression ‘‘helical scalars’’ for
such functions that depend only on corotating coordinates.
Our computation is done on a grid of corotating coordi-
nates, so straightforward computations can only be carried
out for helical scalars. But complications arise with tensor
fields. The components of a helically symmetric tensor
field are generally not helical scalars. A resolution of this
difficulty is to compute only with projections of the tensor
on a helically symmetric basis, that is, on a basis that is Lie
dragged by the helical symmetry. These projections would
be helical scalars. A helically symmetric basis, however,
has its own kinematics and this complicates the time
dependence of the projected fields. In the infrastructure
developed here we show that the use of a corotating ‘‘pure-

spin’’ basis leads to a remarkably simple description of
helically symmetric tensorial fields. That infrastructure is
presented in the explicit context of linearized general
relativity.

The second step taken in this paper is to present numeri-
cal results showing that no new computational problems
are encountered in dealing with the helical scalars of the
linearized gravity problem. Since no new problems were
anticipated this numerical work simply constitutes a con-
firmation that the ‘‘eigenspectral method,’’ the set of tech-
niques developed for scalar models, appears to work
equally well for linearized gravity. Those techniques in-
clude the use of (i) ‘‘adapted coordinates,’’ a corotating
coordinate system that conforms well to the source regions
and to the radiation field, (ii) ‘‘multipole filtering,’’ the
elimination of numerical noise associated with angular
differencing, by keeping only a few multipoles of the
adapted coordinates, and (iii) the modification of the multi-
poles so that they are computationally orthogonal at the
level of machine precision. In this paper we provide nu-
merical solutions using this set of techniques. Since these
solutions differ very little from the numerical problems
studied in detail in Ref. [15], the presentation of linearized
results is brief. The solutions to nonlinear problems are
much more difficult than those for linearized problems.
Newton-Raphson iteration must be used, and convergence
of the iterative process has been the major challenge in
numerical work. Again, there is no apparent reason the
problem should be more difficult for the tensor-based
helical scalars than for the nonlinear scalar models of
Ref. [15]. Nevertheless, it is an issue worth checking, and
initial results are briefly reported showing that the scalar
techniques work well for a model tensorial problem with a
simple toy nonlinearity.

The rest of this paper is organized as follows. Section II
gives a brief review of the scalar PSW problem in order to
introduce adapted coordinates and the application of multi-
pole filtering and the eigenspectral method in those coor-
dinates. Section III presents the description of the helically
symmetric fields of linearized gravity that is suitable for
computation. The field equations are given for general
corotating coordinates and series solutions are given, in
corotating spherical coordinates, for the problem of two
equal masses in circular orbits around each other. The field
equations for linearized gravity using adapted coordinates
are given in Sec. IV. In that section, also, are given the
forms in adapted coordinates of other elements of the
computational problem, the inner boundary conditions
specifying the sources, and the outer boundary conditions
specifying the nature of radiation. Section V presents
numerical results, comparing the series solutions of
Sec. III with the solutions of the field equations using the
eigenspectral method. In addition, in this section a descrip-
tion is given of a toy nonlinear modification to linearized
gravity, and results are given demonstrating that the result-
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ing ‘‘theory’’ can be solved with the techniques that
worked for the scalar case. The implications for the next
steps in the PSW program are discussed in Sec. VI. In
particular, it is argued that almost all the infrastructure for
solving the PSW problems in the post-Minkowski approxi-
mation and in full general relativity problem is probably
established in the work with the linearized problem. The
Appendix gives some detailed expressions needed for
computations in adapted coordinates.

Throughout the paper we use units in which c � G � 1
and we follow the conventions of Misner, Thorne, and
Wheeler [16].

II. SCALAR MODELS, COORDINATES, AND
NUMERICS

A. Nonlinear scalar models

Here we review the model problem and numerical tech-
niques of Ref. [15]. Our model problem was a nonlinear
scalar field coupled to pointlike sources in Minkowski
space, and satisfying the field equation

 �;�;�g
�� � F � r2��

1

c2 @
2
t�� F � Source: (1)

In principle, the source was taken to be two points of unit
scalar charge in orbit around each other at angular fre-
quency �, and at radius a. In practice, the computational
problem used inner boundary conditions on small, approxi-
mately spherical surfaces to represent the effect of a point
source; no source term was included in the field equation
that was computationally solved. The velocity parameter
for the system v � a� was taken to be of order unity,
representing the strong-field tight binary for which post-
Newtonian approximations are inadequate.

The term F contains the nonlinearity in our scalar model
theory, and we found the following form, with parameters
� and �0, to be useful:

 F �
�

a2

�5

�4
0 ��4 : (2)

A crucial feature of F is that, like the nonlinearities of
general relativity, it is very large near the sources, and
becomes negligible far from the sources. The � multiplier
allowed us to vary the strength of the nonlinear term, and
the �0 parameter allowed us to vary the profile of the
nonlinearity in the strong-field region.

Our scalar problem was defined by Eqs. (1) and (2), and
by the source motion at angular frequency � in the equa-
torial plane. With standard spherical coordinates, helical
symmetry can be imposed on the solution ��t; r; �;�� by
restricting to solutions of the form ��r; �; ’�, where ’ is
the comoving azimuthal coordinate ���t. By restricting
the solution in this way, we have eliminated the possibility
of ‘‘evolution.’’ For such helically symmetric solutions a

change in time by �t is the same as a change in the
azimuthal angle �� � ���t.

When the restriction to helical symmetry is made, the
field equation becomes

 L� �
1

r2

@
@r

�
r2 @�

@r

�
�

1

r2 sin�

@
@�

�
sin�

@�

@�

�

�

�
1

r2sin2�
��2

�
@2�

@’2

� Source� F��� � ����; (3)

and the mixed nature of the partial differential equation
becomes obvious. The principal part of this quasilinear
equation is elliptic inside a cylinder at r sin� � 1=�, and
hyperbolic outside that cylinder. The problem is to be
solved with radiative conditions (ingoing, outgoing, or
standing wave as described below) on a spherical surface
at large distances from the sources. Well-posed problems
in physics typically supply Cauchy data on open surfaces
to hyperbolic equations, and Dirichlet or Neumann data on
closed surfaces to elliptic equations. Our model is unusual
in that it leads to a boundary value problem with ‘‘radia-
tion’’ conditions on a closed surface surrounding a mixed
problem. Though unusual, our problem is intuitively well
posed, and passes a computational test: we have found no
fundamental difficulty in solving models of this type nu-
merically. Furthermore, a careful analysis [17] proves that
solutions exist and are stable for a closely related problem.

‘‘Standing-wave’’ solutions—half ingoing and half out-
going—are at the heart of our method, but there is not an
unambiguous definition of standing-wave solutions in a
nonlinear theory. Our procedure is to find the outgoing
L�1

out and ingoing L�1
in Green functions for Eq. (3). In

principle, we can then iterate to find a solution of
Eq. (3). The iteration

 ��n�1�
out � L�1

out����
�n�
out��; (4)

if it converges, gives �out, our nonlinear outgoing solution
(and similarly for �in), while the convergent result of

 ��n�1�
std � 1

2�L
�1
out �L�1

in �����
�n�
std�� (5)

is what we mean by our nonlinear standing-wave solution
�std. The standing-wave solution �std is fundamentally
different from ��out ��in�=2, but if effective linearity is
correct, the two are very nearly equal. (Note: In practice,
for strong nonlinearities, the direct iteration described
above must be replaced by Newton-Raphson iteration.)

A central idea of the PSW approximation is that the
‘‘exact’’ (i.e., numerical) solution to the standing-wave
problem is an excellent approximation to half the sum of
the outgoing and ingoing solutions. If this is so, it means
that from the standing-wave solution we should be able to
extract an excellent approximation to the outgoing and the
ingoing solutions. (It should be noted that this statement is
meaningful for nonlinear model field theories in which
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there is meaning to an outgoing helically symmetric or
ingoing helically symmetric solution to the field theory.
For general relativity, a helically symmetric spacetime with
outgoing radiation is impossible. As explained in Ref. [15],
the relevance and justification of the PSW approximation
for full general relativity lie in the fact that the method
gives an approximation only for a limited region of
spacetime.)

The extraction of the approximate nonlinear outgoing
solution from the computed standing-wave solution is a
direct application of the concepts underlying the argument
for effective linearity. In the weak wave zone, far from the
sources, the field theory is very nearly linear and the
solution must be very nearly a standing-wave solution to
that linear theory. It is, therefore, straightforward to decon-
struct it into outgoing and ingoing solutions. The extracted
outgoing solution can be continued inward through the
induction zone into the near-field zone. If the theory
were completely linear, this continuation would be valid
up to the source points. Because of the nonlinearity, how-
ever, this procedure is no longer valid at distances so close
to the source points that the nonlinearity of the theory is
important.

In the near-field region close to the source points, at a
distance small compared to a wavelength, the solution is
highly insensitive to the nature of the boundary conditions
(i.e., whether they are outgoing or ingoing). Here, we can
use the standing-wave solution itself as the outgoing solu-
tion. This near-field solution should extend out to the
weak-field region and overlap with the extracted outgoing
solution described above. These two solutions, the weak-
field outgoing solution outside the strong-field region, and
the standing-wave solution in the strong-field region, are
then patched together, with some blending in the region of
overlap, and the result is the PSW extracted approximation
to the nonlinear outgoing solution (see Sec. IV C of
Ref. [15]).

B. Adapted coordinates

It is useful to identify a number of coordinate systems to
describe the physical problem, including three Cartesian
systems. The system fx; y; zg is that of inertial Cartesian
system in which the z axis is the rotation axis for the source
objects, with rotation in the positive sense about the z axis.
In general, we use tildes to distinguish the corotating
version of a quantity when that quantity occurs in forms
both related to inertial and to corotating systems. The set
f~x; ~y; ~zg, as shown in Fig. 1, in this sense, is the corotating
set of Cartesian coordinates for which ~z � z and for which
the source points remain fixed on the ~x axis. The system
fr; �; �g is that of inertial spherical coordinates defined in
the usual way relative to fx; y; zg. The system fr; �; ’g is a
set of corotating spherical polar coordinates, defined by the
usual transformation relative to f~x; ~y; ~zg. The two systems
of spherical coordinates are related by ’ � ���t. The

Cartesian system f ~X; ~Y; ~Zg is a convenient renaming of
f~x; ~y; ~zg, with ~Y the rotational axis, and ~Z, the axis through
the source points.

Our adapted-coordinate system f�;�;�g is a corotating
two-center bipolar coordinate system defined, relative to
the f ~X; ~Y; ~Zg system, by

 � � f�� ~Z� a�2 � ~X2 � ~Y2���~Z� a�2 � ~X2 � ~Y2�g1=4

(6)

 � �
1

2
tan�1

�
2 ~Z

������������������
~X2 � ~Y2
p

~Z2 � a2 � ~X2 � ~Y2

�
(7)

 � � tan�1� ~Y= ~X�; (8)

where a is the distance from the center to each of the
source points.

For �	 a, the adapted coordinates become a corotating
system of spherical coordinates defined relative to
f ~X; ~Y; ~Zg. (That is, the ~Z axis is the azimuthal axis for the
� coordinate.) The adapted coordinates, pictured in Fig. 2,
are discussed in greater detail in Ref. [15].

We originally [13] solved the model problem of Eq. (3)
in the fr; �; ’g system with more-or-less straightforward
finite differencing and direct matrix inversion. (The mixed
nature of the partial differential equations prevents the use
of such efficient techniques as overrelaxation.) This ap-
proach was successful (iterations converged) for models
with a limited range of source velocities and nonlinearities.
Subsequently, we developed an innovative numerical
method that gave remarkably good results for the scalar
problem, with very little computational cost. The new
method is based on three elements.

First, we used the adapted coordinates discussed above.
The solutions to the finite difference form of Eq. (1) in
these coordinates turned out to be plagued by what ap-
peared to be angular noise. This noise was eliminated with
multipole filtering, a form of smoothing of the angular
variation. In this method the scalar field was expanded in
spherical harmonics of the angular functions � and �. The
fact that the adapted coordinates are well suited both to the
source structure and to the radiation field suggests that
good accuracy can be achieved when only a few multipoles

x

y

z

X

Y

Z

~

~

~

~

~

~

FIG. 1. Two systems of corotating Cartesian coordinates.
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are kept. In fact, good accuracy was found when only the
monopole and quadrupole were kept in the case of sources
speeds around 0:3c–0:4c or less. At higher speeds the
radiation field develops sharper gradients and more multi-
poles must be kept to achieve reasonable accuracy.

C. Inner and outer boundary conditions

For identical point sources of unit scalar charge moving
in the equatorial plane at angular velocity �, in circular
orbits of radius a, the source used in Eq. (1) was

 S � ���1 	�r� a�

a2 	��� 
=2��	�’� � 	�’� 
��; (9)

with � � 1=
��������������
1� v2
p

� 1=
���������������������
1� a2�2
p

. For this source, it
was shown in Ref. [15] that the small-� limit of � is

 � �
1

4

2a

�2

1�����������������������������������������������
1� �2v2sin22�cos2�

p : (10)

We take this as an inner boundary condition at a small
value of � that determines one limit of our computational
grid.

The outer boundary condition used is simply the ingoing
or outgoing Sommerfeld condition expressed in terms of
the adapted coordinates. In Ref. [15] it was shown that in
adapted coordinates this condition becomes

 

1

�
@
@�
���� � 
�

�
cos�

@�

@�
�

cos�

sin�
sin�

@�

@�

�
; (11)

in which the upper and lower signs correspond, respec-
tively, to the outgoing and ingoing conditions.

D. Multipole filtering and the eigenspectral technique

In practice, multipole filtering was carried out as fol-
lows. If there are N grid locations �i, �j, of the angular
coordinates �, �, then at each value of the radial coor-
dinate � there are N values of the scalar field ���;�i;�j�.

In multipole filtering, a set of M � N spherical harmonics
Yij is used, at each value of �, as weighting factors for
these scalar field values, and M weighted sums (i.e., multi-
pole projections) are taken of the scalar field values. In the
same manner, the N field equations at � are projected into
M sums. Those M projected equations are then solved for
the M projections of the field.

It was found that this procedure did not work if the
multipole weights Yij were simply taken to be
YLm��i;�j�, the continuum spherical harmonics evaluated
at the discrete angular grid locations. These projection
weights are only orthogonal in the continuum limit, and
their failure to be numerically orthogonal to high precision
was the probable source of angular noise that plagued
computations. Slightly modified weights, in place of the
grid-evaluated spherical harmonics, gave us weights that
were orthogonal to the level of machine precision. The use
of these modified weights in multipole filtering eliminated
the problem of angular noise, while at the same time
significantly reducing the number of equations to be
solved, and hence reducing the computational burden.
See Ref. [15] for details.

We focused, in Ref. [15], on the most important question
that can be answered with these models and numerical
methods: Does effective linearity work? Can we extract a
good approximation to the outgoing nonlinear problem
from the sort of standing-wave computation we will be
limited to when dealing with Einstein’s theory? Figure 3
gives strong evidence that we can. In that figure, the
computed outgoing nonlinear solution is shown as a solid
curve. The data-type points represent the outgoing solution
extracted in the manner described above in Sec. II A. For
the parameters � � �15 and �0 � 0:15 in Fig. 3, non-
linearities are significant, strong enough to reduce field
strength by around two-thirds. The outgoing and
standing-wave solutions were each computed by the
Newton-Raphson version of the iteration in Eqs. (4) and
(5). We have run models with much stronger nonlinearity
and have found equally good agreement of the true out-
going solution and the extracted approximation. The va-

FIG. 2. Two-center bipolar adapted coordinates. On the left is shown curves of coordinates � and � in the � � 0 orbital plane. On
the right are surfaces of constant �, �, and �. Here a is the distance from either of the two centers (locations of the point sources) to
the midpoint between the centers. The ~x, ~y, ~z coordinate system is a corotating Cartesian system for which the ~z axis is the rotation
axis; for the ~X, ~Y, ~Z a corotating Cartesian system the ~Z axis is the line through the centers.
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lidity of effective linearity should, in fact, become ques-
tionable not for stronger nonlinearity, but only for physi-
cally implausible high source velocity.

In addition to confirming effective linearity, computa-
tion with the model has also allowed some early insights
about sensitivity to source details. By varying the multi-
pole content of the inner boundary data, we explored the
impact of source structure on the radiation field. The result
(detailed in Ref. [15]) is in perfect accord with physical
intuition; the radiation is insensitive to source structure
unless the source size becomes comparable to the separa-
tion of the sources (i.e., unless the moments ascribable to
the structure of the individual sources are comparable to
the quadrupole moment due to the separation of the mass
points). The equivalent question for Einstein’s theory is
more difficult, but we should eventually be able to give
clear quantitative answers.

III. THE DESCRIPTION OF HELICALLY
SYMMETRIC LINEARIZED GRAVITATIONAL

FIELDS

A. The physical problem

We use the standard description and notation for the
linearization of Einstein’s field equations (see Chap. 8 of
Ref. [16]). The perturbations from flat spacetime h�� are
defined by

 g�� � �� � h��; (12)

and the trace-reversed perturbations �h�� are defined by

 

�h �� � h�� �
1
2��h; (13)

where h � ��h��. For linearized computations, �h�� is

treated as a tensorial field in Minkowski spacetime, and
indices are raised and lowered with the Minkowskian
metric ��. In the gravitational Lorentz gauge

 

�h ��;� � 0; (14)

the linearized field equations of general relativity are

 

�h ��;�
;� � �16
T��: (15)

Our physical problem is that of two points, each of mass
m0, in circular orbits, with radius a, angular velocity �,
and hence speed v � a� through the background
Minkowski spacetime. The general form of the stress-
energy source for linearized theory [18] is

 T�� � m0

Z 1
�1

	�4��x� � z�����
dz�

d�
dz�

d�
d�

� m0
U�U�

U0

	�r� R�t��

r2 	�2������t��; (16)

in which

 U0 � � � 1=
��������������
1� v2

p
Ux � �v� sin�t

Uy � 
v� cos�t:
(17)

The signs of Ux and Uy are different for the two source
particles. One, call it particle 1, is at � � �t; the other,
particle 2, is at � � �t� 
. In Eq. (17) the upper sign
corresponds to particle 1, the lower to particle 2. The
explicit nonvanishing components, in the inertial t, r, �,
� system, are then

 Ttt � m0�
	�r� a�

a2 	��� 
=2��	�’� � 	�’� 
��

(18)

FIG. 3 (color online). The computed nonlinear outgoing solution compared with an approximate outgoing solution extracted from
the computed nonlinear standing-wave solutions. The solid curves show the computed outgoing solution for a scalar model with
nonlinearity parameters � � �15 and �0 � �0:15 and with source velocity a� � 0:4c. The datalike markers show the approximate
outgoing solution extracted from the standing-wave solution; the shape of the markers indicates whether the extracted solution
corresponds to the deconstruction of the linearized solution, the standing-wave solution, or a region of blending of the linearized
outgoing and standing-wave solutions. The computations of both the standing-wave solution and the outgoing solution were carried
out using quadrant symmetry with a 40 80 angular grid, and with 16 001 divisions in � ranging from � � 0:02a to 80a. The
multipole filtering kept only the multipoles corresponding to ‘ � 0, 2, and 4.
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 Ttx � �v sin�tTtt Tty � 
v cos�tTtt (19)

 Txx � v2sin2�tTtt Tyy � v2cos2�tTtt

Txy � �v2 sin�t cos�tTtt:
(20)

It is worth emphasizing that the stress energy in
Eqs. (18)–(20) is not divergenceless, and hence the solu-
tions to Eq. (15) cannot solve the gauge condition in
Eq. (14). This is to be understood as a feature of the
approximation method inherent in our use of linearized
gravity. Our linearized gravity theory is to be considered
the lowest order level of an expansion of the solution in the
parameter v, where the orbital velocity v is of order����������������
Gm0=a

p
. From this viewpoint, �htt is of order v0, while

�htx, �hty, and �htz are of order v1, and �hxx, �hyy, and �hxy are of
order v2. The divergence of the stress energy is equivalent
to a force density (omitted in our model) needed to provide
centripetal acceleration to the particles. This force density
is of order v2 and hence the failure of our solutions to
satisfy the gauge condition is of order v2, as expected in
this lowest order theory.

We use helically symmetric stress energy in Eqs. (18)–
(20) as an explicit source when we derive the series solu-
tions to Eq. (15). For the solution of Eq. (15) via the
eigenpectral method of Ref. [15], however, we find �h��
in the limit of small distance from the particles, and impose
this solution as inner boundary conditions on the homoge-
neous form of Eq. (15). To get the near-particle solution we
use the Liénard-Wiechert solution of Eq. (15):

 

�h ��� ~x� � �4m0
U����U����
~U � � ~x� ~r����

��������ret
: (21)

The retardation condition ‘‘ret’’ means that � is to be
evaluated at time such that

 j ~x� ~r���j � 0: (22)

For the particle at ’ � 0, we now evaluate this approxi-
mately by assuming that the particle moves with constant
velocity x � a, y � a�tpart � vtpart, z � 0, through an
inertial coordinate frame. At field point t, x, y, z, we
have the following retardation condition for the particle
at x � a:

 0 � ��t� tpart�
2 � �x� a�2 � �y� vtpart�

2 � z2; (23)

with the solution

 tpart � �2�t� yv�
���������������������������������������������������
�t� vy�2 � �r2 � t2�=�2

q
� (24)

in which

 r2 � �x� a�2 � z2 � y2: (25)

To express this in corotating coordinates, we next introduce
the notations and approximations

 y � ~y� vt ~x � x ~z � z

~r2 � �~x� a�2 � ~y2 � ~z2:
(26)

With these, Eq. (24) simplifies to

 tpart � t� v�2~y� �
��������������������������
~r2 � �2v2~y2

q
; (27)

and, finally, we can evaluate
 

~U � � ~x� ~r����jret � �U0�t� tpart� �Uy�y� vtpart�

� ���t� tpart � v�y� vtpart��

� ���1�t� tpart� � v�~y

� �
��������������������������
~r2 � �2v2~y2

q
: (28)

With Eqs. (17) and (28), the expression in Eq. (21) gives
us the inner boundary conditions to be used for solving
Eq. (15):

 

�h tt � 4m0
�2��������������������������

~r2 � �2v2~y2
p (29)

 

�h tx � �hxt � 4m0
�2��������������������������

~r2 � �2v2~y2
p ��v sin�t� (30)

 

�h ty � �hyt � 4m0
�2��������������������������

~r2 � �2v2~y2
p �
v cos�t� (31)

 

�h xx � 4m0
�2��������������������������

~r2 � �2v2~y2
p �v2sin2�t� (32)

 

�h yy � 4m0
�2��������������������������

~r2 � �2v2~y2
p �v2cos2�t� (33)

 

�h xy � �hyx � 4m0
�2��������������������������

~r2 � �2v2~y2
p ��v2 cos�t sin�t�:

(34)

The outer boundary conditions, roughly speaking, are
the conditions that nonradiative parts of the field fall off as
1=rn, and the radiative parts of the field satisfy simple
ingoing or outgoing Sommerfeld conditions. The details
are given below following the presentation of the formal-
ism for describing helically symmetric tensorial fields.

B. Description of helically symmetric tensorial fields

Imposing helical symmetry on the tensorial field means
that the Lie derivative of �h�� vanishes along the helical
Killing field, or

 L �� �h��� � 0: (35)

Here the helical Killing vector is
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 � � @t ��@� � @t0 : (36)

The first expression gives � in terms of the inertial spheri-
cal background coordinates t, r, �, � and the second in
terms of the corotating spherical background coordinates
t0 � t; r; �; ’ � ���t. As explained in Sec. I, our com-
putational unknowns are fields on a grid of corotating
coordinates. We must therefore cast the field equations in
terms of a set of functions that are ‘‘helical scalars,’’
functions only of the spatial corotating Minkowski coor-
dinates such as fr; �; ’g f~x; ~y; ~xg, f ~X; ~Y; ~Zg, or the adapted
coordinates f�;�;�g. In the t0, r, �, ’ spacetime coordi-
nates, for example, helical scalars must be independent of
t0.

The key to this is to project on a corotating basis. A
corotating vector ~V is one for which L��~V� � 0. If ~V and
~W are both corotating vectors, and �h�� is helically sym-

metric, then h��V�W� is a helically symmetric scalar, a
function only of three corotating coordinates. Our ap-
proach, then, is to use a corotating basis and to project
all components of h�� on this basis.

If not done with some care, projection on a corotating
basis can destroy the simplicity of the linearized field
equations (15). Since the inertial basis is covariantly con-
stant, the equations separate for the components of �h��;
each component satisfies its own equation, and the system
of equations separates into a set of scalarlike equations.
This is not true in general for the scalars formed by
projections with the corotating bases. Choices can be
made, however, that result in a high degree of separation,
and a very simple set of equations.

To achieve this simplicity we start by defining the co-
variantly constant orthonormal inertial basis system for the
Minkowski background:

 n � @t ex � @x ey � @y ez � @z: (37)

Here we closely follow the analysis given by Thorne [19].
That analysis uses the method of Mathews [20], and in-
troduces a set of second-rank symmetric spatial basis
tensors t2;j of spin 2, i.e., tensors that transform among
themselves as an irreducible representation of the rotation
group of order 2. To these we add an additional spin 0
spatial tensor t0;0 and the spin 0 and spin 1 s-rank sym-
metric tensors needed to include the timelike direction

 t nn � nn (38)

 t n0 �
1���
2
p �nez � ezn� (39)

 t n;
1 �
�1

2
�n�ex 
 iey� � �ex 
 iey�n� (40)

 t 0;0 �
1���
3
p �exex � eyey � ezez� (41)

 t 2;0 �
�1���

6
p �exex � eyey � 2ezez� (42)

 t 2;
1 � �
1
2�exez � ezex� � 1

2i�eyez � ezey� (43)

 t 2;
2 �
1
2�exex � eyey 
 i�eyex � exey��: (44)

We next define the corotating equivalents to the basis
vectors

 

~n � n ~ex � ex cos�t� ey sin�t

~ex � �ex sin�t� ey cos�t ~ez � ez;
(45)

and we use these to define the corotating equivalents of the
basis tensors:

 

~t nn � ~n ~n � tnn (46)

 

~t n0 �
1���
2
p �~n~ez � ~ez~n� � tn0 (47)

 

~t n;
1 �
�1

2
�~n�~ex 
 i~ey� � �~ex 
 i~ey�~n� � e�i�ttn;
1

(48)

 

~t 0;0 �
1���
3
p �~ex~ex � ~ey~ey � ~ez~ez� � t0;0 (49)

 

~t 2;0 �
�1���

6
p �~ex~ex � ~ey~ey � 2~ez~ez� � t2;0 (50)

 

~t 2;
1 � �
1
2�~ex~ez � ~ez~ex� � 1

2i�~ey~ez � ~ez~ey� � e�i�tt2;
1

(51)

 

~t 2;
2 �
1
2�~ex~ex � ~ey~ey 
 i�~ey~ex � ~ex~ey�� � e�2i�tt2;
2:

(52)

Note that the tensor bases are mutually orthogonal (with
respect to a complex inner product) and have the normal-
izations

 t �no � tno � t�n
1 � tn
1 � �1:

t�nn � tnn � t�2k � t2k � 1;
(53)

and that the same orthogonality and normalizations apply
to the corotating tensor basis as to the inertial basis. The
tensor �h can be written as
 

�h � ��nn�tnn ���n0�tn0 ���n1�tn1 ���n;�1�tn;�1

���00�t00 ���20�t20 ���21�t21 ���2;�1�t2;�1

���22�t22 ���2;�2�t2;�2; (54)

or as
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�h � ~��nn�~tnn � ~��n0�~tn0 � ~��n1�~tn10 � ~��n;�10�~tn;�1

� ~��00�~t00 � ~��20�~t20 � ~��21�~t21 � ~��2;�1�~t2;�1

� ~��22�~t22 � ~��2;�2�~t2;�2: (55)

From Eq. (53) we get

 ��nn� � �htt (56)

 ��n0� �
���
2
p

�htz (57)

 ��n1� � �htx � i �hty (58)

 ��00� �
1���
3
p � �hxx � �hyy � �hzz� (59)

 ��20� �
�1���

6
p � �hxx � �hyy � 2 �hzz� (60)

 ��21� � � �hxz � i �hyz (61)

 ��22� � 1
2�

�hxx � �hyy� � i �hyx: (62)

Here and below, we have dropped functions that are re-
dundant due to the relations

 ��n;�1� � ����n1��� ��2;�1� � ����21���

��2;�2� � ���22���:
(63)

These relations are also true if tildes are placed over all
variables. From the rotation behaviors of the ~t basis, given
above, the rotation laws for the � fields are

 

~� �nn� � ��nn� (64)

 

~� �n0� � ��n0� (65)

 

~� �n1� � ei�t��n1� � U�n1� � iV�n1� (66)

 

~� �00� � ��00� (67)

 

~� �20� � ��20� (68)

 

~� �21� � ei�t��21� � U�21� � iV�21� (69)

 

~� �22� � e2i�t��22� � U�22� � iV�22�; (70)

where U�ab� and V�ab� are real functions.
We define projections of the stress energy by analogy

with the projections of the �h perturbations,

 T �nn� � Ttt � ~T
�nn�

(71)

 T �n0� �
���
2
p
Ttz � ~T

�n0�
(72)

 T �n1� � Ttx � iTty � e�i�t ~T
�n1�

(73)

 T �00� �
1���
3
p �Txx � Tyy � Tzz� � ~T

�00�
(74)

 T �20� �
�1���

6
p �Txx � Tyy � 2Tzz� � ~T

�20�
(75)

 T �21� � �Txz � iTyz � e�i�t ~T
�21�

(76)

 T �22� � 1
2�T

xx � Tyy� � iTyx � e�2i�t ~T
�22�
: (77)

Since the inertial basis tensors are covariantly constant,
we can write the field Eqs. (15) as

 ���ab� � �16
T �ab�; (78)

where � is the simple scalar d’Alembertian. From the
relations in Eqs. (64)–(77) we can then write

 eik�t��e�ik�t ~��ab�� � �16
 ~T
�ab�
: (79)

with k � 0
 1, 
2.
Lastly, for a helical scalar f we have that

 eik�t��e�ik�tf� � �f� 2ik�@tf� k2�2f: (80)

The time derivative @tf here uses the time coordinate of the
inertial t, r, �, � system and, for f a (helically symmetric)
function of the corotating coordinates t, r, �, ’, is equiva-
lent to ��@’f. The field equations for the metric pertur-
bations then take the form

 � ~��ab� � 2ik�2@’ ~�� k2�2 ~� � �16
 ~T
�ab�
; (81)

where � is the scalar d’Alembertian. The explicit equa-
tions are

 � ~��00� � �16
 ~T
�00�

(82)

 � ~��n0� � �16
 ~T
�n0�

(83)

 � ~��20� � �16
 ~T
�20�

(84)

 � ~��nn� � �16
 ~T
�nn�

(85)

 � ~��n1� � 2i�2@’ ~��n1� ��2 ~��n1� � �16
 ~T
�n1�

(86)

 � ~��21� � 2i�2@’ ~��21� ��2 ~��21� � �16
 ~T
�21�

(87)

 � ~��22� � 4i�2@’ ~��22� � 4�2 ~��22� � �16
 ~T
�22�
:

(88)

From Eqs. (29)–(34), and the prescriptions in Eqs. (56)–
(62) and (64)–(70), we have the inner boundary conditions,
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to be applied at small � to represent the near field of the
mass points at � � 0,

 

~� �nn� � 4m0
�2��������������������������

~r2 � �2v2~y2
p (89)

 

~� �00� � 4m0
�2��������������������������

~r2 � �2v2~y2
p v2���

3
p (90)

 

~� �20� � 4m0
�2��������������������������

~r2 � �2v2~y2
p

�
�
v2���

6
p

�
(91)

 V�n1� � 4m0
�2��������������������������

~r2 � �2v2~y2
p ��vsgn�cos��� (92)

 U�22� � 4m0
�2��������������������������

~r2 � �2v2~y2
p

�
�
v2

2

�
(93)

 

~� �n0� � U�21� � V�21� � U�n1� � V�22� � 0: (94)

C. Outer boundary conditions for helical scalars

The quantities ��nn�, ��00�, ��n0�, ��20�, are nonradiative
multipoles that fall off as 1=r. The radiative parts of these
fields satisfy a Sommerfeld condition

 

@
@r
�r ~�� � 
�

@
@’
�r ~��; (95)

in which the upper and lower signs correspond, respec-
tively, to outgoing and ingoing waves. In practice, special
attention is not necessary for the nonradiatable multipoles
of ��nn�, ��00�, ��n0�, ��20�. The Sommerfeld conditions
can be applied to the total field, without regard to multipole
content.

Some care must be taken with the Sommerfeld condi-
tions for ~��n1�, ~��21�, and ~��22�. The Sommerfeld condition
applies to the inertial projections of �h��, and hence to
��n1�, ��21�, and ��22�. With the relations, in Eqs. (64)–
(70), between these quantities and the ‘‘helical scalars’’
~��n1�, ~��21�, ~��22� used in computation, we arrive at the
conditions

 

@
@r
�rei’ ~��n1�� � 
�

@
@’
�rei’ ~��n1�� (96)

 

@
@r
�rei’ ~��21�� � 
�

@
@’
�rei’ ~��21�� (97)

 

@
@r
�re2i’ ~��22�� � 
�

@
@’
�re2i’ ~��22��; (98)

or

 

1

r

@
@r
�rU�ab�� � 
�

�
�kV�ab� �

@U�ab�

@’

�
(99)

 

1

r

@
@r
�rV�ab�� � 
�

�
kU�ab� �

@V�ab�

@’

�
; (100)

in which k � 1 for �ab� � �n1� or (21), and k � 2 for
�ab� � �22�.

D. Series solutions

To develop series solutions of Eqs. (82)–(88) we start by
using the expressions in Eqs. (18)–(20), for stress-energy
components of the symmetric pair of particles, in the
general expressions in Eqs. (71)–(77). The nonvanishing
results are

 

~T �nn� � m0�
	�r� a�

a2 	��� 
=2��	�’� � 	�’� 
��

(101)

 

~T �n1� � �iv ~T
�nn�

(102)

 

~T �20� � �
v2���

6
p ~T

�nn� ~T
�00�
�
v2���

3
p ~T

�nn�
(103)

 

~T �22� � �
v2

2
~T
�nn�
: (104)

As in Eq. (19), the upper sign in the expression for ~T�n1�

indicates the particle at ’ � 0, the lower sign indicates the
particle at ’ � 
.

With these expressions, Eqs. (82)–(88) take the explicit
form

 � ~��nn� � �16
m0
	�r� a�

a2 	�cos����	�’� �	�’�
��

(105)

 

~� �n0� � 0 (106)

 

� ~��00� � �16
m0
	�r� a�

a2 	�cos��
v2����

3
p

 �	�’� � 	�’� 
�� (107)

 

� ~��20� � �16
m0
	�r� a�

a2 	�cos��
v2����

6
p

 �	�’� � 	�’� 
�� (108)

 � ~��n1� � 2i�2@’ ~��n1� ��2 ~��n1�

� i16
m0
	�r� a�

a2 	�cos��v��	�’� � 	�’� 
��

(109)
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~� �21� � 0 (110)

 � ~��22� � 4i�2@’ ~��22� � 4�2 ~��22�

� �16
m0
	�r� a�

a2 	�cos��
v2�

2
�	�’� � 	�’� 
��;

(111)

where
 

� ~� �
1

r2

@
@r

�
r2 @

~�

@r

�
�

1

r2 sin�

@
@�

�
sin�

@ ~�

@�

�

�

�
1

r2sin2�
��2

�
@2 ~�

@’2 : (112)

For ~��nn�, ~��20�, ~��00�, the equations all have the form

 � ~� � K
	�r� a�

a2 	�cos���	�’� � 	�’� 
�� (113)

in which the value ofK can be read from Eqs. (105)–(108).
The outgoing solutions are constructed in the usual manner
from the spherical Bessel and Hankel functions:
 

� � �2i�K
X

‘;m even

mj‘�m�r<�h
�1�
‘ �m�r>�

 Y�‘m�
=2; 0�Y‘m��; ’� (114)

or

 

� � �2K
X
‘

1

2‘� 1
Y�‘0�
=2; 0�Y‘0��; 0�

r‘<
r‘�1
>

� 4K�
X
‘

X
m�2;4;6

mY�‘m�
=2; 0�Y‘m��; 0�

 j‘�m�r<� Imfh
�1�
‘ �m�r>�eim’g: (115)

By expansion in spherical harmonics, then by the usual
Green function construction, the outgoing solution for
~��n1� is found to be

 

~��n1� �U�n1� � iV�n1�

� 32
m0v�
X
‘

�
Y�‘;�1�
=2;0�Y‘;�1��;0�

�
�ie�i’

2‘�1

�


r‘<
r‘�1
>

��
X

m�odd;��1

�m�1�Y�‘;m�
=2;0�Y‘;m��;0�

 j‘��m�1��r<�h
�1�
‘ ��m�1��r>�e

im’
�

(116)

or

 

U�n1� � 32
m0v�
X
‘ odd

�
� sin’
�2‘� 1�

r‘<
r‘�1
>

Y�‘�1�
=2; 0�Y‘�1��; 0� ��
X

m�1;3;5;...

�m� 1�Y�‘m�
=2; 0�Y‘m��; 0�j‘��m� 1��r<�

 �cosm’j‘��m� 1��r>� � sinm’n‘��m� 1��r>�� ��
X

m�1;3;5;...

�m� 1�Y�‘;�m�2�
=2; 0�Y‘;�m�2��; 0�

 j‘��m� 1��r<��cos��m� 2�’�j‘��m� 1��r>� � sin��m� 2�’�n‘��m� 1��r>��
�

(117)

and
 

V�n1� � 32
m0v�
X
‘ odd

�
� cos’
�2‘� 1�

r‘<
r‘�1
>

Y�‘;�1�
=2; 0�Y‘;�1��; 0� ��
X

m�1;3;5...

�m� 1�Y�‘m�
=2; 0�Y‘m��; 0�j‘��m� 1��r<�

 �cosm’n‘��m� 1��r>� � sinm’j‘��m� 1��r>�� ��
X

m�1;3;5...

�m� 1�Y�‘;�m�2�
=2; 0�Y‘;�m�2��; 0�

 j‘��m� 1��r<��cos��m� 2�’�n‘��m� 1��r>� � sin��m� 2�’�j‘��m� 1��r>��
�
: (118)

Similarly, the outgoing solution for ~��22� is found to be
 

~��22� � U�22� � iV�22�

� 16
m0v2�
X

‘�even

�
Y�‘;�2�
=2; 0�Y‘;�2��; 0�

�
�e�2i’

2‘� 1

�
r‘<
r‘�1
>

� i�
X

m�even;��2

�m� 2�Y�‘;m�
=2; 0�Y‘;m��; 0�

 j‘��m� 2��r<�h
�1�
‘ ��m� 2��r>�eim’

�
(119)

or
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U�22� � 16
m0v2�
X
‘ even

�
� cos2’
�2‘� 1�

r‘<
r‘�1
>

Y�‘;�2�
=2; 0�Y‘;�2��; 0� ��
X

m�0;2;4...

�m� 2�Y�‘m�
=2; 0�Y‘m��; 0�

 j‘��m� 2��r<��cosm’n‘��m� 2��r>� � sinm’j‘��m� 2��r>��

��
X

m�0;2;4...

�m� 2�Y�‘;�m�4�
=2; 0�Y‘;�m�4��; 0�j‘��m� 2��r<��cos��m� 4�’�n‘��m� 2��r>�

� sin��m� 4�’�j‘��m� 2��r>��
�

(120)

and
 

V�22� � 16
m0v
2�

X
‘ even

�
sin2’
�2‘� 1�

r‘<
r‘�1
>

Y�‘;�2�
=2; 0�Y‘;�2��; 0� ��
X

m�0;2;4���

�m� 2�Y�‘m�
=2; 0�Y‘m��; 0�

 j‘��m� 2��r<��sinm’n‘��m� 2��r>� � cosm’j‘��m� 2��r>��

��
X

m�0;2;4���

�m� 2�Y�‘;�m�4�
=2; 0�Y‘;�m�4��; 0�j‘��m� 2��r<��sin��m� 4�’�n‘��m� 2��r>�

� cos��m� 4�’�j‘��m� 2��r>��
�
: (121)

The expressions for U�n1�, V�n1�, U�22�, and V�22� have been
given as sums only over nonnegative values of m through
the use of the relationship j‘��x�h

�1�
‘ ��x� � j‘�x�

�h�1�‘ �x��
�.

IV. LINEARIZED GRAVITY IN ADAPTED
COORDINATES

A. Field equations in adapted coordinates

The field equations to be used for computation are the
source-free forms of Eqs. (82)–(88). The first four of these
equations are

 � ~��ab� � 0 (122)

for �ab� � �00�, �n0�, (20), and �n0�. In real form the last
three of these equations are

 �U�ab� � 2k�2@’V�ab� � k2�2U�ab� � 0 (123)

 �V�ab� � 2k�2@’U
�ab� � k2�2V�ab� � 0 (124)

with k � 1 for �ab� � �n1�, or (21), and k � 2 for �ab� �
�22�.

The form of the scalar d’Alembertian in adapted coor-
dinates is given in Eq. (8) of Ref. [15] as
 

�� � A��
@2�

@�2 � A��
@2�

@�2 � A��
@2�

@�2 � 2A��
@2�

@�@�

� 2A��
@2�

@�@�
� 2A��

@2�

@�@�
� B�

@�

@�

� B�
@�

@�
� B�

@�

@�
; (125)

and the adapted-coordinate form of @’ in Eq. (27) of
Ref. [15],

 

@
@’
�

�
�� @�

@�
� �� @�

@�
� ��

@�

@�

�
: (126)

Here the A, B, and � coefficients are known, real functions
of �, �, � that are given explicitly in Appendix A of
Ref. [15] and are repeated in the Appendix of the present
paper.

B. Inner boundary conditions in adapted coordinates

To express the inner boundary conditions in terms of the
adapted coordinates, we approximate

 ~r 2 � �2v2~y2 � � ~Z� a�2 � ~X2 � ~Y2 � �2v2 ~X2

� �1� �2v2sin22�cos2��
�4

4a2

�O��6=a4�; (127)

and we write Eqs. (89)–(94), for the �! 0 limits of the
fields as

 

~� �nn� � 4m0
2a�2

�2
�����������������������������������������������
1� �2v2sin22�cos2�

p (128)

 

~� �00� � 4m0
2a�2

�2
�����������������������������������������������
1� �2v2sin22�cos2�

p v2���
3
p (129)

 

~� �20� � 4m0
2a�2

�2
�����������������������������������������������
1� �2v2sin22�cos2�

p
�
�
v2���

6
p

�
(130)

 V�n1� � 4m0
2a�2

�2
�����������������������������������������������
1� �2v2sin22�cos2�

p ��v sgn�cos���

(131)

 U�22� � 4m0
2a�2

�2
�����������������������������������������������
1� �2v2sin22�cos2�

p
�
�
v2

2

�
(132)
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~� �n0� � U�21� � V�21� � U�n1� � V�22� � 0: (133)

C. Outer boundary conditions in adapted coordinates

The outer boundary conditions in adapted coordinates
follow from Eqs. (95)–(98) with r replaced by � and @’
replaced by the expressions in Eq. (126). For the fields
~��nn�, ~��00�, ~��n0�, and ~��20�, the conditions are just those
used for the scalar field in Ref. [15]. For the complex fields,
the conditions are a modification of Eqs. (99) and (100),
and are the tensorial equivalent of the adapted-coordinate
outer boundary condition (11) used for scalar fields; aside
from corrections of order �a=��2 these results are
 

1

�
@
@�
��U�ab�� � 
�

�
�kV�ab� � �� @U

�ab�

@�
� �� @U

�ab�

@�

� ��
@U�ab�

@�

�
(134)

 

1

�
@
@�
��V�ab�� � 
�

�
kU�ab� � �� @V

�ab�

@�
� �� @V

�ab�

@�

� ��
@V�ab�

@�

�
; (135)

where

 k � 1 for �ab� � �n1�; �n0�; �21�

k � 2 for �ab� � �22�:
(136)

V. NUMERICAL RESULTS

The field equations in adapted coordinates for ~��nn�,
~��00�, ~��n0�, and ~��20� are defined by the homogeneous
wave equation (122) and by the form of the d’Alembertian
in Eq. (125) with the coefficients in Appendix A. These

equations are subject to the inner boundary conditions in
Eqs. (128)–(133) applied at some smallest value �min of �.
The equations must satisfy the outgoing or ingoing outer
boundary conditions Eq. (11) applied at a largest computa-
tional value �max of �. In the linear theory each of the
scalarlike fields ~��nn�, ~��00�, ~��00�, ~��20� is completely
decoupled from every other field, both in the field equa-
tions and in the boundary conditions. Furthermore, the field
equations and boundary conditions have precisely the same
forms as those for the scalar field problem. The computa-
tional problem, therefore, is precisely that of Ref. [15]
where it was shown that the computed solution agrees
accurately with the numerically evaluated series solution
in Eq. (115).

In the computation of the complex fields ~��n1� and ~��22�,
features arise that are different from those in Ref. [15].
Here the field equations (123) and (124), and the outer
boundary conditions (11), couple the real and imaginary
parts. [This would apply also to the complex field ~��21�, but
due to the inner boundary condition ~��21� � 0 in Eq. (133),
the field ~��21� must be identically zero in linearized
theory.]

The series solutions for U�n1� and V�n1� are given in
Eqs. (117) and (118) and those for U�22� and V�22� in
Eqs. (120) and (121). Figures 4 and 5 give a comparison,
for two different source velocities, between these series
solutions and the solutions of the eigenspectral method:
adapted coordinates and multipole filtering based on the
modified multipoles appropriate to the discrete angular
operator.

A feature that stands out in the figures is the disagree-
ment at small � between the series and eigenspectral
solutions for V�n1� and for U�22�. The failing here is in the
convergence of the series solutions in Eqs. (118) and (120).
The V�n1� and U�22� fields diverge at �! 0, hence these
series converge very slowly at small �. Numerical experi-
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FIG. 4 (color online). A comparison, for a� � 0:3, of outgoing linearized gravitational fields computed by series summation (solid
curve), and by the solution of the coupled partial differential equations of the eigenspectral method of the PSW approach (dashed
curve). The fields are shown along a line (the � � 0 line) outward through the source. For these computations, the grid in �, �, � was
1500, 16, 32, respectively. The entire angular space, 0 � � � 
, 0 � � � 2
, was used. The inner boundary was at �min � 0:1a and
the outgoing boundary condition was imposed at �max � 30a. The multipole filtering included all modes up through the octupole,
approximately ‘ � 3. (The actual discrete eigenvalues differ slightly from integer values.) See the text for a discussion of the
numerical limitations of the series summation.
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ments summing very large numbers of terms and evaluat-
ing them with arbitrary precision arithmetic confirm that
the series solutions for V�n1� and U�22� in Figs. 4 and 5 have
large errors. The series for U�n1� and V�22�, on the other
hand, are convergent at � � 0 and show good agreement
with the small-� form of the eigenspectral solutions.

The series solutions are highly accurate for �> 1, so the
differences between the series solutions and the eigenspec-
tral solutions for large � are an indication of the limitations
of the eigenspectral method. Those differences are larger
for �> 0:4 than for �> 0:3. Computations (not pre-
sented here) for �> 0:5 show significantly larger error.
The origin of these errors is the relatively coarse computa-
tional grid used, and the limited number of multipoles used
in the multipole filtering. (This is equivalent in the com-
putation to the coarseness of the angular grid.) The error is
simply that due to truncation error, and is expected. As � is
increased the gradients of the fields increase and truncation
error becomes more important. These limitations are im-
posed by the fact that the computation was done on a 2 GB
RAM workstation. Greater accuracy, and hence higher
velocity, would be possible on larger machines,

To test whether our numerical techniques might be
sufficient for the next steps in our program, we introduced
a simple nonlinearity into the equations of Sec. IV

 � �hnn � � ~��nn� � �
S

H2 � a2S
(137)

in which H is a constant and S is defined by

 S � �� �hn�;� �hn�;� �� (138)

with �hn� � �n � �h��.
With the notation of Eqs. (54) this can be written as

 S � �����nn�;� ��nn�;� � 1
2

����n0�
;� ��n0�

;�

� ����n1�
;� ��

�n1���;�: (139)

Since ��nn� and ��n0� are ‘‘helical scalars,’’ i.e., functions
only of corotating coordinates, for �ab� � �nn� or �n0�, we
have
 

����ab�;� ��ab�;� � �� ~��ab�;�
~��ab�;�

� ��2 ~��ab�;’
~��ab�;’ � �r� � r�� ~��ab�;�

~��ab�;�

� �r� � r�� ~��ab�;�
~��ab�;�

� �r� � r�� ~��ab�;�
~��ab�;� ; (140)

in which

 

~r� � ~r� �
Q

�2 (141)

 

~r� � ~r� �
Q

�4 (142)

 

~r� � ~r� � 2
Q� a2 � �2 cos�2��

�4sin2�2��
(143)

 Q �
������������������������������������������������������
a4 � 2a2�2 cos�2�� � �4

q
: (144)

For ��n1� we have ��n1� � e�i�t ~��n1� which results in

 

����n1�
;� ��

�n1�
;� �� ���2 ~��n1�� ~��n1���� i�2� ~��n1�� ~��n1�

;’ �
�� ~��n1�

;’ � ~�
�n1������2 ~��n1�

;’ � ~�
�n1�
;’ �

�

��r� �r�� ~��n1�
;� � ~�

�n1�
;� �

���r� �r�� ~��n1�
;� �

~��n1�
;� �

���r� �r�� ~��n1�
;� �

~��n1�
;� �

�

���2��U�n1��2��V�n1��2��2�2�V�n1�U�n1�
;’ �U�n1�V�n1�

;’ ���2��U�n1�
;’ �2��V

�n1�
;’ �2�

��r� �r����U�n1�
;� �2��V

�n1�
;� �2���r� �r����U�n1�

;� �
2��V�n1�

;� �
2���r� �r����U�n1�

;� �
2��V�n1�

;� �
2�:

(145)
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FIG. 5 (color online). A comparison, for a� � 0:4, of outgoing linearized gravitational fields computed by series summation (solid
curve), and by the solution of the coupled partial differential equations of the eigenspectral method of the PSW approach (dashed
curve). The details of the computations are the same as those for Fig. 4.
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In the modified theory represented by Eq. (137), the equa-
tions that determine ~��n0� and ~��n1� remain unchanged, so
these fields are found with linear equations. The nonlinear
occurrence of ~��nn� in S, however, means that ~��nn� solves
a nonlinear equation.

The solution to this nonlinear problem requires the
iterative techniques that have previously been used for
nonlinear scalar models in Ref. [15]. Results from the
applications of these iterative methods to the modified
theory are displayed in Fig. 6 for various values of the
nonlinearity parameter �. For all values of �, the inner
boundary conditions are taken to be those of the linear
problem and are imposed at �min � 0:1; for all models
outgoing boundary conditions are imposed at �max � 30.
A comparison, in that figure, with the � � 0 linear solution
demonstrates that the cross-coupling of fields and nonline-
arity has a strong effect on the solution to the toy model,
changing the amplitude of the ~��nn� waves by an order of
magnitude. The purpose of this nonlinear toy computation
is not to extract physics, but simply to suggest that the
iteration techniques previously developed will be adequate
at least for a range of nonlinear models.

VI. SUMMARY AND DISCUSSION

This paper has laid out the infrastructure for describing
helically symmetric linearized gravity, and more generally
for describing helically symmetric second-rank tensors in a
flat background. The fields have been written in terms of

‘‘helical scalars,’’ i.e., functions only of corotating coor-
dinates (equivalently, labels on the curves of the helical
Killing congruence). The paper has, furthermore, shown
how to formulate computational problems in linearized
general relativity in terms of these helical scalars. The field
equations, sources, and inner and outer boundary condi-
tions have been written in this format in Sec. III.

A welcome feature of the formulation in Sec. III is the
extent of the separation of ‘‘components’’ of the field. In
the starting point, the Lorentz-gauge field equations
�h��;�

;� � �16
T��, a separate equation is satisfied by
each component �h�� with respect to an inertial Minkowski
basis. That attractive feature cannot be taken over directly
to the helically symmetric problem since the components
with respect to the inertial basis are not helical scalars. It
turns out, however, that the formulation of the linear prob-
lem in helical scalars leads to four real fields ~��nn�, ~��n0�,
~��00�, and ~��20�, and three complex fields ~��n1�, ~��21�, and
~��22�, and that these four real and three complex fields are
not mixed by the field equations or the inner or outer
boundary conditions. The only mixing in the problem is
between the real and imaginary parts of the complex fields.

Since the three corotating coordinates are general, this
paper has also presented the explicit formulation of the
computational problem in the adapted coordinates that
were found in Ref. [15] to be extremely useful. The nu-
merical results in Sec. V of the present paper demonstrate
that the numerical challenges presented by linearized grav-
ity are the same as those for the linear scalar model in
Ref. [15]. Indeed, the numerical problem for the four real
fields is exactly the same as that for the linear scalar field.
For the complex fields, the new features are minor mod-
ifications of the boundary conditions and mixing of the real
part and of the imaginary part of each of the complex
fields. These new features do not appear to present any
new numerical difficulty, and in fact no difficulty was
found. Furthermore, a trial with a toy nonlinearity suggests
that there are also no new problems in dealing with non-
linear terms, except those of complexity.

Although the present paper deals almost exclusively
with linearized gravity, the infrastructure developed here
is more widely applicable. Our next step in the PSW
program is to solve the post-Minkowskian problem for
the orbiting point masses. The equations to be solved in
this method have the same operator �h��;�

;� on the left-
hand side, but have ‘‘sources’’ quadratic in �h��;� on the
right. (There is also a second derivative on the right multi-
plied by an undifferentiated �h��; this term can be treated,
like the others, as a perturbation, or it can be moved to the
left to modify the principal part.) In the usual spirit of a
post-Minkowski approximation, we could solve first for the
first-order fields and treat them as known sources.
Alternatively, in a numerical approach, we could treat the
equations as a given nonlinear problem. Either way, the
formalism developed in the present paper goes over di-
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FIG. 6. The field ~��nn���� for the toy nonlinear model de-
scribed in the text. Curves are marked with the value of the
nonlinearity parameter �; the parameter H was set to unity and
the models were run on a 1500 16 32 grid for the full �, �,
� space (i.e., no symmetries were used), with �min=a � 0:1, and
�max=a � 30. In the multipole filtering, modes through octupole
were included for all fields. Comparison with the � � 0 linear
solution shows the importance of nonlinear effects.
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rectly to the post-Minkowskian problem. Again, the fields
can be described with four real and three complex helical
scalars, and the equations and boundary conditions follow
from the simple relations between the helical scalars and
their inertial equivalents, i.e., relations like those in
Eqs. (64)–(70).

The full Einstein equations can also be viewed as a
higher order extension of the post-Minkowski equations.
In principle, the only change from the post-Minkowski
problem is the inclusion of terms of all orders on the
nonlinear right-hand side of the field equations. Again
the formalism developed in the present paper should suf-
fice for the description of the problem, and should be
convenient. In particular, helical scalars of the background
Minkowski space will be helical scalars of the full metric.
In practice, new problems will arise. One is the question of
the relativistic Kepler’s law: what is the appropriate rela-
tionship relating the source strength (encoded in inner
boundary conditions), the coordinate separation of the
sources, and the parameter �? The post-Minkowskian
approximation, for which the answer is known, will help
clarify how this is to be handled in full general relativity. A
more subtle question is whether it is justified to use a
formalism based on weak-field structures to describe
strong gravitational fields. For highly curved spacetimes
do Minkowksi-like coordinates exist with which we can
use the formalism of the present paper? Possibly relevant to
this is the fact that in our computations we can impose
inner boundary conditions at some distance from the
sources, so that the effects of strong fields can be somewhat
controlled.

In any case, the relative simplicity of the description
presented here, along with the absence of any new compu-
tational difficulties (that is, difficulties not present in the
scalar problem), is a reason for optimism that the next steps
can be taken reasonably quickly.
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APPENDIX: COEFFICIENTS FOR ADAPTED
COORDINATES

The adapted-coordinate coefficient A, B, and � are listed
here. Derivations are provided in Ref. [15].

As in Ref. [15] the coefficients needed for the wave
operator in Eq. (125) are written in the form:

 A�� �
Q

�2 ��2 �A�� (A1)

 A�� �
Q

�4 ��2 �A�� (A2)

 A�� � 2
Q� a2 � �2 cos�2��

�4sin2�2��
��2 �A�� (A3)

 A�� � ��2 �A�� (A4)

 A�� � ��2 �A�� (A5)

 A�� � ��2 �A�� (A6)

 B� �
a2 � 2Q

�3 ��2 �B� (A7)

 B� �

���������������������������������������������
Q� a2 � �2 cos�2��

p
���������������������������������������������
Q� a2 � �2 cos�2��

p �Q� a2�

�4 ��2 �B� (A8)

 B� � ��2 �B�; (A9)

where Q is given in Eq. (144).
The expressions that are multiplied by �2 are

 

�A �� �
a4sin2�2��cos2�

�2 (A10)

 

�A�� �
cos2���2 � a2 cos�2���2

�4 (A11)

 

�A�� � sin2�
Q� a2 � �2 cos�2��

Q� a2 � �2 cos�2��
(A12)

 

�A �� �
a2��2 � a2 cos�2��� sin�2��cos2�

�3 (A13)

 

�A�� � �
a2�Q� a2 � �2 cos�2��� sin� cos�

�3 (A14)

 

�A�� � �
sin��� cos����a2 � �2 cos�2�� �Q���2 � a2 cos�2���

�4 sin�2��
(A15)
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�B� �
a2�cos2���f3a2cos2�2�� �Q� 2a2 � �2 cos�2��g �Q� a2 � �2 cos�2���

�3 (A16)

 

�B� �
�3Q� a2 � �2 cos2�� sin��� cos���

Q� a2 � �2 cos2�
(A17)

 

�B� �

���������������������������������������������
Q� a2 � �2 cos�2��

p
�6

���������������������������������������������
Q� a2 � �2 cos�2��

p �ccos2�� d�; (A18)

where
 

c � a2�4 cos�2�� � 2a4�2 � 4a6 cos�2��

� 4a4�2�cos�2���2 � 4a4Q cos�2��� 2a2Q�2 � �6

 d � �4�a2 cos�2�� � �2�: (A20)

The coefficients needed in Eq. (126) to express the
Sommerfeld boundary condition in adapted coordinates

are

 �� �
�

~Z
@�

@ ~X
� ~X

@�

@~Z

�
�
a2 cos� sin�2��

�
(A21)

 �� �

�
~Z
@�

@ ~X
� ~X

@�

@ ~Z

�
�

cos��a2 cos�2�� � �2�

�2

(A22)

 �� �

�
~Z
@�

@ ~X
� ~X

@�

@ ~Z

�
� �

�2 sin� sin�2��

�a2 � �2 cos2��Q
:

(A23)

Note that there were errors in the expressions given for the
�s in Ref. [15].
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