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By using virial theorem, Helmholtz and Kelvin showed that the contraction of a bound self-gravitating
system must be accompanied by release of radiation energy irrespective of the details of the contraction
process. This happens because the total Newtonian energy of the system EN (and not just the Newtonian
gravitational potential energy ENg ) decreases for such contraction. In the era of general relativity (GR) too,
it is justifiably believed that gravitational contraction must release radiation energy. However no GR
version of (Newtonian) Helmholtz- Kelvin (HK) process has ever been derived. Here, for the first time, we
derive the GR version of the appropriate virial theorem and Helmholtz Kelvin mechanism by simply
equating the well known expressions for the gravitational mass and the inertial mass of a spherically
symmetric static fluid. Simultaneously, we show that the GR counterparts of global ‘‘internal energy’’,
‘‘gravitational potential energy’’ and ‘‘binding energy’’ are actually different from what have been used so
far. Existence of this GR HK process asserts that, in Einstein gravity too, gravitational collapse must be
accompanied by emission of radiation irrespective of the details of the collapse process.
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I. INTRODUCTION

It is generally believed that General Relativistic (GR)
gravitational collapse must be accompanied by the emis-
sion of radiation such as photons and neutrinos. There have
been many studies on radiative spherical GR collapse and
we may recall here only a few of them [1]. Though all such
studies vastly differ in their details, nevertheless, all of
them indicate that the fluid becomes hotter during the
collapse while net amount of radiated energy steadily
increases. Surprisingly, though, such effects seem obvious
at first sight, one would wonder whether there is a funda-
mental reason for occurrence of such physical effects dur-
ing gravitational collapse. Put another way, whether,
irrespective of solution of actual collapse equations with
their associated assumptions and simplifications, one can
demand from a general perspective, that actual gravita-
tional collapse must be accompanied by both emission of
radiation and heating up of the fluid. From thermodynam-
ics perspective, one can ask whether the phenomenon of
occurrence ‘‘negative specific heat’’, known for Newtonian
gravity for a long time, must be valid in Einstein gravity
too. To appreciate this, let us recall that the specific heat is
defined through C � dQ=dT where dQ is the amount of
heat injected into the system and dT is the corresponding
increment of temperature. Gravitational compression
raises the temperature so that dT > 0. A negative C would
then demand dQ< 0 and vice-versa. Hence a negative dQ
means loss of heat (radiation) from the system and vice-
versa.

We emphasize here that, in a strict sense, this phenome-
non of ‘‘negative specific heat’’ is known only for weak

Newtonian gravity. Intuitively such an effect is expected to
be more pronounced for a fluid subject to much stronger
Einstein gravity. But the actual fact is that, there is no
proper GR theorem which can assert that global Einstein
gravity too is marked by the same ‘‘negative specific heat’’.

To highlight this, in Sec. I, we will first review the case
in the Newtonian gravitation. This would show why
Newtonian collapse must be accompanied by radiation
howsoever small it may be and why global gravitation is
characterized by ‘‘negative specific heat’’ in Newtonian
case. Then it would be emphasized that a corresponding
GR derivation is non existent and accordingly we shall
present an exact GR counterpart of this Newtonian process.
We would then automatically arrive at global definitions
GR Self-Gravitational energy and Binding Energy from the
perspective of global energy conservation of a static
spherically symmetric fluid. The entire exercise will
show why, irrespective of the details, GR collapse must
be accompanied by emission of radiation and an increasing
fluid temperature.

II. NEWTONIAN GRAVITATIONAL COLLAPSE

As per Chandrasekhar [2], von Helmholtz first proposed
in 1854 that contraction of self-gravitating bodies should
emit radiation. Few years later, in 1861, Kelvin [3] elabo-
rated on this process of energy generation which may be
called as Helmholtz-Kelvin (HK) process. Without going
into further historical account, the basic physics behind the
H-K process is reviewed below from a relatively modern
perspective [4,5]:

If we consider a spherically symmetrical static isotropic
fluid in hydrodynamical equilibrium, it follows that

 ENg � 3
Z
pdV � 4�R3pb (1)
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where, ENg is the Newtonian gravitational potential energy,
p � p�r� is the isotropic pressure, pb is the pressure at the
boundary r � R, and the volume element dV � 4�r2dr.
For a laboratory gas sphere, it is possible to have p�r� �
uniform � pb. In such a case, Eq. (1) would reduce to

 ENg � 4�R3pb � 4�R3pb (2)

and which would express the obvious fact that for a labo-
ratory gas ENg � 0. Note that it is necessary to have pb > 0
in such a case.

In contrast, if the fluid is assumed to be self-contained,
i.e., bound by its own gravity then one expects

 pb � 0 (3)

and obtains the better known form of Eq. (1):

 ENg � 3
Z
pdV � 0 (4)

This is known as static and scalar virial theorem. If the
adiabatic index of the fluid is �, then

 p � ��� 1�e (5)

where e is the internal energy density. For some ideal
fluids, � may also be considered as the ‘‘ratio of specific
heats’’. For example, for a monoatomic ideal gas having an
equation of state (EOS) p � nkT, where n is number
density of the monoatomic molecules and k is the
Boltzmann constant � is the ratio of specific heats with a
unique value � � 5=3. For an ultrarelativistic gas with
particle momenta! 1 or for a pure photon gas, � is again
the ratio of specific heats having the unique value � � 4=3
[2]. The internal energy for the entire fluid is

 U �
Z
edV (6)

Using Eqs. (5) and (6) in (4), and assuming � to be
uniform, we have

 ENg � 3��� 1�U � 0 (7)

so that

 U �
�1

3��� 1�
ENg (8)

The total Newtonian energy of the fluid is

 EN � ENg �U �
3�� 4

3��� 1�
ENg (9)

Note that for the above mentioned ideal gas having an EOS
p � nkT, Eq. (7) reduces to the more familiar form ENg �
2U � 0 because here � � 5=3. However Eqs. (1)–(9) are
valid for any fluid obeying relation (5) and not necessarily
by an ‘‘ideal gas’’ alone, as long as the fluid may be
assumed to obey an EOS of the form (5). Thus, in principle,
� is arbitrary here subject to general thermodynamical
constraints.

In Eq. (9), EN is the Newtonian binding energy of the
fluid and must be negative for a fluid which is already
assumed to be bound. For attractive gravity, for any case,
bound or unbound, one must have ENg < 0. In the present
case, as soon as we set pb � 0, we imply the system to be
self-bound, and one must have EN < 0. Thus from Eq. (9),
it transpires that, one must have � > 4=3. A limiting case
of � � 4=3 would signify a transition to unbound systems.
For ‘‘unbound systems’’ one expects to have, EN > 0. If
the system would be unbound, one would have pb > 0 and
further the system would not be in hydrostatic equilibrium.
In such a case, one needs to use dynamical form of virial
theorem to study it. Also, by noting Eq. (7), one might
think that for unbound systems, one might have � < 4=3.
But this would be an incorrect conclusion, because as
explained above, for unbound systems, Eq. (7) would cease
to be valid. It may be borne in mind that � is an inherent
thermodynamical parameter and cannot be dictated by
gross global hydrodynamical behavior of the fluid.

A limiting value of � � 4=3 corresponds to a situation
when the momenta of the constituent particles of the fluid,
P � 1, and thus, cannot be strictly realized except for
singular situations [6]. For instance note that the critical
ultrarelativistic White Dwarf of Chandrasekhar has R � 0
because it strictly corresponds to a fluid having � � 4=3
[2].

If, additionally, the fluid obeys a polytropic equation of
state

 p � K��p (10)

where, K and �p are uniform over the fluid, it follows that

 ENg �
�3

5� n
GM2

R
(11)

where �p � 1� 1=n and G is the gravitational constant.
Note that, in general, � � �p and only if the fluid is
considered to undergo adiabatic change, one would have
� � �p. Further, as we would see, all contraction pro-
cesses are expected to be accompanied by emission of
radiation, and they must be nonadiabatic in a strict sense.
It may be also mentioned that, in the Newtonian case, the
fluid density appearing in Eq. (10) essentially means rest
mass density: � � �0.

If one differentiates Eq. (8), for slow contraction, one
will have

 

dU
dt
�

�1

3��� 1�

dENg
dt

(12)

Also, from Eq. (11), we see that

 

dENg
dt
�

3

5� n
GM2

R2
_R (13)

Since _R< 0 for contraction, while the value of ENg de-
creases during contraction its absolute value jENg j in-
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creases. From Eq. (12), we find that, as jENg j increases
during such contraction, so does U. However, the amount
of total gravitational energy released by the contraction,
jdENg j, is not fully accounted for by the gain in the value of
U:

 dU �
1

3��� 1�
jdENg j< jdENg j (14)

For overall energy conservation, it is therefore necessary
that the rest of the energy gain

 

�
1�

1

3��� 1�

�
jdENg j �

3�� 1

3��� 1�
jdENg j � dQ (15)

is radiated away by the system. This could have been found
directly by differentiating Eq. (9):

 

dEN
dt
�

3�� 4

3��� 1�

dENg
dt

(16)

Using Eq. (13) into above Eq., we find that

 

dEN
dt
�

3�� 4

3��� 1�

3

5� n
GM2

R2
_R< 0 (17)

In case of a gas confined in a laboratory by physical
inclosure, pb > 0. One can also imagine the physical in-
closure to be a perfect insulator and one may conceive of a
radiationless adiabatic contraction for arbitrary � � 4=3.
But in an astrophysical context, there is neither any physi-
cal inclosure nor any perfect insulating surrounding.
Hence, it appears from Eq. (15) that a strictly adiabatic
contraction (dQ � 0) would be possible only for the ideal-
ized case of � � 4=3. And Eq. (9) would show that, in such
a case, one would already have EN � 0, i.e., they system
would be unbound. In reality, one has � � 4=3 only for
pure radiation or when the energy of the particles per unit
rest mass E	 � 1, which is possible only for a singular
situation in case the ‘‘gas’’ is not already a pure radiation
[6].

Thus, Eq. (17) shows that the total (Newtonian) energy
of the system decreases for contraction and it could be so
only if the system radiates appropriate amount of energy.
Since U increases, the fluid become hotter while it radiates
(dQ< 0). Therefore a self-gravitating fluid has a negative
specific heat and this fact is well known. Note that this
result follows from the Newtonian HK process and does
not depend on the details of either the physical properties
of the fluid or the collapse process.

Since the above result is of generic nature, it is expected
to be qualitatively valid even in case of strong gravity. In
fact, even after the introduction of General Relativity (GR)
into astrophysics, the idea that gravitational contraction
must result into radiation output is naturally and justifiably
used [1]. While considering the configuration of static fluid
spheres in GR, Buchdahl [7] posed the question whether
the amount total radiation emitted by gravitational con-
traction can even exceed the initial value ofE � Mc2 itself.

The answer was in the negative. Yet, for Einstein gravity no
exact counterpart of Eqs. (12)–(17) exists. Thus, we cannot
assert, as a principle, that self-gravitating matter has
‘‘negative specific heat’’ in Einstein gravity too. And we
want to address this precise aspect in the present paper.

III. STATIC FLUIDS IN GENERAL RELATIVITY

Let us consider a static self-gravitating fluid sphere
described by the metric

 ds2 � A2�r�dt2 � B2�r�dr2 � r2�d�2 � sin2�d�2� (18)

Here we have taken G � c � 1. Recall that one often uses
the symbols A2 � e� � g00 and B2 � e� � �grr. The
radial coordinate r is the luminosity distance and as before,
the coordinate volume element is dV � 4�r2dr. The
proper volume element however is

 dV � B�r�dV � 4�r2B�r�dr (19)

Note that since B�r�> 1, dV > dV, and this might be seen
as the effect of ‘‘stretching’’ of space by gravity. The
energy momentum tensor of the body in mixed tensor
form is

 Tik � �p� ��u
iuk � pgik (20)

where ui is the fluid 4-velocity, � is the total mass-energy
density (excluding contribution due to self-gravitation),
and p is the isotropic pressure.

The total mass-energy density of the fluid (excluding
negative self-gravitational energy) is

 � � �0 � e (21)

where �0 � mNn is the proper rest mass-energy density,
mN is nucleon rest mass, n is nucleon proper number
density (not to be confused with polytropic index), e is
the internal energy density, and gik is the metric tensor. The
explicit form of B�r� is [8]

 B�r� � 
1–2M�r�=r��1=2 � �1–2m=r��1=2 (22)

where

 M�r� � m �
Z r

0
4��r2dr (23)

The total energy of the system as perceived by a distant
inertial observer, S1, i.e., the gravitational mass of the fluid
is

 M �
Z R

0
�dV �

Z R

0
��=B�dV (24)

This total energy is also known as gravitational mass or
Schwarzschild mass of the fluid although actually this
should have been named by the name of Hilbert. Note that

 M �
Z R

0
��=B�dV �

Z R

0
�dV (25)
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as one might have expected. The reason for this is that total
mass energy includes not only local contributions from �
but also the negative global contribution of self-
gravitational energy. It is this negative latter contribution
which reduces the effective net proper energy density from
� to �=B�r�.

On the other hand, the total proper energy content of the
sphere, by excluding any negative self-energy contribution,
i.e., the energy obtained by merely adding individual local
energy packets, is

 Mproper �
Z R

0
�dV (26)

The conventional definition GR self- gravitational en-
ergy of the body is [7,8]

 EG � M�Mproper �
Z R

0
�1�

�����������
�grr
p

��dV (27)

Since B�r�> 1 in the presence of mass energy, EG is a�ve
quantity, as is expected. Note however that the EG defined
by Eq. (27) is the sum of appropriate local (proper) quan-
tities somewhat like the definition of Mproper in Eq. (26);
and is not defined with respect to the inertial observer S1.
Note also that, in contrast, gravitational mass M is indeed
the mass-energy measured by S1.

The proper rest mass energy of the fluid is

 M0 �
Z
�0dV (28)

If there are no initial antibaryons or antileptons, M0 �
mNN, where N is the total number of baryons, and is
therefore a conserved quantity.

The proper internal energy of the fluid is

 U �
Z
edV (29)

As before, note that, neither M0 nor U is defined with
respect to S1. By using Eqs. (20)–(28), it can be verified
that

 EG �U � M�M0 (30)

From the above equation, it may appear that the GR
equivalent of EN , the binding energy, is

 EGR � M�M0 � EG �U (31)

Suppose the gas was initially infinitely dispersed to infin-
ity. Further, let the gas molecules be rest with respect to S1.
Under such a case, the initial mass energy of the cloud is
just the rest mass energy:

 M�t � 0� � M0 (32)

And if the contraction of the cloud into a finite size would
indeed release energy, one must have M�M0 < 0. But
unlike the Newtonian case, as noted by Tooper [9], it is not
apparent from the definitions of EG and U that EGR �

EG �U < 0! This is so because while in the Newtonian
case, ENg and U are related through Eq. (7), there is no
known relationship between EG and U in the GR case.
Further there might be examples when the occurrence of a
negative EGR ‘‘is not a sufficient condition for instability of
the system against an expansion to infinity’’ [9]. This
means that EGR may not be the correct GR equivalent of
a ‘‘binding energy’’. Had EGR been the true GR equivalent
of EN , probably, one would have had equations similar to
(8) and (9) involving EG, U and EGR. But no such equa-
tions exist. Thus, although, intuitively, one expects GR
contraction to release radiation energy, one really cannot
show it unlike the Newtonian case developed in previous
section.

In Eq. (30), we may note that, while, EG, U and M0 are
not defined with respect to (w.r.t.) S1,M, on the other hand
is defined w.r.t. S1. And this may be the fundamental
reason that EGR defined in Eq. (31) may not be the true
‘‘binding energy’’ of the fluid.

IV. ANOTHER DEFINITION OF FLUID MASS

For any stationary gravitational field, total four momen-
tum of matter plus gravitational field is conserved and
independent of the coordinate system used [10,11]:

 Pi �
Z
�Ti0 � ti0�dV (33)

where tik is the energy momentum pseudotensor associated
with the gravitational field. Further, the inertial mass (same
as gravitational mass), i.e, the time component of the 4-
momentum of any given body in GR can be expressed as
[10–12]

 M �
Z 1

0
�T0

0 � T
1
1 � T

2
2 � T

3
3�

�������
�g
p

d3x (34)

where

 g � �r4A�r�B�r�sin2� (35)

is the determinant of the metric tensor gik and d3x �
drd�d�. Since

 T1
1 � T2

2 � T3
3 � �p; T0

0 � � (36)

it follows that [11,12]

 M �
Z 1

0
��� 3p�A�r�B�r�dV �

Z 1
0
��� 3p�A�r�dV

(37)

When the body is bound and pb � �b � 0 for r � R, then,
the foregoing integrals shrink to [11,12]

 M �
Z R

0
��� 3p�A�r�B�r�dV �

Z R

0
��� 3p�A�r�dV

(38)
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Although our result would not depend on splitting of the
foregoing equation, (since we would simply equate the
‘‘total’’ expression of ‘‘inertial’’ and ‘‘gravitational’’
mass), we might nevertheless do so

 M �
Z R

0
�A�r�dV �

Z R

0
3pA�r�dV (39)

for the sake of obtaining physical insight.

Global Definitions

The Newtonian virial theorem (4) is essentially a state-
ment of energy conservation involving negative self-
gravitational energy and positive thermodynamic energy
of the fluid. In the Newtonian case, there exists global
inertial frames and a statement of energy conservation
can be made in a trivial way. But in GR, even for this
simplest case of a static fluid sphere, there is no global
inertial frame. Thus the exercise of having global defini-
tions of related energies and to enact their conservation is a
highly nontrivial task. As is well known, for stationary
systems, however global energy can be defined in a mean-
ingful way for asymptotically flat spacetimes. Further,
when the energy is defined with reference to an observer
at a spatial infinity (S1), we obtain the so-called ADM
Mass [13]. Also global energy conservation can be mean-
ingfully defined only with reference to S1.

Note that EG andU are essentially summation over local
appropriate values and not over the corresponding quanti-
ties measured by S1. It may be mentioned that, if any
locally measured energy is �, then the energy measured by
the far away inertial observer is the redshifted quantity

 �1 �
�������
g00
p

� � A�r�� (40)

Accordingly, the total mass-energy content of the fluid,
excluding any self-energy, as measured by an inertial
frame such as the distant observer, S1 is different from
Mproper and is given by [8] (Eq. 11.1.19):

 Mmatter �
Z R

0
A�r��dV �

Z
A�r�B�r��dV (41)

Physically this means that local energy content in a given
cell �dV is measured (redshifted) as A�r��dV by the
inertial observer S1.

In fact, the inertial observer S1 would see the rest mass
energy, i.e., the proper energy, of a nucleon too to be
reduced by the same factor

�������
g00
p

. Hence, when the body
is finite and not dispersed to infinity, the total rest mass
energy of the body, as reckoned by the inertial observer S1,
is

 

~M 0 �
Z R

0
�0A�r�dV (42)

Similarly, the redshifted global internal energy of the fluid
as measured by S1 is

 

~U �
Z R

0
e�r�A�r�dV (43)

We can, now, quickly identify the 1st term on the RHS of
Eq. (39) as Mmatter. Again bear in mind the fact that our
eventual result would not depend on such identification or
splitting because it would be obtained by equating the total
expressions for inertial and gravitational masses.

Further, we see that, the 2nd term on the RHS of Eq. (39)
is the global energy associated with pressure as perceived
by S1. Accordingly, we rewrite Eq. (39) as:

 M � Mmatter �Mpressure (44)

Again recall that M too is defined only with respect to S1.
Having done this splitting, we are in a position to obtain the
GR Virial theorem, which is essentially an accounting of
global energies involved in the problem. And since global
energies, in GR, can be defined only w.r.t. the inertial
observer S1, all relevant integrals must be defined w.r.t.
the same observer. And this is what we have just done.

V. GR HELMHOLTZ KELVIN PROCESS

Let us simply transpose Eq. (39) (irrespective of its
splitting) as

 

Z R

0
�A�r�dV �M�

Z R

0
3pA�r�dV � 0 (45)

to reexpress as

 

~E g �
Z R

0
3pA�r�dV � 0 (46)

Or,

 

~E g �
Z

3p
�����������������
�g00grr
p

dV � 0 (47)

where

 

~E g � M�Mmatter �
Z
�AB� 1��dV (48)

Or else,

 

~E g �
Z
�
�����������������
�g00grr
p

� 1��dV (49)

Since AB< 1 in the presence of mass-energy, we have
~Eg < 0 as is expected. Clearly, we have, obtained, now an
equation similar to (4). It appears then that the above
defined ~Eg rather than the previously defined EG is the
true measure of self-gravitational energy as perceived by
an inertial observer S1. This is so because EG is not
defined with respect to S1, the accountant for global
energy. In contrast, both the components of ~Eg, namely,
M and Mmatter are defined w.r.t. S1.

Further, recall that, in GR, the effect of ‘‘gravitational
potential’’ is conveyed by g00. But EG (Eq. (27)) does not
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contain g00 at all. In contrast, ~Eg indeed involves gravita-
tional potential term g00 � A2 (Eq. (49)).

What would be the value of true global GR self-
gravitational energy ~Eg in the Newtonian limit?

To see this we consider a sphere with � � constant for
which [8]

 A�r� �
1

2

3�1� 2M=R�1=2 � B�r��1� (50)

Using Eq. (22) in (50), we further see that

 A�r�B�r� �
1

2

3�1� 2M=R�1=2B�r� � 1� (51)

Again using Eq. (22) in (51), we obtain

 A�r�B�r� �
1

2

3�1� 2M=R�1=2�1� 2m=r��1=2 � 1�

(52)

Now if we proceed to linearized gravity limit withM=R�
1 and m=r� 1, we will have

 A�r�B�r� � 1�
3

2
�m=r�M=R�� (53)

Using Eq. (52) in (48), we see that

 

~E g � �
3

2

Z
�M=R�m=r��dV (54)

When we carry out this above integration with � �
constant, we obtain

 

~E g �
�3

5

M2

R
(55)

Therefore, in the Newtonian limit, ~Eg � EG � ENg , though
in general ~Eg and Eg are different.

Now, using the thermodynamical relation (5) and (43) in
Eq. (46), as before, we will have

 

~E g � 3��� 1� ~U � 0 (56)

By direct comparison with Eqs. (4) and (7), we can easily
identify Eqs. (48) and (56) as the appropriate GR version of
static Virial Theorem. Note that Eqs. (46) and (56) natu-
rally reduce to their Newtonian forms, Eqs. (1) and (7) for
sufficiently weak gravity with g00 � �grr � 1. Thus we
may interpret the existence of the Newtonian virial theo-
rem too as due to equivalence of ‘‘gravitational mass’’ and
‘‘inertial mass’’.

From Eq. (56), we obtain

 

~U �
�1

3��� 1�
~Eg (57)

If the fluid undergoes quasistatic contraction and � denotes
the associated changes in relevant quantities, then we will
have

 � ~U �
�1

3��� 1�
� ~Eg �

�1

3��� 1�
j� ~Egj (58)

Here we have used the fact that since ~Eg < 0 it must
decrease for contraction. Thus as is expected, the internal
energy of the fluid must increase for gravitational contrac-
tion. If the appropriately averaged value of A�r� � �g00

during this contraction, the increase in proper internal
energy would be

 �U �
� ~U
�g00
�

1

3��� 1�

j�Egj

�g00
> 0 (59)

Since g00 < 1 in the presence of gravity, this means that,
the rate of increase in proper internal energy would be
higher than in the corresponding Newtonian case.

As we look back at Eq. (58), the increase in the value of
j ~Egj, namely j� ~Egj is not fully accounted for by the
increase in the value of ~U. Note that in the absence of
initial antiparticles, the contribution of rest mass-energy is
unaffected during the process. Therefore, for the sake of
global energy conservation, as reckoned by the inertial
observer S1, the fluid must radiate out an amount of energy
��Q given by

 �Q �
�

1�
1

3��� 1�

�
j� ~Egj �

3�� 4

3��� 1�
j� ~Egj (60)

in order to be able to contract. Note, as before, that � >
4=3 in a strict sense, as long as particle momenta are finite.
To see that in the GR context too, that � � 4=3 implies
singular situation, look at the Ist row of Table I of [14]
which shows that in this case again Rmax � 0, where Rmax

is the maximum possible radius of the configuration.
Further, for � � 4=3, the next entry in the same row shows
that R0 � 0 where R0 � 2GM=c2 is the Schwarzschild
radius. This implies that for � � 4=3, one has R0 � 0.
This latter fact implies that total mass energy Mc2 � 0
just as EN � 0 for � � 4=3 (Eq. (9)). Occurrence of
Rmax � 0 implies a fluid sphere that has collapsed to a
singular point. And as per Ref. [14], the configuration then
would have zero mass energy. Incidentally, in the 2nd
classic paper of Ref. [13], Arnowitt, Deser and Misner
too found that a neutral ‘‘point particle’’ has zero ‘‘clothed
mass’’. Then Chandrasekhar’s exercise [14], in addition,
suggests that if the fluid would attain such a singular state,
the value of �! 4=3. This is also in perfect agreement
with the notion that a singular state should be infinitely hot
with complete domination of radiation energy over rest
mass energy [6].

In fact, in one would misconceive of a situation with
� < 4=3, irrespective of whether it is a Newtonian or a GR
case, one would have to ensure injection of energy into the
system to let it collapse. This would mean that in the
absence of external injection of energy, the system would
not contract/evolve at all in defiance of basic tenet of
global gravitation.
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Thus, one must indeed have � > 4=3 and, in a strict
sense, there cannot be any adiabatic gravitational contrac-
tion. Thermodynamically, the global specific heat of the
contracting fluid is negative because dQ< 0 while the
temperature and internal energy of the fluid increase.

VI. GENERAL RELATIVISTIC BINDING ENERGY

Equation (60) suggests that, we might isolate a quantity

 

~E �
3�� 4

3��� 1�
~Eg (61)

as the total energy of the system excluding any rest mass
contribution. This is actually the ‘‘Binding Energy’’ of the
gravitating system, defined by a given distribution of mass-
energy.

By using Eq. (57), it is seen that

 

~E � ~Eg � ~U (62)

Further using Eqs. (39), (42), (43), and (48), it also
transpires that

 

~E � ~Eg � ~U � M� ~M0 (63)

We may see that, unlike in Eq. (30), all the quantities
involved in Eq. (63) are defined w.r.t. S1 and which
suggests that ~E is indeed the true binding energy of the
fluid. The reader is again requested here to appreciate the
subtle point why the true binding energy of the fluid is
given by Eq. (63) rather than by Eq. (31).

Though M0 is a conserved quantity, once the fluid is
contracted into a finite size, it gets dissociated from the
inertial frame S1. And S1, who is doing the global energy
accounting, sees the locally defined rest mass energy to be
redshifted to ~M0 rather than as M0. On the other hand, the
total mass-energy of the fluid, again defined w.r.t. S1 is M.
Therefore, the global binding energy of the fluid, i.e., the
difference between the total mass energy and rest mass
energy as seen by the same inertial observer S1 is M�
~M0. Note that the existence of Eqs. (62) and (63) does not

depend on such interpretations because they, in any case,
crept up spontaneously.

Although, in a Newtonian case, the notion of a binding
energy always existed, to the best of our knowledge, such a
notion was never before properly derived in the GR con-
text. A relativistic ‘‘bound system’’ may thus be defined as
one having ~E< 0, and an ‘‘unbound system’’ will have
~E> 0.

While, in the Newtonian case, ‘‘Total Energy’’ is the
binding energy EN , in GR, total global energy, as measured
by S1, always is E � Mc2.

VII. DISCUSSIONS

The important idea of Helmholtz and Kelvin, developed
in the 19th century, that gravitational contraction should
both raise the internal energy and cause the fluid to radiate

was always expected to be valid irrespective of the strength
of the gravity. However, the original derivation to this
effect was made in the framework of extremely weak,
i.e., Newtonian gravity. We showed here that even for
arbitrary, strong gravity, this process indeed remains valid.
In fact, as shown by Eq. (59), the process becomes even
more effective compared to the Newtonian case as gravity
increases. Pictorially, we may think that stronger gravity
churns out more radiation from matter even in the absence
of chemical or thermonuclear energy sources. A similar
conclusion is supported by a recent work which shows that
the ratio of radiation energy density to rest mass-energy
density of a self-luminous contracting object is propor-
tional to its surface redshift z [6]. When z� 1, the self-
gravitating contracting object is ‘‘matter dominated’’, i.e.,
�0  �r, but when, z 1, the object becomes radiation
dominated : �r  �0 like the very early Universe [6]. The
present study provided an additional explanation for this
result. These studies show that the actual fate of radiative
physical gravitational collapse could be radically different
from traditional pictures of continued gravitational col-
lapse inspired by the pressureless dust collapse where a
Black Hole (BH) or a Naked Singularity is catastrophically
formed in a finite comoving proper time. Traditional GR
collapse studies are usually done by (i) assuming dust
models with p � 0 even when the fluid is supposed to
have collapsed to singularity, or (ii) considering pressure
but neglecting all heat transport, dQ � 0. But as shown by
Eqs. (58) and (60), dQ � 0 implies (a) d ~U � 0 and
(b) d ~Eg � 0. The condition (a) is satisfied only for dust
and thus despite a formal consideration of existence of
pressure, in the context of collapse, a fluid satisfying
condition (a) becomes similar to a pressureless, internal
energyless dust. The condition (b) is not satisfied even for a
dust unless it has M � U � Eg � fixed � 0 at the begin-
ning of the collapse. But no isolated fluid with finite size
can have M � 0 (the Universe may, however, have M � 0
even being of finite or infinite extent). In several numerical
studies of supposed radiative collapse, one implicitly or
explicitly assumes Q� M0c2. At the advanced stage of
collapse, this assumption fails [6] and such cases effec-
tively become similar to case (ii) of adiabatic continued
collapse valid for M � 0.

In contrast, in a breakthrough research on physical
gravitational collapse, Herrera and Santos [1] have shown
that the force exerted on the collapsing fluid by the outward
propagating heat/radiation may stall the continued collapse
process and formation of either a finite mass BH or Naked
Singularity may be averted. Herrera, Di Prisco and Barreto
[1] have successfully made a numerical model of continued
collapse to substantiate this pathbreaking idea. Such ideas
are consistent with the model independent generic studies
[6] which show that continued catastrophic collapse indeed
degenerates into a radiation pressure supported hot quasi-
static state called eternally collapsing objects because of
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outward force due to collapse generated radiation at ex-
tremely deep gravitational potential wells, z 1 where z
is the surface gravitational redshift of the collapsing object.
It is because of the resultant reduction in the value ofM due
to continuous radiation outpour that no apparent horizon or
event horizon is formed until M � R � 0 [6].

Finally, the GR definition of ‘‘binding energy’’ of a
static fluid is M� ~M0 rather than M�M0.

Newtonian HK process is a direct sequel of static
Newtonian virial theorem. Similarly, we needed to derive
the exact GR version of the static virial theorem. This GR
virial theorem involved globally defined quantities mea-
sured w.r.t. the same inertial observer S1. In general, the
notion of global energy is far from transparent and unique
in GR. For example, for nonstatic and nonspherically
symmetric systems or charged systems, there could be
various notions of ‘‘energy’’ and ‘‘mass’’; to appreciate
this one may have a look at a recent long review paper [15].
However the present paper must not be confused with such
studies. The aim of this paper was not at all to define any
new definition of either mass or ‘‘global energy’’ from any
preferred theoretical perspective, correct or incorrect. This
is so because, unlike a generic case, the definition of
‘‘global mass energy’’ of a chargeless static spherically
symmetric fluid (measured by S1) is very well known
since long [10,12]. And we just appealed to the Principle
of Equivalence to equate the already well known expres-
sions for ‘‘gravitational mass’’ (Schwarzshild mass) and
‘‘inertial mass’’—the time component of linear 4-
momentum. It is this simple operation which yielded the
GR virial theorem and GR HK mechanism (Eqs. (12)–
(17)). It is the same principle of equivalence which de-
manded that, from energy conservation considerations, all
the relevant globally defined energies are defined w.r.t. the
unique inertial frame S1 rather than w.r.t. a series of
(infinite) proper frames. To the best of our knowledge,
this is the maiden derivation of HK process using GR.

And this is also the maiden proper GR explanation for
the intuitive notion that a self-gravitating object has effec-
tive global ‘‘negative specific heat’’ in Einstein gravity too.

For further appreciation of the ‘‘global quantities’’ in-
volving

�������
g00
p

in our study which arose spontaneously and
not imposed from new theoretical perspective, we recall
that the ‘‘Poisson’s Equation’’ in GR has the form [16]

 r2 �������
g00
p

� 4�G
�������
g00
p

��� 3p� (64)

And only when one moves to weak gravity with
GM=r� 1 and

�������
g00
p

� 1�GM=r � 1, one obtains the
more familiar form

 r2� � 4�G��� 3p� (65)

where the weak ‘‘gravitational potential ��GM=r. Of
course, Eq. (64) would also degenerate into Eq. (65) in a
local free falling frame where g00 � 1. But for fluids
having finite pressure there cannot be any such global
free falling frame and therefore Eq. (65), in the present
context, can be recovered only for weak gravity (in any
case we are dealing with a static fluid). Formally only a
pressureless ‘‘dust’’ with p � U � 0 can undergo a strict
adiabatic collapse, though, physically, in this case, the
gravitational mass of the fluid M � 0.

Since virial theorem is important for the study of com-
pact objects and gravitational contraction, the exact rela-
tivistic virial theorem obtained here could be useful for
relativistic astrophysics, either now or in future.
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