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Structure formation on the brane: A mimicry
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We show how braneworld cosmology with bulk matter can explain structure formation. In this scenario,
the nonlocal corrections to the Friedmann equations supply a Weyl fluid that can dominate over matter at
late times due to the energy exchange between the brane and the bulk. We demonstrate that the presence of
the Weyl fluid radically changes the perturbation equations, which can take care of the fluctuations
required to account for the large amount of inhomogeneities observed in the local universe. Further, we
show how this Weyl fluid can mimic dark matter. We also investigate the bulk geometry responsible for

the scenario.
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L. INTRODUCTION

Observations suggest that the expanding universe is
homogeneous and isotropic at scales larger than
150 h™! Mpc. But the large amount of inhomogeneities
observed in the local universe needs sufficient and con-
vincing explanation. The usual cosmological models based
on the standard Friedmann equations require that the bar-
yonic matter fluctuation 8 > 1 today, implying & > 1073
at the time of recombination. This is in direct contradiction
with cosmic microwave background (CMB) observations
by over an order of magnitude. This limitation of standard
cosmology leads to an inevitable prediction of dark matter
[1]. CMB observations [2] suggest that Qbawonhz =~ (.02
i.e., only about 4% of cosmic density is baryonic. Hence
dark matter, if it exists, has to be the dominant nonbaryonic
component, contributing to as much as 1/3 of cosmic
density [3]. It is proposed that its nonbaryonic nature helps
it decouple from radiation, resulting in a growth of struc-
ture that starts much before the hydrogen recombination.
But there are several problems associated with dark matter,
the most pronounced of which being its ill-response to
detection by series of experiments. Though the experi-
ments of DAMA group [4] have reported in favor of its
existence in the form of weakly interacting massive parti-
cles [5], similar searches by a number of other groups, such
as CDMS [6], CRESST [7], EDELWEISS [8] have yielded
negative results (for recent results, see [9]). So, there arise
questions such as whether dark matter exists at all or it is
the gravity sector, rather than the matter sector, that needs
modifications. This leads people to consider modified
gravity theories, e.g., modified Newtonian dynamics
(MOND) [10], bifurcating gravity [11], phantom cosmol-
ogy [12], etc.

One such modified gravity theory is the braneworld
gravity [13] which has opened up new avenues of explain-
ing the observations with the help of a modified version of
the standard Einstein equation [14]. In this scenario, when
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the bulk consists of matter, the bulk metric for which the
FRW geometry on the brane is recovered, is given by a
higher dimensional generalization of the radiative Vaidya
black hole [15] that exchanges energy with the brane
[16,17]. In presence of bulk matter the modified Einstein
equation on the brane reads [16]
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where S, £,,,, and F,, are the quadratic contribution
from brane energy-momentum tensor, the projected bulk
Weyl tensor and the projected bulk energy-momentum
tensor on the brane, respectively.

Incorporating all the braneworld corrections, one can
conveniently express the Friedmann equations on the brane
as
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where the effective density and pressure are given by [18]
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The term p* = C(1)/a* is the combined effect of £, and
F v, and is called the “Weyl fluid,” that supplies an
additional perfect fluidlike effect to the usual brane fluid.
Further, the Weyl parameter C() is related to the black
hole mass, that results in energy-exchange between the
bulk and the brane so that the individual matter-
conservation is no longer valid but the total mass-energy
of the bulk-brane system is now conserved. Consequently,
the matter conservation equation on the brane is no longer
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a sacrosanct equation. Rather, it is modified to the non-
conservation equation [19]

p+35(p+p) =24, (1.6)
where o = dm/dv, with m(v) the mass of the Vaidya
black hole. It shows how the brane either loses (¢ > 0)
or gains (¢ < 0) energy in exchange with the bulk black
hole. To a braneworld observer, the term ¢ is the quanti-
tative estimate of the brane-projection of the bulk energy
density.

The goal of the present article is to show that the bulk-
brane energy exchange results in the growth of the Weyl
fluid at late times. Following Newtonian analysis of per-
turbations from gravitational instability, which is the sim-
plest yet logical analysis of gravitational perturbations, we
demonstrate that the Weyl fluid can mimic dark matter in
explaining structure formation. That the braneworld grav-
ity can be a very good alternative to dark matter in astro-
physical contexts of clusters and galaxies was proposed in
[20,21]. In this article we address the cosmological sector
of dark matter.

The plan of the paper is as follows. In Sec. II, we obtain
the perturbation equations for the effective perfect fluid on
the brane. Sec. 11 is devoted to the solution of the effective
perturbation equations with the help of Weyl fluid that
mimics dark matter, followed by a comparative analysis
with the other dark matter models from standard cosmol-
ogy as well as modified gravity theories. We construct the
bulk geometry for this setup in Sec. IV. Finally, we sum-
marize our results and discuss some open issues.

II. EFFECTIVE PERTURBATION EQUATIONS

Since our focus is on the late time behavior in the
matter-dominated era, we restrict ourselves to the analysis
of the zero brane cosmological constant scenario. Hence,
the equations of hydrodynamics that involve the quadratic
brane correction and the Weyl fluid correction to the brane
perfect fluid, are
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where ¢! is the velocity field in the effective perfect fluid.
It should be noted that the term ®¢f is not the usual
Newtonian potential but the effective gravitational poten-
tial which is the resultant effect of the Newtonian as well as
the relativistic potential. The latter plays a crucial role in
the braneworld context and has been discussed in detail in
[20]. We next consider small perturbations
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where p°t(7) and DT are, respectively, the unperturbed
effective density and effective potential and 8°T and ¢°ff
are their corresponding fluctuations. It is worthwhile to
mention the significant difference of the density fluctuation
of the braneworld cosmology from that of the standard
cosmology. In the standard cosmology, 0 is the fluctuation
of baryonic matter only. On the contrary, in the braneworld
cosmology, 8¢ if the sum total of the fluctuations of
baryonic matter and of the contribution from braneworld
corrections.

We proceed by expressing in terms of comoving coor-
dinates and neglecting terms of second or higher order,
which results in the following set of simplified perturbation
equations
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and express the solution in terms of Fourier transform
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Further, assuming the effective pressure to be a function
of the effective density alone, the equations of hydrody-

namics now transform into a linear perturbation equation
for 8¢t
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[19].

III. SOLUTIONS WITH THE WEYL FLUID

The above perturbative analysis can account for the
required amount of gravitational instability if the Weyl
density redshifts more slowly than baryonic matter density,
so that even if it starts from a small initial value, it can
eventually dominate over matter. Now, the nature and
evolution of the Weyl fluid is governed by Eq. (1.6) via
the 4D Bianchi identity V*G,,, = 0. This gives
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prHasp =0 3.1)
where Q is a coupling term which can be calculated, on
principle, if the projected bulk energy density ¢ is known.
But in practice, since no one can fix the exact bulk geome-
try a priori, one has to take an ansatz for Q so far as it is
physically reasonable and consistent with the brane equa-
tions. One such ansatz has been considered in [22] for a
dilaton field in the bulk. Let us here take an ansatz @ =
aHp* (a > 0), for which the Weyl fluid behaves like

By 1
pP OCW. 3.2)

Thus the Weyl parameter is given by C(r) = Cya®(?),
where (| is its initial value at the matter-dominated epoch.
Obviously, the Weyl fluid is strictly radiationlike only if
a = 0, i.e. for matter-free bulk scenario. But for the bulk
with matter, the nature of the Weyl fluid depends on the
coupling strength «. The more the coupling strength «
(within the range 1 < a < 4), the more the dominance of
the Weyl fluid over matter. Hence the Weyl fluid can mimic
dark matter for @ = 1. However, calculations of CMB
anisotropies from the present model may lead to a better
quantitative estimation for . From Eq. (1.6), a >0 =
s > 0 reveals that the brane loses energy to the bulk black
hole. The increase of black hole mass is felt by a brane-
world observer through the projected bulk energy density.
Consequently, it results in the growth of the Weyl density at
the expense of brane energy.

We are now in a position of dealing with the perturbation
equation (2.11). This involves the fluctuation of p°f which
is a sum-total of three quantities given by Eq. (1.4). Of
them, the quadratic correction term p?/2\ comes into play
at the physics of early universe such as during inflation
(where p > A) [23] but it contributes very little at the
present era since p << A > (100 GeV)*. Hence, for all
practical purpose, the effective density at late times can
be approximated as

pt = p + p*. 3.3)

What turns out from the above equation is that along
with the usual matter density, here we have an additional
(Weyl) density contributing to the total density that gov-
erns the perturbation equation (2.11). Separating the bar-
yonic (matter) part from the nonbaryonic (Weyl) part of
Eq. (2.11) now yields two wave equations

d*sp addg _ s
42 &* adé” v o _

where &5 and 6" are the fluctuations of baryonic matter
and Weyl fluid, respectively, and we have neglected the
term involving sound speed because of the growing fluc-
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tuations. Consequently, with ), << Q*, the relevant grow-
ing mode solution for Eq. (3.5), as a function of the
redshift, turns out to be

8 (z) = 8*(0)(1 + 2)7".

Substituting the above expression in the fluctuation
Eq. (3.4) of baryonic density gives
d*sp a dog _, .
+2— ——=47Gp*56*(0)(1 + .
O 27 S = AmGpt 8 O0)(1 + 2)

(3.6)

(3.7)

Further, we know that though the universe evolves dif-
ferently at early times, the standard cosmological solution
for the scale factor is recovered in RS-II type braneworld
gravity at late times [16,24]. So, the late time behavior for a
spatially flat brane is given by

(3.8)
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With this scale factor and considering {)* = 1 at present
time, Eq. (3.7) now takes the form
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A typical solution for the above equation is given by

du(2) = "1 - Lz )

1+ zy

(3.9
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where we have used the standard relation of the scale factor
with the redshift function a « (1 + z)~'. Note that though
the above relation is a look-alike of the standard cosmo-
logical relation, physically it is completely different.
Unlike the usual dark matter fluctuation, here 6% is the
fluctuation of Weyl density that arises naturally in brane-
world context.

Let us now analyze some of the basic features of the
present model. Equation (3.10) reveals that at z — z,, the
baryonic fluctuation 6z — 0 while 8 remains finite. This
implies that even if the baryonic fluctuation is very small at
aredshift of zy = 1000, as confirmed by CMB data [2], the
fluctuations of the Weyl fluid had a finite amplitude during
that time. At z < z the baryonic matter fluctuations are of
equal amplitude as the Weyl fluid fluctuations. This ex-
plains the structures we see today. Further, in this pertur-
bative analysis, no extra matter (e.g. dark matter) has to be
put by hand in order to explain the structures we see today.

The effective equation of state parameter is given by

el — " _ p+plp +2p)/24 + C(1)/3a"
pett p+ p*/2) + C(t)/a*

@3.11)

which, in the matter-dominated era, can be approximated
as

1
3(1 + Ca' @)
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Clearly, it bears significant difference from the equation of
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state of cold dark matter (w = 0). In this sense the term
“mimicry”’ may sound a bit misleading, though here we
mean that it is the perturbative nature of evolution that is
being mimicked by the Weyl fluid. Further, w*'" does not
cross the phantom divider line (w < —1) [25] at least
during the matter-dominated era in which we are inter-
ested. Hence this model is favored by SNLS [26].
Moreover, the braneworld scenario provides us with a
new window for the cosmic coincidence problem. Here
the evolution of the universe may not be a cosmological
constant (or dark energy) effect at all, rather an outcome of
the leakage of gravitational signal into the extra dimension.
Hence the focus now shifts from the coincidence problem
to the question: how can the late-acceleration of the uni-
verse be explained by the modified Friedmann equations?
A comparative study of our model with the other dark
matter models and modified gravity theories is instructive.
Equation (3.12) reveals that our model is distinct from the
widely popular ACDM model [5] so far as the equation of
state is concerned. However, quite surprisingly, the scale
factor bears strong similarity with that of the matter-
dominated phase of ACDM. Hence, though they have
some common features, whether or not the present model
will eventually evolve into ACDM cosmology at very late
times needs further investigation. As of now, this is an open
question as obvious from the preceding discussions. The
alternative gravity theory MOND [10], is based on mod-
ifying Newton’s law. Though Bekenstein has recently pro-
posed a relativistic MOND [27], a more convincing and
satisfactory relativistic version bearing important features
such as lensing is yet to come. In comparison, the brane-
world model is based on purely relativistic idea and hence
is potentially more advanced. Another alternative cosmol-
ogy is the bifurcating theory [11] where the effective
Lagrangian bifurcates into several branches, thereby giving
a possibility of unifying dark matter and dark energy.
However, here a scalar field is still required to model
dark matter. The model discussed in the present article
does not need any such scalar field. Here the bulk-brane
geometry plays the trick. Phantom cosmology [12] can also
provide an unified description but it has a wrong sign in the
kinetic term that needs convincing physical explanation.

IV. BULK GEOMETRY

When the bulk consists of matter, the most general bulk
metric for which a cosmological (FRW) metric on the
brane is recovered, is given by a radiative black hole which
is a 5-dimensional generalization [16,17,19] of Vaidya
black hole [15]. In terms of transformed (null) coordinate
v=t-+ f dr/f, the bulk metric can be written as

ds: = —f(r, v)dv* + 2drdv + r*d33, 4.1
where 23 is the 3-space. For a spatially flat brane, the
function f(r, v) is given by
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with the length scale / related to the bulk (negative) cos-
mological constant by As = —6/I> and m(v) is the vari-
able mass of the Vaidya black hole. This bulk black hole
metric is a solution of the 5-dimensional Einstein equation
with the bulk energy-momentum tensor

TN = dquqn (4.3)

where g, are the ingoing null vectors and ¢ = dm/dv is
the rate of incoming radial energy flow to the black hole.
Now, the black hole mass is the rescaled Weyl parameter
which is further related to the scale factor by Eq. (3.2)
2
m(t) = ?C(t) < a%(r). (4.4)
Hence, with the scale factor of Eq. (3.8), the on-brane mass
of the bulk black hole turns out to be

m(t) = mgr2/3w+1) 4.5)

where my is the black hole mass at the onset of matter-
dominated era, which is given by

K2 (3 )2&/3(w+1)

my = CO— EHO (46)

3

Since ¢ is the proper time on the brane, Eq. (4.5) gives the
on-brane mass m(f). In order to obtain the black hole
geometry from the point of interest of a braneworld ob-
server, we have to find out the off-brane mass m(v).
However, an exact expression for the bulk geometry can
never be obtained purely from the brane data but an ap-
proximate expression for the same at the vicinity of the
brane can be obtained by following a perturbative brane-
based approach.

At low energy, the Friedmann brane, located outside the
“event horizon,” moves radially in the bulk. Its radial
trajectory is given by the geodesic r(z), which reduces to
the scale factor a(z) at the brane-location. To a braneworld
observer, a brane moving radially outwards in the bulk is
identical to an expanding brane [28]. Hence, the function
f(r, v) at the brane-location reduces to

r? re(1)| r? a®(t)
f(}”, U)lbrane =7 CO% = COT’ 4.7)
[ r [ r
where 7(2)|prane 18 the radial trajectory at the brane-location.

Thus, the null coordinate v turns out to be

N ! L St
! 2\/m_0t“/3(w“) |:_ n(r/l-f- \/m—ola/3(w+l)>

2

+ tan™! (4.8)

r/l
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The off-brane mass m(v) at the vicinity of the brane can

be found out by expanding m(v) in Taylor series around its
on-brane value m(¢) as
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Hence in the present scenario, m(v) can be well approxi-
mated as

m(v) ~ mOZZa/3(w+l) + la\/mo t*1+a/3(w+l)

3(w+1)
NS Jmgte/30
— In
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One can now substitute the above expression for m(v)
into Eq. (4.2) to get the function f(r, v) near the brane. It is
straightforward to construct the relevant bulk metric at the
vicinity of the brane by using together the function f(r, v)
and the coordinate v given in Eq. (4.8). To avoid the
lengthy terms involved, we skip the final expression for
the metric. From the physical point of view, it is not
required either. The null coordinate v and m(v) given in
Egs. (4.8) and (4.10) respectively, will carry all the infor-
mations about the bulk geometry to the brane.

V. SUMMARY AND DISCUSSIONS

In this article, we have shown that the braneworld cos-
mology with bulk matter can explain structure formation.
When the bulk is constituted of matter, then the effective
Einstein equation on the brane gives rise to a quantity that
can act as an additional perfect fluid. This so-called ‘“Weyl
fluid” is the combined effect of the bulk Weyl tensor and
bulk energy-momentum tensor, projected onto the brane.
We have shown that the nature of the Weyl fluid depends on
the energy-exchange between the brane and the bulk so
that for strong bulk-brane coupling, it can dominate over
ordinary matter. Furthermore, following Newtonian analy-
sis of gravitational instability, we have shown that this
Weyl fluid can account for the required amount of fluctua-
tions in order to explain structure formation. Thus we
conclude that the Weyl fluid can mimic dark matter in
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structure formation with the advantage that nowhere we
need to introduce any ad hoc extra matter such as dark
matter. We have also investigated the bulk geometry given
by a radiative Vaidya black hole and obtained the geomet-
ric quantities relevant for a braneworld observer.

Throughout this article, we stick to the perturbations
from the Newtonian gravitational instability. Here in no
way we tried to study in details the braneworld perturba-
tions as done for matter-free bulk scenario in numerous
papers [29-32]. Rather, we tried to see if the Weyl fluid
can mimic dark matter in cosmological context with the
simplest yet logical analysis of gravitational perturbations.
The detailed study of scalar, metric, curvature, vector and
tensor perturbations as well as theoretical studies of CMB
anisotropies with the Weyl fluid behaving as dark matter
are left for future works.

An interesting issue is to study gravitational lensing that
serves as a probe of structures. Significant difference in the
bending angle due to the difference in the potentials has
been reported in [20,21]. It is to be seen how the effective
potential affects cosmological lensing. A comparative
study of the lensing effects with those of the other dark
matter models, e.g. scalar field haloes [33] and verification
from [34] will reveal which properties of dark matter can
be reflected by Weyl fluid.

Finally, we have analyzed structure formation for a flat
universe without considering any accelerated scale factor.
Having realized that braneworld gravity can account for
~30% of cosmic density usually attributed to dark matter,
one can pay attention to another ~70% which is consid-
ered to be dark energy with negative pressure. There
currently exists some braneworld models of dark energy
[35] consistent with supernova data. We expect that this
perturbative analysis can be applied to those models,
thereby providing an unified description of dark matter
and dark energy from braneworld gravity, with excitingly
new features.
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