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We present a mechanism for catalyzed vacuum bubble production obtained by combining moduli
stabilization with a generalized attractor phenomenon in which moduli are sourced by compact objects.
This leads straightforwardly to a class of examples in which the Hawking decay process for black holes
unveils a bubble of a different vacuum from the ambient one, generalizing the new end point for Hawking
evaporation discovered recently by Horowitz. Catalyzed vacuum bubble production can occur for both
charged and uncharged bodies, including Schwarzschild black holes for which massive particles produced
in the Hawking process can trigger vacuum decay. We briefly discuss applications of this process to the
population and stability of metastable vacua.
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I. INTRODUCTION

Recently much progress has been made in stabilizing
moduli and analyzing the resulting discretuum of vacua
[1]. Another topic of recent interest has been the attractor
mechanism (see e.g. [2,3]), in which moduli are driven to
fixed values at the horizon of charged black holes.

In general, both types of effects are present. The dynam-
ics of moduli �i are determined by the scalar potential
U��� and by other local sources ���; x� to which the
moduli couple via an equation of motion of the form

 r2���@�U��� � @��: (1.1)

For example, in weakly coupled string theory, the dilaton
� modulates masses and couplings of particles, so energy
densities formed from them typically depend on �. As a
specific example, moduli dependence in the kinetic terms
for electromagnetic fields yields forces on moduli near
charged sources, an ingredient in the attractor mechanism.

Taking both effects into account leads to the possibility
of catalyzed production of bubbles of different vacua.
Consider the subset of backgrounds where structure for-
mation leads to objects dense enough that the source terms
� in (1.1) compete with the barrier height in U separating
one metastable minimum of U from another. The moduli
can then be locally forced into the basin of attraction of a
different minimum from that at which they are metastabi-
lized in bulk. Depending on the parameters, this can result
in vacuum decay or in production of a perturbatively stable
nonexpanding bubble of a different vacuum. A dramatic
string-theoretic example of this was obtained recently in
[4], where certain charged sources produce a tachyonic
instability nearby, catalyzing the formation of a bubble of
nothing.

One goal of the present paper is to point out a large class
of examples where bubbles of other vacua appear in the

course of Hawking evaporation of black holes. In particu-
lar, in the charged case we generalize [4] and in the un-
charged case we obtain a new mechanism for vacuum
bubble production.

For charged black holes, this arises in variants of the
process [4] accessible in effective field theory. One can
start in one metastable vacuum and form a black hole with
mass much greater than its charge. At first it behaves
approximately like a Schwarzschild black hole, gradually
losing mass to Hawking radiation. At some point long
before it reaches the correspondence point, the black hole
has radiated away enough of its mass that the charge plays
a role, exerting local forces on the scalar fields in the
problem and creating a bubble of a different vacuum.

Vacuum bubbles can also be produced in the case of
uncharged compact objects, including Schwarzschild
black holes, via the accumulation of uncharged matter
sourcing scalar fields. Depending on the relative strength
of the local energy density and the ambient moduli poten-
tial, the bubbles may appear outside or inside the
Schwarzschild radius. Bubbles may form outside in two
ways: in the process of collapse before the horizon forms,
and in the process of Hawking evaporation as the black
hole becomes small enough to produce massive Hawking
particles sourcing the scalar. In the latter case, we will
present a window of parameters for which this new mecha-
nism constitutes the dominant method for producing vac-
uum bubbles, occurring faster than tunneling and other
effects in the black hole background.

One application is to black hole physics, whose dynam-
ics contains information about other vacua. This plays a
role in the microphysical description of black holes and
their information flow.

Another application is to provide a method for populat-
ing the landscape which proceeds perturbatively.
Backgrounds with larger variations in density are more
likely to produce vacuum bubbles; conversely, back-
grounds with less dense structure formation are more
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stable.1 The process also provides a dynamical mechanism
favoring regions with light particles; this aspect is similar
to moduli trapping [7] except here the particle production
is effected by structure formation and evaporating black
holes.

Perhaps the most compelling application of this process
would be to obtain regions of parameter space where
catalyzed bubble production would be possible realisti-
cally, probing regions of the landscape. As we discuss,
this depends on the degree to which dense structures and
small black holes form as a result of early universe inflation
and structure formation. A much more extensive treatment
of this appears in the interesting related work of [10]. The
prospect of catalyzed decays and their realistic embedding
is also under investigation in [11].

The paper is organized as follows. In Sec. II we set up
two canonical systems where moduli are sourced by local
densities, and review bubble dynamics in a way applicable
to the catalyzed formation process. The main new results
are contained in Sec. III, where we present the catalyzed
bubble production mechanisms for charged and uncharged
black holes. Section IV describes various applications of
the mechanism.

II. CATALYZED BUBBLE PRODUCTION AND
EVOLUTION

Consider, for simplicity, first a regime in which low
energy field theory is a good approximation. We will be
interested in the situation described above (1.1) in which
the scalar equation of motion can be written in the form

 r2� � �@�Utot�r; �� (2.1)

where the total effective potential Utot depends on radial
coordinate distance r from the source, in a metric of the
form

 ds2 � �a�r�2dt2 �
dr2

a�r�2
� b�r�2d�2 (2.2)

in terms of functions a�r�, b�r� which approach 1 and r,
respectively, in the limit where gravitational effects are
negligible.

We will find it useful to parametrize the moduli potential
in terms of its energy scale MU and the typical size of its
features in field space M0:

 U � M4
Uf��=M0�: (2.3)

In particular, the barrier width is of order M0.
Let us give two illustrative examples. First, we can

consider a charged compact object, with scalars �i cou-
pling to electromagnetic fields according to the action
 

S �
Z
d4x

��������
�G
p

�M2
pR� 2�@�i�

2

� fab��i�Fa��Fb�� �U��i�� (2.4)

(generalizing the one in [3] to include the ambient moduli
potential U). For simplicity we will focus on a single
direction � scalar field space. Given spherical symmetry
and Gauss’ law, we can write, say, for a magnetically
charged black hole

 Fa � Qa sin�d� ^ d�: (2.5)

The equations of motion for the scalar field in this back-
ground are

 

1

b2 sin�
@��b2 sin�@��� �

�
V0eff

2b4 �
1

4
U0

�
��� (2.6)

where 0 denotes differentiation with respect to� and where
the local contribution to the force on the scalar arises from
an effective potential

 Veff � fab���QaQb (2.7)

obtained from the electromagnetic energy by plugging
(2.5) into (2.4). The total effective potential in the sense
of (2.1) is Utot � Veff=b4 �U.

As a second illustrative example, let us consider a scalar
� which modulates the mass of a particle, for example, a
fermion field  . The action governing this sector of the
theory is

 S �
Z
d4x

��������
�G
p

�M2
pR� i � D � 2�@��2

� ~f��= ~M0�m 
�  �U��� �� � �0 � (2.8)

where we included the possibility of a chemical potential
�, and we parametrize the argument of the modulating
function f via a scale ~M0. In a background density of  
particles, the scalar field equation of motion can again be
written in the form (2.6), where in this case the local
effective potential is

 

Veff

b4
� ~f��= ~M0�hm 

�  i�r; t� � � �r; t;��: (2.9)

In a background which includes the evolution of struc-
ture, the massive fields  will develop inhomogeneities
(along with other sectors of the theory). We will be inter-
ested in cases where these inhomogeneities make the @�� 
term compete with the @�U term in the equation of motion
for �.

1There have been a number of calculations of catalyzed
tunneling decays in field theory and gravity [5]. For simplicity
we will here focus on the regime where local overdensities
develop strongly enough to classically kick the scalar field
over a potential barrier separating different local minima.
There have been a number of works using gases of particles
obtained cosmologically to provide transient forces on scalar
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Having indicated two types of examples, let us return to
the general analysis of the dynamics. Let us suppose that
enough density develops that the forces from Veff=b

4

dominate over those of U for r less than some crossover
scale rc. Let us start by assuming that the forces on the
scalar field are dominated by field theoretic ones, i.e. that
the energy densities in the two vacua are small enough that
the curvature is a negligible contribution to the scalar
equation of motion. We will also make use of the discret-
uum of vacua to assume we can tune the potential as
desired to simplify our analysis. We will take the local
effective potential Veff for simplicity to have a single
minimum at � � ��, and U to have a minimum at � �
�� and a lower minimum at � � ��. In bulk, � is
metastabilized at either �1 � �� or �1 � ��.

There are three basic cases we will discuss (see Fig. 1):
I �� is in the basin of attraction of �1, II �1 � �� is in
the true vacuum while �� is close to ��, III �1 � �� is
in the false vacuum while�� is close to��. In cases II and
III, one forms a vacuum bubble. This bubble is perturba-
tively stable at a finite radius in case II and can expand
forever for appropriate values of the parameters in case III.

A. Case I

First we consider the case where Veff has settled down to
a time independent shape, whose minimum is in the basin
of attraction of U���r! 1��, the minimum of U where
� is stabilized asymptotically. There is a static perturba-

tively stable solution in this case. At any given r, there
exists a minimum of the combined potential Utot�r;�� �
	Veff=2b�r�4
 � 1

4 U that is continuously connected to min-
ima of U and Veff .

To first approximation,�will sit at the minimum of Utot

at each r:

 � � �0�r� � ���x� (2.10)

where the background solution �0�r� satisfies

 

�U
��

�����������0�r�
� 0: (2.11)

Fluctuations ���x� about the minimum are massive.

B. Case II: Perturbatively stable vacuum bubbles

When Veff has a minimum at the false vacuum value of
�, but � is in the true vacuum asymptotically, a static
bubble is formed.

There are two characteristic values of r in this case. As
before rc is the coordinate radius below which the local
effective potential Veff=b4 draws the scalar field toward��.
A second radial scale of interest, r0c > rc, appears in this
case; it is the radial distance at which the two minima of
Utot are degenerate: Utot���; r

0
c� �Utot���; r

0
c�.

For r < rc, � will roll toward the only minimum avail-
able. In particular, the scalar field vacuum expectation
value (VEV) will be close to that corresponding to the
false vacuum in bulk. Conversely, if this bubble of false
vacuum extended out to r� r0c, then it would collapse for
energetic reasons. Thus, the bubble wall should have a
stable position somewhere near r0c.

The technology developed in [12] could be used to
analyze this case in more detail; we will illustrate this in
the next section on case III.

C. Case III: Exploding attractors and vacuum decays

The final case is where the field is metastabilized in the
false vacuum at infinity, but Veff is in the true vacuum. The
solutions will typically evolve in time, and thus the ques-
tion of initial conditions is important. Unlike the previous
case, there is only one characteristic scale rc.

We expect that for r < rc, the field will roll into the
minimum. Therefore, we will start with the bubble wall at a
radius slightly below rc and we will consider whether or
not the bubble expands. At r� rc, U dominates and the
solution will look like a typical vacuum bubble so the
standard analysis applies to determine whether the bubble
expands. Therefore, we will focus on the new effects of the
local source. We will be interested in finding reasonable
conditions under which the wall expands from its starting
configuration at rc.

Let us start in pure field theory to gain intuition, after
which we will indicate the fully relativistic generalization.
First let us arrange parameters such that the bubble wall is

Case I Case II

Case III

FIG. 1 (color online). Three basic cases in which a compact
object locally distorts the effective moduli potential.
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thin. This means that � varies from �1 to �� over a radial
distance �r� rc. We follow [12] and work in Gaussian
normal coordinates

 ds2 � �dn2 � �ijdx
idxj (2.12)

where n is the normal direction to the bubble, and xi the
coordinates along the bubble. The scalar equation of mo-
tion is then

 

1

2

d
d�

�
d�
dn

�
2
� �iin

d�
dn
�
@Utot

@�
: (2.13)

A thin wall requires that �d�dn�
2 � �iin

d�
dn at the wall. This

integrates to

 

�
d�
dn

�
2
� 2Utot��; 	� � C (2.14)

where 	 is the proper time along the wall and C is an
integration constant. Setting the variation of�with respect
to n to be zero inside the bubble, we can take C to be
�2Utot����.

Suppose the bubble starts at rest at radius just below rc,
forming once the density accumulates to the point that
Veff=b4 dominates over U for r < rc. Let us expand
Utot��; rc� � V0 � V1�� . . . , with V1 parametrizing
the steepness of the potential which drives the field toward
its inner vacuum. To begin with, the normal direction is the
r direction, and the equations integrate to

 ���� �
V1

2
�r� rc�

2: (2.15)

If we fix the difference in field VEVs �� � �1 ���
and increase the strength of the potential (increase V1),
then we decrease the thickness �r of the wall and improve
the thin wall approximation.

In the example of attractor black holes (2.7), this can be
obtained by choosing sufficiently large chargesQ such that
�r� rc. From (2.6) and (2.7) we obtain that the crossover
scale rc occurs at rc �

����
Q
p

=MU where M4
U is the scale of

the potential U. So holding fixed �� and scaling up Q
increases rc and decreases the thickness, improving the
thin wall approximation.

Now in order to understand if the bubble will expand, we
need to compare the energy cost from the tension with the
energy gained by replacing the volume inside the bubble by
the phase of lower energy U����. We will mostly analyze
this with a generic potential characterized by the two scales
MU, M0, in particular, taking the energy difference
U���� �U���� �M4

U. In a realistic example with
U���� tuned to be very small, this generic energy differ-
ence applies for decays to a �< 0 phase. A smaller energy
difference corresponds to a larger critical bubble size
required for expansion in the regime where U dominates
[13].

The tension costs an amount

 EB � 4
2TB�RB�R2
B (2.16)

where we have taken into account the fact that the tension
will change with wall radius RB because our potential Utot

changes with distance from the source. In particular, the
barrier between the two basins of attraction � appears for
large enough RB that U begins to dominate in Utot.

Plugging the solution (2.15) into the expression for the
wall tension,

 TB �
Z �1

��
d�

������������������������������������������������
2jUtot��� �Utot��1�j

q
; (2.17)

we obtain at RB � rc

 TB�RB � rc� �
2
3

��������
2V1

p
����3=2: (2.18)

Let us first compare the tension energy at RB � rc to the
potential energyEbulk liberated by the bubble volume VB �
r3
c. This is

 Ebulk�RB � rc� � r
3
cV1��� TBr

2
c (2.19)

which parametrically beats the wall energy TBr2
c given our

thin wall parameters rc � �r. More generally, if we stay
outside the compact source (e.g. if we stay outside the
horizon of the black hole), we should consider a shell of
bulk potential energy of thickness �~r with volume �~rr2

c
rather than the whole volume r3

c. The ratio of the bulk
energy to the wall energy is of order

 

Ebulk

Ewall
�

�~r
�r

: (2.20)

There is also stress energy from the black hole and from
kinetic energy of the scalar field as it rolls toward the
bottom of its local potential, and from particles that it
produces in the process. Some outgoing radiation will be
produced in the process of bubble formation, as well as
ongoing Hawking particle production, leading to a net flux
outward of energy from the compact object. As we will
discuss momentarily, these effects aid the expansion of the
bubble, which may play a significant role in cases where
the bubble would be subcritical from the point of view of
U alone. First, however, let us continue to assess the
expansion based on U in the cases where this is sufficient.

Once enough energy has escaped that the black hole
horizon is separated from the wall by a distance �~r� �r,
the comparison (2.20) means that the wall begins to ex-
pand. The tension of the wall at larger radius increases
somewhat due to the barrier in U, but, as long as the
bubble size and the parameters in U are in the range
leading to expansion according to the standard Coleman-
De Luccia analysis [13], the explosion will continue
unabated.

In the case of (2.8), where the local density arises from
massive particles  whose mass depends on �, the ex-
panding bubble may produce further  particles, amplify-
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ing the effect. This is because as � rolls toward the new
minimum ��, the mass of the massive particles decreases.
This can lead to quantum production of further  particles,
enhancing the local density trapping � near �� [7].

The techniques developed in [12] provide a generally
covariant description of the evolution of bubbles in a way
which is convenient for incorporating the mass and charge
of the black hole, and the r dependence in our total
effective potential Utot��; r�. The results of this section
appear from such an analysis in the weak gravity limit.

As mentioned above, the inside of the bubble (and the
wall itself ) can contain additional sources of energy and
pressure. Thus far, we have focused on the effective po-
tential for � while ignoring that it originates from a local
source with a different equation of state from the moduli
potential. Moreover, the relaxation of the� field to its local
minimum �� proceeds via transfer of its kinetic energy
into particles (including further  production as in [7]). As
such, the pressure inside the wall has a different relation to
the energy density than would arise from pure vacuum
energy. Also, a gauge field confined to the bubble contrib-
utes a positive pressure term that would not appear if it
were simply a scalar. This positive pressure inside the wall
helps the bubble expand. Similar couplings to other stan-
dard model particles will also aid the expansion.

In what follows, we will make several applications of the
basic process we have discussed in this section. First we
will discuss the stimulated emission of vacuum bubbles in
the process of black hole formation and evaporation. The
charged case in Sec. III A is most closely analogous to [4],
but we will also find a mechanism for perturbative produc-
tion of vacuum bubbles by uncharged bodies including
Schwarzschild black holes in Sec. III B. We will then
move on in Sec. IV to discuss some implications of this
for the landscape, and make preliminary comments on
realistic constraints.

III. BLACK HOLES AS CATALYTIC VACUUM
CONVERTERS

A. Vacuum bubbles as end points of Hawking decay:
The charged case

One application is to generalize the end point of
Hawking decay found in [4]. Consider starting in a meta-
stable vacuum at �1 and forming a black hole with mass
much greater than its charge. At first, the field � is well
stabilized at �1. Once the black hole radiates down to the
point that its horizon at r � rh falls below rc, the local
effective potential Veff=b

4 begins to pull the scalar field
toward the point �� minimizing the local effective poten-
tial Veff . In case II, this produces a metastable vacuum
bubble (a vacuon). In case III, it produces an explosive
vacuum decay. After the vacuum bubble is produced, the
rh < rc black hole continues to evaporate, pair producing
particles in the spectrum of the inner vacuum.

Let us next compute the basic thermodynamic quantities
at the point that the bubble is unleashed. This occurs when
rc �

����
Q
p

=MU is of order the horizon radius rh. For the
Reissner-Nordstrom case,
 

ds2 � �

�
1�

2M

M2
Pr
�

Q2

M2
Pr

2

�
dt2 �

dr2

�1� 2M
M2
Pr
� Q2

M2
Pr

2�

� r2d�2; (3.1)

the outer black hole horizon is at rh � �M=M
2
p� ����������������������������������������������

�M2=M4
P� � �Q

2=M2
P�

q
.

When the outer horizon shrinks to rc, the bubble
emerges. As in [4], this can easily happen far away from
the correspondence point, in the nonextremal regime
M=MP � Q. In this regime, the horizon radius is approxi-
mately rh � 2M=M2

P. Setting this equal to rc �
����
Q
p

=MU
yields Q� �M2M2

U�=M
4
P. For this to be self-consistent,

Q� M=MP implies M2
U � M3

P=M�MPMU=
����
Q
p

or
more simply MU � MP=

����
Q
p

. Given this, the bubble is
released at a point when the black hole is still very
Schwarzschild-like, with temperature T �MU=

����
Q
p

and
entropy S�QM2

P=M
2
U � Q2.

It would be interesting to obtain a microphysical ac-
counting of these objects and their explosions, a topic to
which we will return briefly in the discussion section.

There are clearly many variants of this. For example, the
modulus may couple to other fields which condense inside
the bubble, spontaneously breaking bulk symmetries. This
is a feature of the tachyon condensation in [4]. Instead of
pure Reissner-Nordstrom, one may consider multiple
charges, such as those combinations for which a standard
attractor black hole arises at the end of the process, sur-
rounded by a vacuum bubble.

B. Schwarzschild black holes and bubbles

The process [4] and its generalization in Sec. III A de-
pend on having a charged source for the moduli. The
vacuum Schwarzschild solution does not locally source
scalar moduli outside the horizon. However, the moduli
can be sourced by the dense matter coalescing to form the
black hole. This can happen either before the horizon
forms, or inside the horizon, depending on the energy
scales. Moreover, in the process of Hawking decay the
temperature increases to the point where massive particles
get produced; as we will see these may also source moduli
and yield a vacuum bubble.

1. Bubble catalysis in black hole formation I: Initial
collapse

Matter which collapses to form a black hole of mass M
develops a density of order M=R3

S �M
6
P=M

2 when the
matter reaches the Schwarzschild radius RS �M=M2

P. If
this density competes with the barrier heights in the moduli
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potential U, and if the local and ambient potentials are
configured as in case II or III above, then this process will
produce a vacuum bubble before a black hole is formed. In
case II, it creates a perturbatively stable vacuon, and in
case III an explosive vacuum decay.

2. Bubble formation in black hole formation II: Inside

In many models, the black holes which form by structure
formation have a Schwarzschild density M6

P=M
2 which is

very low compared to natural barrier heights. For example,
the smallest black holes inferred from core collapse events
have roughly solar mass, corresponding to an energy den-
sity of GeV4. This means that for U� GeV4, no bubbles
are formed outside the horizon in their formation.

However, inside the horizon, bubbles are generically
classically nucleated by the crunching matter source. In
particular, in weakly coupled string landscape models [1],
there is a runaway direction for the dilaton and/or volume
moduli separated by a barrier from metastable vacua.
These moduli will generically couple to the masses of
particles forming the black hole. As a result, a vacuum
bubble containing the basin of attraction of the large vol-
ume/weak coupling limit will materialize inside the black
hole. The Kasner solution approaching the black hole
singularity must therefore be extended to include the roll-
ing dilaton, volume, and other liberated moduli of the
compactification inside the bubble.2

3. Bubble formation in black hole evaporation III:
Massive Hawking particles seed bubbles

Let us consider a model such as (2.8) and simple gen-
eralizations in which � modulates the mass of a set of
fields such as  . In the process of evaporation, the black
hole eventually reaches high enough temperatures T to
produce massive Hawking particles  of mass m . Once
T reaches the threshold T �m , a significant density of the
massive  particles is produced [18]. If these particles do
not decay or disperse too rapidly, they form a density of
particles which can kick � from one basin of attraction to
another. We will now assess a window of parameters where
this occurs. For simplicity we will first focus on a regime
where the produced massive  particles are still nonrela-
tivistic far from the black hole (with outward velocities
beating the escape velocity, but much smaller than the
speed of light). The black hole also produces quanta of �

itself. For consistency we will then check that � fluctua-
tions do not themselves produce bubbles, and that they do
not wash out the  -catalyzed bubble production in the
range of parameters of interest. With m � m� �

M2
U=M0, the situation is schematically depicted in Fig. 2.
There are five relevant scales in the problem: MP, M0 �

j�� ���j (the barrier width in field space), ~M0 [deter-
mining the  �� coupling in (2.8)], m (which will be of
order the temperature T in the regime of interest), and MU
[the energy scale in the potential U�M4

Uf��=M0�].
We will consider moduli for which MU � M0. This

yields weak self-interactions in U. The couplings between
 and � go like m = ~M0 (2.8). For the catalysis effect we
will be led to a window in which m � M0, requiring us to
take ~M0 >M0 to avoid� O�1� interactions between  and
�. In order to avoid large renormalizations of U due to
these couplings, one can also consider a supersymmetrized
version of the model with a supersymmetry (SUSY) break-
ing scale much lower than M0.

The energy density in  particles is of order

 � �
�M�
�Vol�

(3.2)

where Vol is the volume of space into which the produced

ψ

φ

FIG. 2 (color online). In a time period �t, the black hole (filled
circle) produces a gas of massive  particles which spreads a
distance �r to occupy the region indicated. For the regime of
parameters discussed in the text, this seeds a vacuum bubble.
During the same period, the lighter � fluctuations disperse more
rapidly and have diluted to occupy a smaller energy density over
a larger region. For an appropriate window of parameters the
fluctuations of light � particles do not wash out the bubble
nucleated by the gas of massive  particles.

2Note that this result is different from the suggestion [14] that
new universes are created inside black holes, which would
require the black hole singularity to be resolved in such a way
as to connect a big crunch with a big bang. Evidence such as
[15–17] contraindicates the hypothesis of a crunch-bang inside
black holes. In any case, our results about bubble formation
outside black holes support the idea that black holes induce
mixing between different metastable vacua; our mechanism for
producing such mixing is the much more prosaic classical
catalysis effect described in the text.
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 particles have dispersed in a time window for which the
black hole mass has decreased by �M, of which a fraction
� has gone into the production of  particles. In this time
window �t, the particles spread out a distance �r, which
we will insist be much greater than the black hole size T�1.
This ensures that the particles we consider are far from the
black hole horizon, so that the Hawking calculation of the
asymptotically produced particle distribution is accurate.
More specifically, let us count the particles emerging from
the black hole starting at a distance �r� 1=T, and con-
sider their further spread into the volume contained be-
tween r � �r and r � 2�r.

We will insist that �r be at least as large as the critical
bubble size Rc �M0=M2

U above which the bubble expands
in the regime where the potential U dominates (as derived
in the standard analysis [13] and reviewed in Sec. II).
Given �r� T�1, the volume Vol in (3.2) is of order
�r3. We will find conditions under which the density
(3.2) is competitive with (or stronger than) the ambient
potential U, and that the time window �t is sufficiently
long that the local density (3.2) can drive � across the
barrier, a distance M0 in field space.

As the black hole temperature T increases to the thresh-
old T � m to produce  ’s, at first it produces them non-
relativistically. Their velocity is then of order

 v �

������������������������
2
�E 
m 
� 1

�s
(3.3)

using 1
2m v2 � E �m . As long as the massive particles

are nonrelativistic, their velocity remains small and their
dispersal is correspondingly slow allowing them to form a
dense source for � (as we will see in what follows). The
nonrelativistic approximation remains valid as long as we
consider a period in which T remains close enough to m 

that E � T satisfies

 

E �m 

m 
�

�T
T
� 1: (3.4)

From this we can obtain the fraction � of the black hole
emission which is contained in nonrelativistic  particles,
as follows. Hawking evaporation produces a thermal dis-
tribution of particle numbers [18], up to the grey-body
factor arising from the absorption cross section ��E�. For
a given species, the number N of particles produced by the
black hole as a function of time is given by

 

dN
dt
�

v��E�

eE=T  1

d3 ~k

�2
�3
�

��E�

eE=T  1

v2E2dE

2
2 (3.5)

where ��E� is of order 1=�T2v2� [19].
For a nonrelativistic species such as our  particles,

integrating this from E � m to E� T � m �
1
2m v2

yields dN=dt of order �v��E��v3m3
 � v

2m3
 =T

2. For a
relativistic species, integrating it from E � 0 to E� T
gives a result for dN=dt of order ��E�m3

 �m
3
 =T

2.

So the nonrelativistic emission of  particles is down by
a factor of order

 �� v2 �
�T
T

(3.6)

from the total emission of the black hole in this window.
To obtain the other factors in � (3.2), we must relate

�M and �r� �Vol�1=3 to �T=T. This goes as follows. The
change in mass is

 �M�M2
p

�
1

m 
�

1

m � �T

�
�
M2
p

T

�
�T
T

�
: (3.7)

As discussed above, we will consider a window such that
�r is at least as big as the critical bubble size Rc �M0=M2

U
in the potential U. So set

 �r � M0=M2
U � v�t��t

�������������
�T=T

p
(3.8)

with  � 1, and relate �t to �T as follows. The window of
temperatures in the range �m ;m ��T� corresponds to
the time period

 �t�
M2
p

3

�
1

T3 �
1

�T ��T�3

�
�

�
�T
T

�M2
p

T3 (3.9)

obtained by integrating the Stefan-Boltzmann law
dM=dt� �area� � T4 � T2 using M�M2

P=T.
Plugging (3.9) into (3.8), we obtain

 v3 �

�
�T
T

�
3=2
�
T3M0

M2
PM

2
U

� 1 (3.10)

with the last inequality enforced for self-consistency of the
nonrelativistic approximation.

Putting these estimates together, we obtain

 � �M4
U
vT2

2M2
0

: (3.11)

We will shortly impose the condition that this density not
decay rapidly by annihilation into � particles. First let us
proceed to analyze its effects given this.

In order for the forces on � from this energy density � 
to compete with the ambient potential U�M4

Uf��=M0�,
we require �@�� � � = ~M0�> �@�U�M

4
U=M0� which

translates into the statement

 vT2 � 2M0
~M0: (3.12)

This is consistent with our condition for perturbativity,
~M0 � �T �m � � M0.

From (2.8) we see that the dimensionless couplings
between  and � are of order m = ~M0. Since T �m , if
we took ~M0 �M0, (3.12) would lead to � O�1� couplings
between � and  . In order to avoid that, we may specify
that� couples to  via weaker (e.g. ~M0 �MP-suppressed)
couplings than appear in U.
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It is also important to check that the mean field treatment
of the  energy density is appropriate. That is, we must
check that the spacing L between  particles is less than
the Compton wavelength m�1

� �M0=M2
U of �. For the

minimal density that competes with the moduli potential,
number density of  particles is of order

 n �
� 
m 
�
� 
T
�
M4
U

~M0

TM0
�

1

L3 : (3.13)

Setting 1=L3 � m3
� translates into the requirement

 �MU=M0�
2�T= ~M0� � 1: (3.14)

We must also check that the time window �t (3.9) is
sufficiently long that the density � has time to kick �
across the barrier. We can relate �t to the range of field
space �� that � rolls during the process as follows. As
before let us expand the potential Utot � V0 � V1�� . . . .
In a local region, the scalar rolls according to @2

t �� V1 i.e.

 ��� V1��t�
2: (3.15)

In the case that the accumulated  density is of order M4
U

(and hence competitive with the ambient moduli potential),
we can identify V1 � M4

U=M0 yielding

 �� �
M4
U

M0
��t�2 �M02 T

�T
; (3.16)

which is automatically greater than M0 in our nonrelativ-
istic regime. So the window �T is easily long enough to
drive � into the basin of attraction of a different minimum.

Now let us address the decay of the density (3.11) via
annihilation of  particles into � particles. As we noted
above, a natural model in which to apply this would be a
low energy supersymmetric model, for which  has scalar
superpartners also with mass of order m . The 2! 2
center of mass scattering cross section � for scalars scales
like

 �� �2
kf
ki

1

4
E2 (3.17)

where ��m2
 = ~M2

0 is the quartic coupling, kf is the final
momentum (of order m in our problem), and ki is the
initial momentum scale (of order vm in our case). Let us
choose ~M0 large enough that this is � 1, i.e. ~M0 � m .

Given the  density n � � =m (3.11), velocity v (3.3)
and (3.4), and cross section � (3.17), the annihilation rate
for a given  particle is

 � � n v�: (3.18)

Setting

 ��t� 1 (3.19)

ensures that the  particles do not typically annihilate
during our window of interest. In terms of our parameters,
this is the condition

 

v3M2
PM

4
U

2 ~M4
0M

2
0

� 1: (3.20)

The fermion annihilation cross section is down from the
scalar one (3.17) by a factor of pi=m � v� 1.

Finally let us check the effects of � fluctuations them-
selves. First, let us note that the gases of particles produced
by the black hole (including both � fluctuations and the  
particles in our model) are not in thermal equilibrium at
temperature T in the regime of interest. The particles are
produced by the hot black hole, but spread out to radii of
order �r� 1=T and hence their energy density is not that
of an equilibrium thermal gas at temperature T.

We want to check if the� particles produce a substantial
backreaction on the system. We will address the effects of
the� fluctuations in both the nonrelativistic and relativistic
regimes.

Expanding our potential U�M4
Uf��=M0�we have a�

mass m� �M2
U=M0. As the black hole heats up past the

threshold T� �M2
U=M0 for producing � perturbations, it

begins to do so nonrelativistically similarly to our discus-
sion above. However there we saw in (3.12) that T � M0

was required to catalyze a bubble of radius greater than the
critical size (assuming the effective potential in the pres-
ence of the gas of particles drives � in this direction). So
for MU <M0, as happens for weakly coupled moduli, the
regime where nonrelativistic � particles are produced does
not in itself produce a �r-sized bubble.

In the regime T � m� in which the � fluctuations are
produced relativistically, the typical momentum of pro-
duced � particles is of order k� T � M2

U=M0. The ki-
netic energy k2�2 is much greater than the potential energy
m2
��

2. Similarly to the discussion above, we can estimate
the energy density ��� in relativistic � particles at a radial
distance of order the critical radius Rc �M0=M

2
U. This

yields ��� �M4
U�T=M0�

2. The force on the field comes
only from the potential energy component of this, which is
of order ����m2

�=k
2� �M4

U�MU=M0�
4 � M4

U. So the ef-
fective force in the presence of the � particles in the
relativistic regime is also too weak to kick the field across
the potential barrier.

As pointed out in [11], the suppression factor m2
 =k

2 in
the above estimate would be weakened if the energy scale k
were much lower than the black hole temperature T. This
may happen via thermalization in the presence of suffi-
ciently strong interactions among the �� particles. But in
the weakly coupled regime MU � M0 we consider here,
we find this effect is not significant.

This result is perhaps not surprising, given that it has
been argued that symmetry is not restored in the thermal
bath seen by a noninertial observer [20]. The usual expla-
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nation for this result is that the acceleration and the tem-
perature scale in the same way, so the effective gravity
spoils the symmetry restoration that occurs in flat space.
What makes the transition possible in the case of the  
particles is precisely that a significant density is formed at
distances large enough to ignore gravitational effects. The
fact that we cannot achieve this with the weakly interacting
� particles may not be a coincidence.

So far we have seen that � fluctuations do not them-
selves produce large vacuum bubbles; this means the effect
we are considering does require the extra  particles. Next
let us check whether the kinetic-energy-dominated spa-
tially varying � fluctuations wash out the bubble produced
by the  gas. The average field fluctuation �� is deter-
mined by k2��2 � ���, with k� T. This could potentially
be a problem if the distance in field space ��� ������������

p =T is
greater than or equal to the barrier width M0. In the same
window considered above for  -catalyzed bubble produc-
tion, the density in � particles is of order

 ��� �M4
U

T2

2M2
0

: (3.21)

Setting this less than M2
0T

2 ensures that �� <M0 so that
the � fluctuations do not wash out the  catalysis effect.
This is automatic for MU <M0.

In the regime of parameters we have taken, the  ca-
talysis occurs classically once the  particles have been
created, so this effect automatically dominates over expo-
nentially suppressed thermal and tunneling effects.

It is readily verified that a window of parameters exists
where all the above constraints are satisfied. As a specific
example, the following hierarchy of scales works:

  � 10;
M0

MU
� 102;

m 

MU
� 108;

~M0

MU
� 109;

MP

MU
� 1016:

(3.22)

Altogether these estimates suggest that vacuum bubbles
can also appear as new end points of Hawking radiation in
the case of uncharged black holes. Whatever formed the
black hole, the process of evaporation proceeds through
higher and higher temperatures, eventually producing mas-
sive particles which can seed a vacuum bubble surrounding
the evaporating black hole if the mass scales lie in the
range satisfying the above constraints.

The above estimates are in fact somewhat more conser-
vative than necessary. For example, it is possible to extend
this mechanism to the regime where the produced  par-
ticles are relativistic. It is only the m 

�  contribution to
the stress energy which sources the field, which is down by
a factor of �m =T�2 from the full energy density in the
relativistic regime. But the production of relativistic  
particles is unsuppressed. Altogether, requiring the force
at r� Rc to be greater than that from U leads to a

somewhat wider window of parameters where the effect
occurs. For example, the constraint (3.12) becomes

 m2
 � 2M0

~M0: (3.23)

Moreover once the bubble is produced (either relativisti-
cally or nonrelativistically), further  particles—produced
from the black hole and from the rolling � field—push it
out further.

IV. OTHER APPLICATIONS

A. Population and stability of the landscape

We have just found a significant range of parameters for
which Schwarzschild black holes ultimately catalyze vac-
uum bubbles in the process of Hawking evaporation if not
before, since they produce massive particle densities that
source the dilaton runaway direction. The decay of large
black holes, while a very long process, is parametrically
faster than bubble nucleation by tunneling.

This effect must be taken into account in assessing
stability of metastable vacua. Realistic application requires
tuning the cosmological constant to be small, and then
comparing the particle spectrum and parameters in the
potential to those required above for catalyzed decay.
Transitions from a realistically small cosmological con-
stant to a � � 0 minimum involve a very small bulk
potential energy difference, which makes it more difficult
to obtain an explosive decay. However, transitions from
realistic cosmological constant vacua to nearby �< 0
phases are not so suppressed, and the above mechanism
can destabilize the model well before tunneling events do.

In the context of the landscape, this appears to be the
dominant instability in a significant range of backgrounds.
For example, in the case of our universe with solar mass
black holes formed from core collapse events, the decay
time arising from the evaporation of these black holes, of
order �1065 years, is substantially shorter than the decay
time of order e10120

obtained from tunneling in appropriate
regions of parameter space [1] (though still safely longer
than the age of the universe). This alone, while leading to a
vastly shorter decay time scale, does not constrain the
models realistically. However, in the context of models
leading to denser objects [10,21], there may be phenom-
enologically significant constraints from this process [10].

One can also apply this to the early universe as a
mechanism for populating the landscape. Backgrounds in
which overdensities develop which compete with the bar-
riers in U will experience catalyzed vacuum bubble pro-
duction. The formation of dense structures is a somewhat
delicate process; in the observable universe the formation
of dense stars inside gravitational potential wells induced
by dark matter depends on appropriate cooling mecha-
nisms (which may then collect yet denser structures
[10,21]). In any case, in the apparently vast discretuum
of string vacua, there may be many examples with dense
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structures forming in hidden sectors, which lead to vacuum
bubble production. In case III of explosive vacuum decay,
this process populates the landscape faster than occurs via
tunneling.

This produces a dynamical trend toward solutions with
smaller inhomogeneities: backgrounds with large inhomo-
geneities seed vacuum decays, producing new back-
grounds which produce their own bubbles until the
process shuts off with the production of backgrounds
with small inhomogeneities relative to barrier heights.

This dynamics also produces bubbles with lower mass
particles, since the forces that draw � toward the new
vacuum at �� arise by virtue of particles whose mass
decreases as �! ��. Although our mechanism here is
different, the same trend as in [7] toward points with extra
light particles arises in this context. Moreover, the bubble
need not be empty; as the bubble expands and the field rolls
toward ��, the masses of the  particles change with time
and they may get produced.

B. Vacuum bubble production in realistic models:
Constraints and corners

In a highly model-dependent way, vacuum bubbles may
be produced by catalysis in realistic scenarios. This de-
pends on the densest structures that form in the model.

Some inflation models such as certain hybrid inflation
models [22] produce small primordial black holes. In the
context of the landscape, their formation and decays can
produce vacuum bubbles instead of simply leaving behind
small bursts of radiation. For case III this constrains infla-
tionary parameter space to some extent, and conversely in
case II it provides a model-dependent mechanism for
producing vacuum bubbles.

A more interesting regime where dense structures may
form [10] is via the collection and coalescence of charged
exotics in stars, generalizing the effect discussed in [21].

Another natural question is whether real world core
collapse events can produce transient vacuum bubbles; in
general, it is of interest to explain type II supernova ex-
plosions [23].3 Scalar field moduli typically couple to
standard model fields. These may be stabilized at a very
high scale, suppressing catalyzed decays. However, very
low potentials can be obtained technically naturally, for
example, in the case that a scalar field � couples prefer-
entially to the neutrino mass term (cf [24]) in a similar way
at low energies to the example (2.8). In this case, one
obtains a potential energy of order m2

�M
2
C where MC is

the effective cutoff in neutrino loop contributions to the
moduli potential. If the latter is at the supersymmetry
breaking scale of TeV, the resulting energy scale for the
radiatively generated moduli potential is roughly of order
MeV4, i.e. MU �MeV.

The densest known structures are the neutron stars
formed from core collapse events. The energy density in
these environments is of order the QCD scale; the neutrinos
form a trapped degenerate relativistic gas with chemical
potential of order 200 MeV and hence energy density
�200 MeV�4 in the core [25]. However, the scalar fields
modulating the neutrino masses are directly sensitive only
to the nonrelativistic correction to the energy density. This
is down by a factor of order m2

�=p2 � 10�18 for momen-
tum scale p� 200 MeV from the relativistic energy
�200 MeV�4.

Hence, absent further cancellations, the mass-dependent
contribution to the energy density (to which the scalar is
directly sensitive) is small compared to the natural scale of
barrier heights. However, in models with low barrier
heights, attractor explosions might play a role.4

V. DISCUSSION

In this paper, we have seen how, starting in a single
metastable vacuum, one can assemble compact objects
which unveil bubbles of other vacua. We found large
classes of examples generalizing [4] to provide vacuum
bubbles as end points of Hawking evaporation of charged
and uncharged black holes. We have also noted that matter
sources can produce bubbles of other vacua inside the
horizon, which modify the internal solution before imping-
ing on the singularity; their existence must be imprinted in
the decay products of the black hole.

Perhaps most interestingly, we found that, in the process
of evaporation of Schwarzschild black holes, the massive
particles produced in the Hawking process can seed vac-
uum decay. The black hole catalytically converts whatever
formed it into all the particles of the system, including
massive particles sourcing moduli. The resulting local
potential forces the moduli into a different vacuum for a
range of model parameters. This perturbative effect occurs
much more rapidly than exponentially suppressed thermal
and tunneling effects.

Our analysis has been semiclassical, combining struc-
ture formation and gravitational collapse with Hawking
radiation and classical bubble nucleation. The basic laws
of black hole mechanics [27] are classical, but provided
clues pointing toward a more microphysical statistical
description of black holes. It would be interesting to de-
termine a dual microphysical description of these
processes.

3Heterotic supernovae have yet to be detected.

4The present simulations aiming to explain type II supernovae
via neutrino energy deposition do not consistently yield explo-
sions [23], so it is conceivable that new physics will be required.
However, it is entirely possible that explosions will arise from
more conventional mechanisms (see e.g. [26]), so this rather
tuned regime of parameters does not appear well motivated
unless serious puzzles with generating supernovae explosions
persist.
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In general, our main lesson is simple. Compact objects
made in one vacuum contain information about other
vacua, if the objects are sufficiently dense. This regime
seems potentially more accessible than nonperturbative
cosmological methods for connecting present physics
with the other vacua in the landscape. Moreover, dual
descriptions of black hole entropy and dynamics must
account for attractor explosions in the generic setting [1].
Finally, assessing the ultimate decay modes of physical
models built on metastable vacua requires analyzing the
structure formation in the models and estimating the cata-
lyzed decay time as well as the ambient tunneling
amplitude.
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