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We study the possibility that a generalized real scalar field minimally coupled to gravity could explain
both the galactic and the cosmological dark components of the universe. Within the framework of
Einstein’s Relativity we model static galactic halos by considering the most general action built from the
scalar field and its first derivatives. Although the gravitational configuration is static, the scalar field may
be either static, or homogeneous and linear in time. In the case of the static scalar field, the models we look
at inevitably posses unphysical negative energies, and we are led to a sort of no-go result. In the case of the
homogeneous scalar field, on the contrary, we find that compact objects with flat rotational curves and with
the mass and the size of a typical galaxy can be successfully modeled and the Tully-Fisher relation
recovered. We further show that the homogeneous scalar field deduced from the galactic halo spacetimes
has an action compatible with the kinetic Unified Dark Matter models recently proposed by Scherrer.
Therefore, such a homogeneous kinetic Unified Dark Matter not only may correctly mimic the galactic
dynamics, but could also be used to model the present day accelerated expansion in the universe.
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I. INTRODUCTION

Scalar fields play a central role in modeling the universe.
Being an essential ingredient in the inflationary scenario
[1], the scalar fields might drive the initial accelerated
expansion [2] necessary to solve some of the problems of
the Cosmological standard model. To explain the recent
observations of type Ia supernovae [3], supported by other
independent observations (Cosmic Microwave Back-
ground (CMB) fluctuations, galaxy clustering), which sug-
gest that we live in an accelerated universe dominated by
some kind of unknown Dark Energy (DE) [4], scalar fields
are again often evoked. One can basically classify the
scalar fields studied in the literature into two main classes:
the canonical ones [2,5], where the action is given by the
sum of the standard kinetic and a potential term, and the
more general actions which were recently introduced under
the colloquial name of K-essence [6]. It is worthwhile
mentioning that the noncanonical Lagrangians for the sca-
lar field were studied earlier by Bekenstein and Milgrom
[7] in connection with the Modified Newtonian Dynamics.
They also appear naturally in the velocity potential formu-
lation of the Relativistic Hydrodynamics [8].

One of the most challenging problems in theoretical
cosmology and astrophysics is the so-called Dark Matter
(DM) problem (see [9,10] for a review). Several observa-
tions, carried out at different scales, suggest the existence
of an invisible component, whose presence can be only
inferred through the gravitational effects. The main evi-
dence for the existence of DM appears at galactic scales.
The mass profile of a galaxy can be obtained by analyzing
the rotation curves of the surrounding particles-stars. This
was done in the early 1980s [11] by studying the velocity,

obtained through the frequency shifts in the 21 cm emis-
sion line of neutral hydrogen clouds. If we consider that the
circular orbits are stable due to the balance of the centrifu-
gal and gravitational forces, the mass profile in a galaxy
must be given by M�r� � rv2

c�r�=G. It is observed that the
velocity of rotation is approximately an increasing function
of the distance till the edge of the visible galaxy, and
remains nearly constant from there on. The existence of
some unobserved matter with an energy density profile � /
r�2 is then inferred.

A different sign for the existence of DM appears at the
scales of galactic clusters. In 1933, Zwicky [12] realized
that considering the clusters as equilibrium systems, their
age being much longer than their dynamical time-scale, the
virial theorem 2hTi � hUi � 0 applies and the mass of the
cluster can be evaluated with the result: M � �hv2iR=G.
Here � is a constant of order unity which depends on the
matter distribution, M is the mass of the cluster and R its
radius. By determining the speed of motion of many gal-
axies within a cluster from the shifts of the spectral lines,
Zwicky could infer the mass required to maintain the Coma
cluster held together. Surprisingly, it was by 2 orders of
magnitude greater than the observed one. Also the study of
gravitational lenses in galaxies [13] and galaxy clusters
[14] suggests that there should be more matter than the one
obtained by only counting stars.

Yet more evidence for the existence of a DM component
comes from cosmological scales. Recent data from the
CMB [15] point out that we live in a flat (k � 0), or a
nearly flat universe [16]. This agrees with the predictions
of the inflationary scenario implying that one must have
� ’ 1. The energy density of the universe, therefore, must
be very close to the critical value �c � 10�29 g=cm3,
pointing toward the discrepancy with the observed density
in the universe and the need of DM. Apart form this, DM
seems to be an essential ingredient in producing the ob-
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served structures in the Universe [17], providing the gravi-
tational potential depressions where the galaxies are nour-
ished and formed.

Many candidates for the DM component have been
proposed along the years [9]. They range from elementary
particles such as WIMPs (neutrinos, axions, neutralino,
gravitino, etc.) to the ones in which the DM is formed by
compact objects such as primordial black holes or
MACHOs (brown dwarfs or Jupiter like objects). If one
thing is clear, however, is that the DM can not consist of
baryonic matter alone. The nucleosynthesis and the abun-
dances of light elements [18] restrict the amount of bar-
yonic matter to �b � 0:01�c, therefore there must be
something more out there to produce the observed spatially
flat universe. A sensible model for DM should probably
solve all the problems stated above at the same time, yet no
model proposed so far does the job.

Recently some suggestions to look at classical scalar
fields as candidates for the cosmological DM, rather than
concentrating on fundamental particles or some compact
objects, were voiced [19]. Interesting models have been
proposed in which a scalar field, apart from modeling the
cosmological DM, can evolve to produce the accelerated
expansion of the universe. These models in which both
cosmological dark components (matter and energy) arise
from the same field are commonly known as Unified Dark
Matter models. Some of the proposals involve the so-called
Chaplygin gas [20] and its generalizations [21]. In these
models the universe expansion is driven by a perfect fluid
with a phenomenological equation of state derived from a
string theory motivated Born-Infeld Lagrangian [22]. The
evolution of the cosmological background interpolates
between a DM universe at early times and a DE dominated
universe at the late epoch. Recent studies indicate, how-
ever, the existence of serious problems related with struc-
ture formation in these universes [23] (see however [24]).
These problems appear mainly due to a high speed of
sound for the cosmological perturbations during certain
periods of the expansion, but may be alleviated in the so-
called kinetic Unified Dark Matter (kUDM) models re-
cently introduced by Scherrer [25], where a speed of sound
verifying c2

s � 1 is guaranteed for all times. The actions in
Scherrer’s models depend only on the scalar field deriva-
tives maintaining the shift symmetry of the scalar field, but
otherwise are quite generic. Possible physical motivations
for these actions are discussed in [6,26].

The main purpose of this paper is to analyze whether one
could make a step further and model in a consistent way,
not only the cosmological DM and DE, but also the DM
one believes accounts for the observed flat rotation curves
in spiral galaxies, with a single classical scalar field. We
consider spherically symmetric static galactic halos and
find that the generalized static scalar field configurations
are not good candidates to model the galactic matter. The
homogeneous scalar field, on the other hand, and one must

admit somewhat surprisingly, leads to quite interesting
results. Not only the fact that the scalar field is homoge-
neous, but rather the form of the action derived within the
galactic halo, akin to that one proposed by Scherrer [25],
indicates that such matter might be a perfect match for
cosmology.

The paper is organized as follows. In Sec. II (and in the
short Appendix) we briefly discuss the form of the line
element appropriate for the problem of galactic halos.
Section III deals with the matter field. Here we show that
if the gradient of the scalar field is spacelike, the static
spherically symmetric configurations of this field with the
imposed flattened rotational curves are unphysical. This
goes both for the canonical Quintessence and the non-
canonical K-essence fields, indicating a no-go result. If,
however, the gradient of the field is timelike, the field is
homogeneous and linear in time, and the action for the
scalar field contains only derivative terms but not the field
itself, one can get physically reasonable configurations.
The possibility of modeling the galactic halos with a
homogeneous scalar field opens a way to consider this
field as the one also responsible for the overall expansion
of the universe. We find out that the model of scalar matter
suggested by the dynamics of the galactic halos fits quite
well with some simple unifying models suggested and
studied in cosmology by various authors under different
names: x-matter [27], wet dark fluid [28], or the matter
with the so-called generalized linear equation of state [29]
(see as well [30]). We study the fitting of the free parame-
ters of the action with galactic observations and its impli-
cations for cosmology in the Section IV. Finally, in Sec. V,
we discuss our results.

Throughout this paper we use the units in which @ �

c � 1, Mpl � �8�G��1=2 and the signature of the metric is
taken to be ��;�;�;��.

II. GALACTIC HALOS

We consider that a typical galaxy is formed by a thin
disk of visible matter immersed in a large halo built of
some unseen exotic matter, which can be conveniently
described as static and spherically symmetric. This exotic
matter would be the main contributor to the dynamics, so
that the observed luminous matter can be treated as a test
fluid from which information about the physics of the halo
can be inferred. The observations indicate that the visible
particles within the thin disk have rotation curves with
velocities independent of their distance to the center of
the galaxy [11,31].

One wants to know how much information about the
halo can be figured out from the observed rotation curves.
The Newtonian analysis mentioned in the previous section
is only valid under certain conditions [32]: weak gravita-
tional field, small velocities and small pressures. In this
approximation, the gravitational field is given by the
Newtonian potential, which can be completely determined
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from the observed rotation curves. The relativistic case is
somewhat more complex.

The spherically symmetric and static halo in General
Relativity is described by a line element conveniently
parametrized in curvature coordinates as [33]:

 ds2 � �e2��r�dt2 �
1

1� 2m�r�
r

dr2 � r2d�2: (1)

In the equation above d�2 is the metric of a unit sphere,
and there are two metric functions: ��r�, known as the
gravitational potential, and m�r�, known as the effective
gravitational mass. In the Newtonian limit these two func-
tions coincide with their usual interpretations. We distin-
guish the dynamical mass [34] (or pseudomass [32]) M�r�
described in the Introduction and obtained from the ob-
served rotation curves, and the effective gravitational mass
m�r�, defined with the help of the rr component of the
metric tensor and given in the expression (1). It is worth-
while to keep in mind that these are two different concepts
and in general take different values.

The most general static spherically symmetric metric
with flat rotation curves is given by (see the Appendix A
and Refs. [34–37]):

 ds2 � �

�
r
r?

�
l
dt2 � A�r�dr2 � r2d�2: (2)

Here r? is a constant parameter with dimensions of length
and l � 2�vc=c�

2. Therefore, the domain of the parameter l
is restricted to 0< l < 2. To determine the metric function
A�r�, however, one needs to know more about the matter
content. It is interesting to point out that the form of the
line element (2), as it stands, is generic in the sense that it
does not depend on the metric theory of gravity used, nor it
depends on the matter content. To obtain it one only
assumes that the rotation curves are flat. In short, the profile
of the rotation curves gives us the chance of reproducing
completely the 00 component of the metric tensor—the
function ��r�, but tells nothing about the other indepen-
dent component—the function m�r� [32,34–37]. If we
want to obtain some information about the function m�r�,
one must assume either the nature of the matter dominating
the configuration, or deduce it from different observations,
for example, gravitational lensing [32] etc.

In the observed galaxies the orbiting particles are non-
relativistic, therefore l is a small parameter close to zero
(l < 10�5). The gravitational field far away from the cen-
ter, where supermassive black holes are expected to
‘‘hide’’, is also small (2m�r�=r� 1 and 2��r� � 1)
[38]. The pressure inside the halo, in the standard models
of galaxies, is also usually assumed to be close to zero
(p� �). If these three conditions are met, the Newtonian
approximation applies and the parameters m�r� and M�r�
do coincide. Nevertheless, depending on the choice of
matter the last of the three above assumptions does not
always correspond to physical reality. Matter based on

‘‘string fluids’’ [39] or on scalar fields [36,37,40,41] could
exert a significant amount of pressure and the Newtonian
approximation would no longer apply. An expression for
the dynamical mass in a first post-Newtonian approxima-
tion, which shows explicitly the discrepancies between
M�r� and m�r�, is given in [32].

III. THE DARK MATTER COMPONENT

To proceed any further one should specify the matter
which makes up the galactic halo. To model the DM we use
the most general action for a minimally coupled scalar field
constructed from the scalar field and its first derivatives:

 S �
Z
d4x

�������
�g
p

L�’;X�: (3)

Here L�’;X� is the Lagrangian density and X the kinetic
scalar defined by X � �1=2g��@�’@�’. These kind of
actions are usually referred to as K-field, generalized
scalar field or, in a cosmological setting, K-essence [6].
Special cases discussed in the literature are the factorizable
K-field L � K�’�F�X� [42] and the purely kinetic K-field
L � F�X� [25]. The canonical scalar field L � X� V���
can be always rewritten as a factorizable K-field by a field
redefinition.

The energy-momentum tensor for the action (3) is:

 T�� �
�2�������
�g
p

�S
�g��

�
@L
@X

@�’@�’�Lg��:

Here one runs into two qualitatively different situations
[43]. If the derivative term @�’ is timelike (X > 0), as it is
usual in cosmology, we can identify the energy-momentum
tensor with a perfect fluid T�� � ��� p�u�u� � pg�� by
the formal relations:

 u� �
@�’������

2X
p ; p � L; � � 2X

@L
@X
�L: (4)

Here u� is the 4-velocity, � the energy density and p the
pressure. On the other hand, if the derivative term is space-
like (X < 0), this identification is no longer attainable.
However, we can still identify the energy-momentum
tensor with an anisotropic fluid T�� � ��� p?�u�u� �
p?g�� � �pk � p?�n�n�. Now, the formal relations are:

 n� �
@�’�����������
�2X
p ; p? � �� � L;

pk � L� 2X
@L
@X

:

(5)

There are two different pressures in this case, one in the
direction parallel to n� (pk) and the other one in an
orthogonal direction (p?). It is important to stress, how-
ever, that the equality p? � �� for this sort of matter
always holds, implying that the Newtonian approximation
is no longer valid.
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The metric and the energy-momentum tensors are re-
lated through the Einstein Equations G�� � M�2

pl T��, and
since we are only interested here in static, spherically
symmetric configurations (1), restrictions on the function
’�t; r� and on the form of the action L�’;X� appear. The
symmetries imply a diagonal Einstein and therefore a
diagonal energy-momentum tensor, forcing the vanishing
of the Ttr component. Therefore, either the scalar field is
strictly static ’ � ’�r�, or it is strictly homogeneous ’ �
’�t�. The inhomogeneous time dependent scalar fields are
not allowed by the symmetries imposed on the halo.
Furthermore, the staticity of the spacetime ensures that
the energy density and the pressure must be independent
of time. This implies that for the case ’ � ’�t� the action
can only depend on the field derivatives L�’;X� � F�X�,
but not on the field itself. Moreover the scalar field ’ may
only be linear in time, ’ � at. It is interesting to observe
that in the last case the spacetime does not inherit the
symmetries of the fundamental field producing the geome-
try, and while the metric remains static, the fundamental
scalar field may be time dependent. Similar, but rather an
inverse situation was discussed in the case of a tilted
homogeneous string cosmology [44], where the homoge-
neous geometry was produced by an inhomogeneous scalar
dilaton.

A. The static field ’ � ’�r�

In this case the derivative of the field is spacelike (X <
0) and the scalar field, therefore, behaves as an anisotropic
fluid (5). The Einstein equations for the tt, rr and ��
components are:

 

1

Ar2

�
A0

A
r� A� 1

�
� �M�2

pl L; (6)

 

1

Ar2
	�l� 1� � A
 � �M�2

pl

�
2X

@L
@X
�L

�
; (7)

 

1

4Ar2

�
�l� 2�

A0

A
r� l2

�
� �M�2

pl L: (8)

Here the prime denotes differentiation with respect to the
variable r. The above three equations imply automatically
the matter conservation equation. Combining (6) and (8)
we obtain a differential equation for the metric component
A�r�:

 �l� 2�
A0

A
r� 4A� �l2 � 4� � 0;

whose general solution is given by:

 A�r� �
ai

1� �Rir �
bi
: (9)

Here Ri is a positive arbitrary integration constant with
dimensions of length. We have introduced the subindex i to

distinguish between the cases ’ � ’�r� (i � r) and ’ �
’�t� (i � t) of the following subsection. The strictly posi-
tive parameters ar and br are given by:

 ar �
4� l2

4
; br � 2� l:

Simple analytic solutions can be easily obtained for the
special case Rr � 0. Such are the solutions for the canoni-
cal scalar field with an exponential potential [37], the
factorizable K-field with a potential of the form K�’� �
1=’2 and arbitrary F�X� [45] or the purely kinetic case
with F�X� / X�2=l [45]. We do not give the explicit solu-
tions here due to their scarce physical relevance. For all
these solutions the metric function A�r� is a constant and
the energy density and the pressure are obtained directly
from Eqs. (6) and (7) using the definitions given in (5):

 p? � �� �
l2

4� l2

�Mpl

r

�
2
; pk �

l�l� 4�

4� l2

�Mpl

r

�
2
:

It is easy to see that the energy density is always negative,
therefore these solutions must be considered unphysical.
This affects as well the solution presented in [37], where
the energy density sign (their expression (19)) is erroneous.
Note that the energy density and the pressure are directly
read from the line element and as long as the galactic
rotational velocities are nontachyonic one can not escape
the negative energy densities.

For the general case (Rr � 0) the situation is more
complex and exact analytic expressions for the action can
not be easily given. However, certain observations about
the general behavior of the solution can still be made. In
the asymptotic limit r� Rr the general solution converges
to the special case Rr � 0 mentioned above, so the nega-
tive energy densities persist. These solutions, nevertheless,
could still be useful if their behavior were physical for
some range r < rcrit say, and then matched to a different
solution. However, unfortunately, this is not the case. For
the � branch of the Eq. (9) the energy density remains
always negative. For the � branch, positive energy den-
sities appear for some range r < rcrit, but the effective
gravitational mass m�r� defined by (1) remains always
negative, so the solution is again unphysical. The occur-
rence of the negative mass with a positive energy density
signals the presence of a singularity with an infinite nega-
tive mass in the center, analogous to the one discussed by
Bonnor in [46].

Thus, one may consider this subsection as one leading to
a kind of no-go result for the static scalar fields ’ � ’�r�.
Once we have assumed the form of the line element
suitable for the description of flat rotation curves
(Section II), the minimally coupled generalized static sca-
lar field is found unfit to play the role of the dark matter in
the galactic halos.

ALBERTO DÍEZ-TEJEDOR AND ALEXANDER FEINSTEIN PHYSICAL REVIEW D 74, 023530 (2006)

023530-4



B. The homogeneous field ’ � at

The configuration ’ � at, as mentioned above, is only
possible if the action (3) is of the purely kinetic form
L�’;X� � F�X�—no potential term. In this case, one
may interpret the scalar field as an irrotational isentropic
perfect fluid in a disguise [47], although the equation of
state p � p��� does not have to be of a simple form. The
action itself can be thought of as the hydrodynamical
action written in terms of the velocity potential [8,47].

The tt, rr and �� components of the Einstein equations
are now:

 

1

Ar2

�
A0

A
r� A� 1

�
� M�2

pl

�
2X

@L
@X
�L

�
; (10)

 

1

Ar2
	�l� 1� � A
 � M�2

pl L; (11)

 

1

4Ar2

�
��l� 2�

A0

A
r� l2

�
� M�2

pl L: (12)

Combining the expressions (11) and (12), we obtain a
differential equation for the function A�r�:

 �l� 2�
A0

A
r� 4A� 	l2 � 4�l� 1�
 � 0;

whose general solution is again given by (9), where the
parameters at and bt are now:

 at � �
l2 � 4�l� 1�

4
; bt �

l2 � 4�l� 1�

l� 2
:

Unlike in the static case, however, while the parameter at
still remains positive, the parameter bt becomes negative.

For the special case when the constant Rt � 1 an ana-
lytic solution can be easily found. The action is given by
F�X� / X2=l, and the energy density and the pressure are:

 � �
l�l� 4�

l2 � 4�l� 1�

�Mpl

r

�
2
; p �

�l2

l2 � 4�l� 1�

�Mpl

r

�
2
;

which are both positive. Interpreted as a fluid with a
constant barotropic index p � w� one gets w � l=�4�
l� (0<w< 1), so that for the observed galaxies (l� 1)
the fluid is nearly ‘‘dust’’. This solution is analogous to the
infinite isothermal sphere.

In the general case (Rt � 1) the solution is rather more
interesting. We will be interested in the � branch of the
Eq. (9). In this case, the complete solution can be derived
from a scalar field obeying the following two-parameter
family of K-actions:

 F�X� �
�Mpl

Rt

�
2
	pN1 p

2
2


1=�N�2�	X2=l � X�N=l
: (13)

For these fluids, the energy density and the pressure are:

 � � �1

�Mpl

r

�
2
� �2

�Mpl

Rt

�
2
�
r
Rt

�
N
;

p � p1

�Mpl

r

�
2
� p2

�Mpl

Rt

�
2
�
r
Rt

�
N
;

(14)

where �1, �2, p1, p2 and N are positive constants given by:

 �1 �
�l�4� l�

l2 � 4�l� 1�
; �2 �

�4�6� 5l� l2�

�l� 2�	l2 � 4�l� 1�

;

p1 �
�l2

l2 � 4�l� 1�
; p2 �

�4�l� 1�

l2 � 4�l� 1�
;

N �
l�2� l�
l� 2

:

The solutions are only valid for r < Rt due to the behavior
of the metric component given by the Eq. (9), and are in
fact the Tolman type V solutions [48]. As pointed out by
Tolman, and as is usual for solutions of this kind, an
explicit equation of state p � p��� can not be found. It
is interesting, however, to point out that it has been possible
to obtain a simple action which describes the fluid (13)
without referring to an explicit equation of state. In fact, a
simple action can be often given in many instances for
which the explicit equation of state p��� is not available.

Further, these solutions may be used to describe compact
objects of finite size. The expression (14) indicates that the
pressure is positive until some value r0 is reached, then it
vanishes and changes sign. It is thus possible to match the
solution with an exterior Schwarzschild vacuum for r > r0,
defining r � r0 as the halo external surface. We will use
the subindex 0 to refer to the values evaluated on this
surface. The expressions for the radius r0 and for the
effective gravitational mass m0 � 4�

Rr0
0 ��r�r

2dr of the
compact objects are then given (in physical units) by:

 r0 �

�
p1

p2

�
1=�2�N�

Rt; m0 �
l

2�l� 1�

c2r0

G
:

The constant r? of Eq. (2) is now fixed by the matching to
the exterior vacuum solution and is given by rl? � �l�
1�rl0. Since r0 <Rt, it is always possible to construct these
solutions. We are only interested in the behavior of the
fluid within the halo, which in turn restricts the domain of
the function F�X� to X  1.

The expressions above are exact. However, we are more
interested in a rule of thumb to work with, and since the
observed rotation velocities in the galaxies are small com-
pared to the speed of light, we have found it convenient to
proceed working to first order in l. To this order we propose
the simplified action

 F�X� �
�Mpl

Rt

�
2
	X2=l � 1
; (15)

which fits amazingly well with (13) within range X  1,
where Eq. (13) applies. The result above is central to this
paper. It gives a simple equation of state, or rather an action
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for the homogeneous scalar field, which can be used to
model the DM in the galaxies. Equation (15) should not be
seen as a formal limit of Eq. (13), but rather as a suggested,
or guessed action describing the matter. This matter ap-
proximates Eq. (13) within the halo, and therefore repro-
duces the desired geometry. Moreover, similar actions are
used in cosmology under the different names of x-matter
[27], wet dark fluid [28] and matter with the generalized
linear equation of state [29]. Thus, the action (15) may
potentially serve as a unified matter description both for
cosmology, on one hand, and within the galactic halo, on
the other. The two arbitrary constants in the model: Rt and
l, must be determined from the observations. A brief
estimate of the order of magnitude of these parameters
will be the task of the following section.

IV. FITTING THE MODEL

A. Galaxies

We first adjust the two free parameters of the equation of
state to fit a typical galaxy. As we have mentioned in the
Sec. II, the parameter l is directly related to the rotation
velocities. We take l� 10�5. The size and the mass of a
typical galaxy are then given by the first order expressions:

 r0 ’
l
2
Rt; m0 ’

l
2

c2r0

G
:

If we take Rt of the order Rt � 3000 Mpc one obtains a
compact object with r0 � 15 Kpc andm0 � 1012M�, com-
patible with the size and the mass for a typical galactic
halo. Curiously enough we had to assume the constant Rt
of the order of the size of the observable universe to fit the
observations. The last two equations can be combined to
obtain a relation between the mass of a galaxy and the
velocity of the orbiting particles:

 m0 ’
Rt
c2G

v4
c:

The equation above is nothing else but the Tully-Fisher
relation (m0 � 	v4

c), where the constant of proportionality
	 is determined by the parameter Rt of the model.

Now, the action we propose to describe the DM in the
halos of the spiral galaxies (15) with the parameters Rt �
103 Mpc and l� 10�5 may work. But then one may pos-
sibly suggest to identify the homogeneous scalar field with
the velocity potential of some perfect fluid in the galaxy
and just stop here, instead of further promoting it to cosmic
scales. If the equation of state we propose were related
exclusively to the galactic matter, it would seem unlikely,
that the same action parametrized by the same parameters
could fit the global universal expansion. The presence of
the constant Rt of the order of the size of the observable
universe in the parametrization of the galactic DM action
signals as well a tentative relation to cosmology. More
interestingly, the action (15) does fit favorably with cos-
mology, and this is a nontrivial result.

B. Cosmology

Consider now the action (15) in the setting of a homo-
geneous and isotropic universe. Working still to first order
in l, the pressure and the energy density are easily obtained
using the relations given in (4):

 p �
�Mpl

Rt

�
2
	X2=l � 1
; � ’

�Mpl

Rt

�
2
�

4

l
X2=l � 1

�
:

For convenience it is useful to define the parameters w and
c2
s , the barotropic index and the velocity of sound, respec-

tively, given by the following expressions :

 w �
F�X�

2XF0�X� � F�X�
’
X2=l � 1

4
l X

2=l � 1
;

c2
s �

F0�X�
2XF00�X� � F0�X�

’
l
4
:

(16)

The barotropic index w defines the evolution of the scale
factor of such a universe, while the sound speed c2

s gives
the evolution of the first order small perturbations [49].
There is no need to write down the solutions of the Einstein
Equations to see how the model behaves. The scalar field
evolution equation is given by:

 

_X� 6Hc2
s�X�X � 0:

Here H � _a=a is the Hubble constant, a is the scale factor
and the dot has the usual meaning. While the universe
expands (H > 0) and given that the square of the speed
of sound (16) remains always positive, the kinetic scalar X
is a decreasing function of time. The barotropic index
evolves from dust (w ’ 0) at early times (X� 1), to a
‘‘cosmological constant’’ (w ’ �1) at late times (X� 1).
The speed of sound, however, always remains small, c2

s �
1. Even during the late epoch, when the fluid approaches
the ‘‘cosmological constant’’ like equation of state, the
sound speed remains well below the speed of light. The
fact that the DE density perturbations propagate with low
velocities makes this model distinguishable from the stan-
dard �CDM, where a purely nonclustering Cosmological
Constant would produce a different pattern at large angular
scales in the CMB fluctuations [50,51].

The energy density for the effective value of the ‘‘cos-
mological constant’’ is determined by the parameter Rt
fixed in the previous subsection against the galactic data
and is given by

 �� �
c2

8�GR2
t
� 6:5 � 10�30 g=cm3:

The value of the ‘‘cosmological constant’’ then becomes
�eff � R�2

t which gives �eff � 10�52 cm�2 (cf. [4]).
We also obtain that there exists a relation between the

value of the cosmological constant and the Tully-Fisher
proportionality factor 	:
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 	2�eff �
1

G2c4 ;

determined only by the fundamental constants G and c.

V. DISCUSSION

The flattening of the rotation curves in spiral galaxies,
the missing mass in the galactic clusters, the spatial flatness
of the universe, the structure formation and the present day
acceleration all point out to the existence of a Dark Side in
the Universe. It is possible that each of the above men-
tioned problems has a separate solution; it would be physi-
cally more appealing, though, if the solution were unique.

Our Universe is homogeneous and isotropic on large
scales. On galactic scales, however, the observed matter
distribution is nonuniform. This itself, does not exclude the
possibility of the presence of a homogeneous scalar field
on scales of galactic halos in addition to a nonuniform
ordinary matter distribution.

We have started the technical part of the paper by look-
ing at possible static configurations of scalar field compat-
ible with flat rotational curves, and have concluded that if
the scalar field is static no physically interesting solutions
result.

If the scalar field is homogeneous, however, one may
construct models of galactic halos based on exact solutions
of the Einstein Equations which have flat rotational curves.
The matter in these galactic halos is described by an action
which only depends on derivative terms of the scalar field.
We interpret this intragalactic scalar field as an integral part
of a global homogeneous field driving the expansion of the
universe. We do so, encouraged by the fact that the homo-
geneous scalar field we deduce from the galactic rotational
curves makes a good match to cosmology.

The model for the homogeneous field we have read from
the galactic halo metric is of the form which belongs to a
class of models which could solve the Dark Matter and the
Dark Energy problem in cosmology—the class of models
suggested by Scherrer [25]. Of course, this could be a pure
coincidence: the same action for the homogeneous scalar
field resolves it all. Nonetheless, we believe it is worth
exploring this possibility further.

The most interesting feature of the model is, as we see it,
that the two free parameters in the K-action, when fixed
against the galactic data, imply a reasonable value for the
cosmological constant which is unrelated to the fit. There
also exist the possibility to differentiate the model from the
standard �CDM due to a different clustering of the Dark
Energy in our model which would leave observable im-
prints on the Cosmic Microwave Background.

Some words of caution should be spelled out. One
should of course take the global solution to the DM prob-
lem we suggest as a toy model. The action for the cosmo-
logical fluid is given by the Eq. (15) with the parameters
fixed by the galactic curves. Now, while the constant Rt is

universal in the model, different galaxies would have dif-
ferent rotation velocities and therefore different values for
l. But in cosmology one must fix the value of l presumably
globally. One may speculate that the global value of the
constant l in the cosmological equation of state is deter-
mined as some sort of average, or is given by the first
principles of an underlying theory. Be what may, however,
it is encouraging to find out that there exists the possibility
that a single matter ingredient can be used to model the
Dark Side of the universe on all scales.

ACKNOWLEDGMENTS

We are grateful to Jacob Bekenstein for correspondence
and valuable comments. A. D. T. work is supported by the
Basque Government predoctoral Grant BFI03.134. This
work is supported by the Spanish Science Ministry Grant
No. 1/MCYT 00172.310-15787/2004, and the University
of the Basque Country Grant No 9/UPV00172.310-14456/
2002.

APPENDIX: DETERMINATION OF THE g00
COMPONENT OF THE METRIC TENSOR FROM

THE ROTATION CURVES

In this Appendix we briefly summarize how one can
reconstruct some metric functions from the observed rota-
tion curves [34–37]. We consider the equations of motion
for an orbiting particle of mass m immersed in a static
spherically symmetric gravitational field (1). For this pur-
pose we choose, as usual, the coordinate system so that the
orbit is contained in the equatorial plane � � �=2. The two
conserved quantities, associated with the two Killing vec-
tors of the metric 
t � @=@t and 
� � @=@�, are, respec-
tively, the energy E � �p � 
t � �p0 and the angular
momentum L � p � 
� � p�, where p is the 4-
momentum of the particle. The equation of motion for
the radial coordinate is obtained from the constraint p �
p�m2 � 0 by introducing the values for E and L given
above, and can be written as:

 f�r� _r2 � ~E2 � ~V2
eff�r�;

with f�r� and ~V2
eff�r� given by:

 f�r� �
e2��r�

1� 2m�r�
r

; ~V2
eff�r� � e2��r�

�
1�

~L2

r2

�
:

The symbol� indicates quantities evaluated per unit mass.
The circular orbits are obtained by imposing _r � 0

( ~Veff�r� � ~E) and �r � 0 ( ~V0eff�r� � 0). This gives the fol-
lowing expressions for ~E and ~L:

 

~E 2 �
e2�

1� r�0
; ~L2 �

r3�0

1� r�0
:

Using the definition for the tangential component of the
velocity (equation (25.20) in Ref. [33]) and the expressions
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for ~E and ~L above, we obtain:

 v2
c �

p2
�

r2E2
local

� r�0:

Here vc is measured in units of c (vc ! vc=c) and Elocal is
the energy of the particle measured by a local observer at
rest. From the behavior of the rotation curves vc�r� the
function ��r� can be directly integrated and the 00 com-
ponent of the metric tensor obtained:

 g00�r� � � exp
�
2
Z v2

c�r�
r

dr
�
: (A1)

For a galaxy with flat rotation curves (vc�r� � const:), one
obtains:

 g00�r� � �
�
r
r?

�
l
; (A2)

where r? is an integration constant with dimensions of
length and l is given by l � 2v2

c.
Two comments are in order. First, that the form of the

rotation curve completely determines the 00 component of
the metric tensor through the expression (A1). For the
special case of flat rotation curves, we obtain (A2).
Second, that the rotation curves tell nothing about the other
independent component of the metric tensor (the rr com-
ponent). To obtain the rr component of the line element,
one needs to assume either the nature of the matter domi-
nating the configuration, or deduce it from other type of
observations, for example, gravitational lensing [32] etc.
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