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The dynamical equivalence between modified and scalar-tensor gravity theories is revisited and it is
concluded that it breaks down in the limit to general relativity. A gauge-independent analysis of
cosmological perturbations in both classes of theories lends independent support to this conclusion. As
a consequence, the PPN formalism of scalar-tensor gravity and Solar System experiments do not veto
modified gravity, as previously thought.

DOI: 10.1103/PhysRevD.74.023529 PACS numbers: 98.80.�k, 04.50.+h, 04.90.+e

I. INTRODUCTION

There are many models in the literature aiming at ex-
plaining the observed acceleration of the cosmic expansion
discovered with supernovae of type Ia [1] in conjunction
with the recent cosmic microwave background experi-
ments [2]. One class of models postulates that the universe
is filled with unclustered dark energy comprising 70% of
its energy content. This dark energy has exotic properties
and, if its effective equation of state is truly such that P<
�� (where � and P are the dark energy density and
pressure, respectively), as the observations seem to favor
[3], it is even more exotic and it is called phantom energy
or superquintessence. Phantom energy violates all of the
energy conditions and is rather difficult to accept because
of the possibility of instabilities, ghosts, and strange ther-
modynamical behavior [4]. As an alternative to such exotic
physics, it has been suggested that perhaps gravity should
be modified at large scales [5,6] by introducing in the
gravitational sector terms nonlinear in the Ricci curvature
R. This way, one can dispense entirely with exotic dark
energy. Apart from this ad hoc justification, there are also
motivations (and corrections) for nonlinear gravity from
M-theory [7]. Scenarios based on this idea are called
‘‘modified gravity’’, ‘‘nonlinear theories’’, or ‘‘fourth-
order gravity’’ [8]. In its simplest form, the action is

 S �
1

2�

Z
d4x

�������
�g
p

f�R� � S�m� (1)

where � � 8�G. The corresponding field equations are

 f0Rab �
f
2
gab � rarbf

0 � gab�f0 � �T�m�ab ; (2)

where a prime denotes differentiation with respect to R.
Whenever f�R� is nonlinear in R, the Palatini variation
treating the metric and the connection as independent
variables produces field equations that are different from
(2), which are obtained with the usual Einstein-Hilbert
variation with respect to the metric only. The ‘‘Palatini
approach’’ is widely used in cosmology, in addition to the

usual ‘‘metric formalism’’ [9]. Furthermore, if the matter
part of the action S�m� also depends on the connection, one
obtains a third possibility, metric-affine gravity theories
[10,11]. In the following we consider the metric approach
to modified gravity but the methods and the conclusions
apply to the Palatini approach as well.

We briefly recall the dynamical equivalence between
f�R� gravity and scalar-tensor gravity [12–14] (for the
dynamical equivalence between scalar-tensor theories see
Ref. [15]). By introducing an auxiliary field � the action
(1) becomes

 S �
1

2�

Z
d4x

�������
�g
p

�
f��� �

df
d�
�R���

�
� S�m� (3)

if d2f=d�2 � 0. This action integral can be written as

 S �
1

2�

Z
d4x

�������
�g
p

� ���R� V���� � S�m�; (4)

where

  ��� �
df
d�

; V��� � �
df
d�
� f���: (5)

This action describes a scalar-tensor theory of gravity
([16,17]—see [18] for a review) with Brans-Dicke pa-
rameter ! � 0. The corresponding field equations are

 Gab �
1

 

�
rarb � gab� �

V
2
gab

�
�
�
 
T�m�ab ; (6)

 R
d 
d�
�
dV
d�
� 0: (7)

Trivially, if � � R, the action (3) reduces to (1). Vice-
versa, by varying the action (3) with respect to � and
assuming that S�m� is independent of �, one obtains

 �R���f00��� � 0; (8)

which yields � � R provided that f00 � 0 (a prime now
denotes differentiation with respect to �). Similarly, one
shows that f�R� gravity in the Palatini formalism is equiva-
lent to a ! � �3=2 Brans-Dicke theory when the matter
action is independent of the connection (e.g., [10]). This*Electronic address: vfaraoni@cs-linux.ubishops.ca

PHYSICAL REVIEW D 74, 023529 (2006)

1550-7998=2006=74(2)=023529(7) 023529-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.74.023529


dynamical equivalence between theories can be quite use-
ful but it should not be abused. It has been used to constrain
f�R� gravity based on Solar System bounds on the post-
Newtonian parameters of scalar-tensor gravity [14,19,20].
The underlying logic is that deviations from general rela-
tivity (GR) are not detected in our local spacetime neigh-
borhood, therefore these deviations (if they exist) must be
small. This ‘‘closeness of f�R� gravity to GR’’ implies that
f�R� gravity reduces to GR in an appropriate limit, which
we address here. While there is in principle no problem in
taking this limit directly in modified gravity, the dynamical
equivalence with scalar-tensor gravity breaks down in this
limit. In fact, GR corresponds to f�R� � R and f00 � 0,
while the dynamical equivalence requires f00 � 0. This
fact has been overlooked and the dynamical equivalence
has been used beyond its realm of validity in the limit to
GR by advocating the parametrized post-Newtonian (PPN)
formalism of scalar-tensor gravity. This procedure is in-
valid and it explains why opposite claims of compatibility/
noncompatibility of f�R� gravity with Solar System experi-
ments occur in the literature—worse, even the Newtonian
limit is the subject of dispute [19,20].

The limit to GR of the equivalent scalar-tensor theory is
more general than the weak field limit: it includes the
strong field regime and it turns out to be a singular limit,
as shown below. Moreover, the limit of Brans-Dicke theory
to GR in vacuum, or in the presence of ‘‘conformal’’ matter
(i.e., with vanishing trace of the stress-energy tensor), is
riddled with problems. Therefore, one must be particularly
careful in basing all of one’s conclusions on the compati-
bility with Solar System experiments (which test the gravi-
tational field in vacuo or at very low densities) solely on the
equivalence with scalar-tensor gravity. In the following
section we discuss the direct limit of f�R� gravity to GR
without using the equivalence with scalar-tensor gravity,
and then the corresponding limit to GR of the equivalent
scalar-tensor gravity, showing the problems arising in this
last situation. We do not want to commit ourselves to
specific choices of the function f�R� (e.g., the CDTT
model [5,6], etc.) but we consider a general form of the
function f�R�.

II. THE LIMIT OF f�R� GRAVITY TO GENERAL
RELATIVITY

Perhaps the easiest way to consider the limit of f�R�
gravity to Einstein’s theory consists of introducing a small
parameter � such that f�R� can be expressed as [21]

 f�R� � R� �’�R�: (9)

The action of GR SGR � �2��
�1
R
d4x

�������
�g
p

R� S�m� is
obtained in the limit �! 0 [22]. The field equations be-
come

 �1� �’0�Rab �
1

2
�R� �’�gab

� �rarb’0 � �gab�’0 � �T�m�ab (10)

which, in the limit �! 0, formally reduce to the Einstein
equations Gab � �T�m�ab . So, there is no problem in taking
the limit of f�R� gravity to GR directly. Let us consider
now the ‘‘equivalent’’ scalar-tensor theory (4). Although
the conventional way to obtain this limit is letting the
Brans-Dicke parameter ! go to infinity, here ! is fixed
to be zero. The limit to GR can again be obtained by letting
� go to zero in the equations of scalar-tensor theory, which
is equivalent to taking the limit �! constant. Assuming
that f�R� is given by Eq. (9), the nonlinear theory (1) is
equivalent to (3) with

  ��� � 1� �’0���; V��� � ��’0�� ’� (11)

provided that f00 � 0. Now, in the limit �! 0, f00 �
�’00 ! 0 and the equivalence is broken. Formally, the field
Eq. (6) reduces to the Einstein equation while (7) is iden-
tically satisfied. There are however, problems with this
procedure. One should also find the asymptotic behavior
of the field � as �! 0. The situation is analogous to the
standard limit to GR of Brans-Dicke theory, the prototype
of scalar-tensor theories, in which GR is usually obtained
by taking the limit !! 1. The standard textbook presen-
tation provides the asymptotic behavior of the Brans-Dicke
field �BD:

 �BD � �0 � O
�

1

!

�
; (12)

where �0 is a constant [26]. But when the trace of the
energy-momentum tensor of matter T�m� vanishes, the!!
1 limit fails to give back GR—this phenomenon is re-
ported for a number of exact Brans-Dicke solutions [27]
and is identified as a general feature of Brans-Dicke theory
explained by a restricted conformal invariance enjoyed by
the theory when T�m� � 0 [28]. This anomalous behavior is
intimately linked with the asymptotics displayed by the
Brans-Dicke field in these situations [28,29,33]

 �BD � �0 � O
�

1����
!
p

�
�T�m� � 0�: (13)

Similarly, the examination of the asymptotics of the scalar
field � as the parameter � tends to zero should provide a
useful check of the limiting procedure. In the scalar-tensor
equivalent of f�R� gravity, the Brans-Dicke parameter is
fixed to be ! � 0 in the metric formalism (! � �3=2 in
the Palatini formalism) and we must necessarily come up
with a different way of taking the limit to GR, hence the
possibility considered of letting � going to zero while �
becomes constant. In this case, we should obtain a reason-
able asymptotic behavior for the fields gab and �, say

 gab � g�GR�
ab � �hab; � � �0 � r���; (14)
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where g�GR�
ab is the general-relativistic metric, �0 is a con-

stant, and the remainder r��� tends to zero as �! 0.
However, this is not the case. By inserting Eq. (9) into
Eq. (6) one obtains
 

Gab �
�

1� �’0

�
rarb’

0 � gab�’0 �
1

2
�’��0’

0�gab

�

�
�T�m�ab

1� �’0
; (15)

while

 �� � �
�’000

1� �’0
rc�rc��

���’0 � 2’� ��
3�’00

�
1� �’0

�’00
�T�m�; (16)

where the indices are raised and lowered with g�GR�
ab .

Further substitution of Eq. (14) yields, in the limit �! 0,

 r��� � O
�

1

�

�
: (17)

The remainder r��� diverges instead of vanishing: �! 0 is
a singular limit of the equivalent scalar-tensor version of
f�R� gravity while the direct limit �! 0 of f�R� gravity
does not lead to this problem. Again, this reflects the
breakdown of the dynamical equivalence in the limit to
GR in which f00 ! 0. Note that the procedure employed
here parallels the procedure used to obtain the estimate
(12) for Brans-Dicke theory [26,31,33].

III. STABILITY OF DE SITTER SPACE IN
MODIFIED AND SCALAR-TENSOR GRAVITY

In this section we consider the cosmological dynamics
of modified gravity. By assuming the spatially flat
Friedmann-Lemaitre-Robertson-Walker (FLRW) metric

 ds2 � �dt2 � a2�t��dx2 � dy2 � dz2� (18)

in comoving coordinates �t; x; y; z�, the field Eqs. (2) of
modified gravity reduce to

 H2 �
1

3f0�R�

�
f�R� � Rf0�R�

2
� 3H _Rf00�R� � ���m�

�
;

(19)

 2 _H � 3H2 � �
1

f0�R�

�
� _R�2f000�R� � 2H _Rf00�R�

� �Rf00�R� �
1

2
�f�R� � Rf0�R�� � �P�m�

�
:

(20)

Consider, for simplicity, the situation in which the curva-
ture terms dominate the dynamics and ��m� and P�m� are
negligible. Then, the scale factor a�t� enters the field
equations only through the Hubble parameter H � _a=a

and it is natural to use H as the dynamical variable. The
field equations are of fourth order in a (hence the name
‘‘fourth order gravity’’ given to f�R� theories) and of third
order inH. The main result of this section is that the! � 0
scalar-tensor theory does not provide the same stability
condition derived in f�R� gravity, but two different ones
according to the type of perturbations considered.
Therefore, these two theories are inequivalent with regard
to stability.

The equilibrium points in the phase space �H; _H; �H� are
de Sitter spaces characterized by constant Hubble parame-
ter H0 given by

 H2
0 �

f0

6f00
(21)

and R0 � 12H2
0 . The stability of these de Sitter spaces with

respect to both homogeneous and inhomogeneous pertur-
bations was studied in Ref. [34], with the result that the
stability conditions with respect to both types of perturba-
tions coincide and, in our notations, are expressed by [35]

 

�f00�
2 � 2f0f

00
0

f00f
00
0

	 0: (22)

The study of stability with respect to inhomogeneous
perturbations, which are inherently gauge-dependent, re-
quires the use of a gauge-invariant formalism. It is counter-
intuitive that the stability condition with respect to
inhomogeneous perturbations is not more restrictive than
the corresponding stability condition with respect to ho-
mogeneous perturbations. This is not the case, for example,
in scalar-tensor gravity. Stability in scalar-tensor gravity
was also studied in Refs. [34,36], but the cases ! � 0 and
! � �3=2 were excluded by the analysis. In the following
subsections we study the stability of the de Sitter equilib-
rium points in the! � 0 equivalent of metric f�R� gravity.
As expected, the stability condition with respect to inho-
mogeneous perturbations turns out to be different from the
stability condition with respect to homogeneous ones.

A. Stability with respect to homogeneous perturbations
in ! � 0 scalar-tensor gravity

In the ! � 0 scalar-tensor theory described by the ac-
tion (3) the field equations become, in the metric (18) and
in the absence of matter,

 3f0H2 �
1

2
��f0 � f� � 3Hf00 _�; (23)

 � 2f0 _H � f000� _��2 � f00 ���Hf00 _�; (24)

 f00R� V 0 � 0: (25)

Manipulation of Eqs. (23) and (24) leads to the Klein-
Gordon-like equation for �
 

��� 3H _��
1

3f00
��f0R� 3f000� _��2� 2��f0 � f��: (26)
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The equilibrium points in this picture correspond to de
Sitter spaces with constant scalar field given by

 H2
0 �

f0

6f00
; �0 �

2f0

f00
� R0: (27)

Homogeneous perturbations of the de Sitter fixed points
are described by

 H�t� � H0 � �H�t�; ��t� � �0 � ���t�; (28)

and obey the evolution equations

 12H0f
0
0�H � �6H

2
0 ��0�f

00
0��� 6H0f

00
0� _� � 0; (29)

 � 2f00� _H � f000� ���H0f000� _� (30)

 6f000� _H� 24H0f000�H� �12H2
0f
000
0 ��0f0000 � f

00
0 ���� 0;

(31)

where the constraint � � R has been used. By eliminating
� _H and using the zero-order equations for de Sitter space,
one obtains

 � ��� 3H0� _��
1

3f00�f
00
0 �

2 ��f
0
0�

2 � 2f0��� � 0: (32)

Stability is achieved, and the perturbations �� do not run
away, when the effective mass squared in this harmonic
oscillator equation is non-negative, i.e.,

 

�f00�
2 � 2f0

f00
	 0: (33)

This is the desired stability condition with respect to
homogeneous perturbations in the ! � 0 scalar-tensor
theory that is supposed to be equivalent to f�R� gravity.
This condition is different from (22) showing that, at best,
the equivalence should be treated with care. The stability
condition (33) should be compared with the stability con-
dition with respect to inhomogeneous perturbations, which
we derive in the next subsection.

B. Inhomogeneous perturbations in ! � 0
scalar-tensor gravity

The analysis of inhomogeneous perturbations neces-
sarily requires a gauge-independent formalism. We adopt
the covariant and gauge-invariant formalism of Bardeen-
Ellis-Bruni-Hwang [37] in the version of Hwang valid for
generalized gravity [38]. The metric perturbations are
given by

 g00 � �a2�1� 2AY�; (34)

 g0i � �a
2BYi; (35)

 gij � a2�hij�1� 2HL� � 2HTYij�; (36)

where Y, Yi, and Yij are the scalar, vector, and tensor

harmonics, respectively, satisfying

 

�r i
�riY � �k2Y; Yi � �

1

k
�riY; (37)

 Yij �
1

k2
�ri �rjY �

1

3
Yhij: (38)

Here hij is the three-dimensional metric of the FLRW
background and the operator �ri is the covariant derivative
associated with hij, while k is an eigenvalue. The gauge-
invariant variables used are Bardeen’s potentials and the
Ellis-Bruni variable

 �H � HL �
HT

3
�

_a
k

�
B�

a
k

_HT

�
; (39)

 �A � A�
_a
k

�
B�

a
k

_HT

�
�
a
k

�
_B�

1

k
�a _HT�

:
�
; (40)

 �� � ���
a
k

_�
�
B�

a
k

_HT

�
; (41)

with �f and �R defined similarly to the last equation. The
first order equations of motion for the gauge-invariant
perturbations can be found in Ref. [38]; they simplify
considerably in the de Sitter background, reducing to

 � � � 3H0� _ �
�
k2

a2 � 4H2
0

�
� �

 0

3
�R � 0; (42)

 � _�H �H0�A �
1

2

�
� _ 
 0
�H0

� 
 0

�
; (43)

 

�
k
a

�
2
�H � �

k2

2a2

� 
 0

; (44)

 �A ��H � �
� 
 0

; (45)

 

�H T � 3H0
_HT �

k2

a2 HT � 0; (46)

 

��H � 3H0
_�H �H0

_�A �
V0

2 0
�A

� �
1

2

�
� � 
 0
� 2H0

� _ 
 0
�

V0

2 2
0

� 
�
; (47)

and
 

�R � 6
�

��H � 4H0
_�H �

2

3

k2

a2 �H �H0
_�A

�

�
k2

3a2 � 4H2
0

�
�A

�
; (48)

where a � a
eH0t is the unperturbed scale factor.
Equation (46) exhibits a positive effective mass squared
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k2=a2 for the tensor modes HT , therefore de Sitter spaces
are always stable with respect to these modes, to linear
order. By using Eq. (45) to eliminate �A and Taylor-
expanding � �  00��� . . . , one easily obtains

 �H � �A � �
 00
2 0

�� (49)

and

 �R � �
3 00
 0

�
� ��� 3H0� _��

�
k2

a2 � 4H2
0

�
��

�
: (50)

By using the fact that �R � ��, the equation for the
scalar perturbations �� is obtained:

 � ��� 3H0� _��
�
k2

a2 � 4H2
0 �

 0

3 00

�
�� � 0: (51)

The term �k=a�2 can be neglected at late times when a
diverges exponentially fast and the stability condition for
the perturbations �� (and �H � �A / ��) is therefore

 

�f00�
2 � 2f0f000
f00f

00
0

	 0: (52)

This is the desired stability condition with respect to
inhomogeneous perturbations. It is different from the con-
dition for homogeneous perturbations (33) and it coincides
with (22). Not only one of the stability conditions with
respect to homogeneous and inhomogeneous perturbations
(33) and (52) of the! � 0 scalar-tensor equivalent of f�R�
gravity fails to coincide with the condition (22), but they
also differ from each other. The purported equivalence is
not a true equivalence. The reason should be looked for in
the fact that, while in a true scalar-tensor theory the Brans-
Dicke-like field � is a true dynamical field whose evolu-
tion is only ruled by the dynamical field equations, in the
theory considered here � is forced to obey the additional
constraint � � R, thus limiting its natural evolution. In
other words, we have gone from fourth order equations to
second order equations by adding a scalar degree of free-
dom to the theory, which has now spin 0 content in addition
to spin 2, but the scalar degree of freedom is somehow
constrained by the condition �� � �R.

IV. DISCUSSION AND CONCLUSIONS

While the limit to GR �! 0 in the action (1) of modi-
fied gravity presents no problems of principle, the limit to
GR of the equivalent scalar-tensor theory is ill-defined. In
view of the problems presented by this limit in Brans-
Dicke theory, special care is advised when using the dy-
namically equivalent scalar-tensor theory to analyze the
weak field limit of modified gravity. As shown above, the
limit to GR of the equivalent ! � 0 Brans-Dicke theory is
a singular one, illustrating the fact that the equivalence

breaks down in this limit. A posteriori it is easy to see that
this is implied by the fact that f00�R� ! 0 in this limit.

Another issue is the following: if the dynamical equiva-
lence were to hold in the limit to GR, the experimental
bound !> 40000 [39] would be in violent conflict with
the values of the Brans-Dicke parameter ! � 0 or �3=2
obtained, unless the field � is short-ranged. The effective
mass of � is given by

 m2
eff � V 00 � ��’00 ��’000� (53)

and vanishes as �! 0, making it impossible to suppress
the violation of the bounds on !, for any form of the
function f�R�. This contradicts the results of
Refs. [20,40] which support the viability of the weak field
limit of the theory for specific forms of f�R�. As it turns
out, the PPN limit of the associated scalar-tensor theory
bears no relation to the weak field limit of the original
modified gravity theory.

As a consequence, the conclusion [14,19] that modified
gravity always violates the stringent Solar System bounds
on scalar-tensor gravity [39] is invalid. The issue of the
correct Newtonian and post-Newtonian limit of such theo-
ries is still open and should be approached directly without
using the dynamical equivalence discovered in
Refs. [12,13], which is still useful for other purposes.
The regime that is more interesting, however, is the one
in which the deviations from GR in the Solar System are
small. A complete study of the PPN limit of general
modified gravity scenarios without resorting to the equiva-
lent scalar-tensor theory (initiated in Refs. [20,23]) will be
presented elsewhere.

Another apparent problem with the limit to GR lies in
the fact that � must become constant: because � � R,
were this limit correct, it could only reproduce solutions
with constant Ricci curvature (which includes vacuum
solutions and solutions sourced by conformal matter).
Although this could work for vacuum solutions used to
describe Solar System experiments, it is by no means
acceptable to have a limit to GR valid only for special
solutions: the limit must apply to the general theory.
However, we believe that this second problem is not very
relevant because, when f00 vanishes in Eq. (8) in this limit,
the equality � � R is no longer enforced.

Finally, the viability of modified gravity scenarios does
not rely only on its correct weak field limit: other issues are
the presence of ghosts and instabilities and, of course, a
correct cosmological dynamics. These have been consid-
ered separately in the literature [41].
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