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We have investigated the dynamics of domain walls in the cubic anisotropy model. In this model a
global O�N� symmetry is broken to a set of discrete vacua either on the faces, or vertices of a (hyper)cube.
We compute the scaling exponents for 2 � N � 7 in two dimensions on grids of 20482 points and
compare them to the fiducial model of Z2 symmetry breaking. Since the model allows for wall junctions
lattice structures are locally stable and modifications to the standard scaling law are possible. However, we
find that since there is no scale which sets the distance between walls, the walls appear to evolve toward a
self-similar regime with L� t.
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I. INTRODUCTION

The breaking of spontaneous symmetries in the early
universe can produce topological defects which can affect
the cosmological evolution. Over the years defect networks
have received much attention—for a detailed review see
[1,2]. Most of this work has focused on cosmic strings—
the study of domain walls has generally been discouraged
due to the commonly accepted view that such a network
will either over-close the universe or destroy the isotropy
of the cosmic microwave background (CMB) [3].
However, this assumption relies on the fact that the net-
work immediately enters a self-similar scaling regime and
the walls are formed at a high energy transition. In this
scenario, wall decay processes are efficient and, on aver-
age, there is a single domain wall per horizon volume from
initial formation through to the present day with domains
growing as fast as causality allows (the characteristic
lengthscale L� t). This behavior has been confirmed nu-
merically for models where the potential of a scalar field
has Z2 symmetry and there are two vacua [4–9]. An
alternative kind of behavior has been envisaged for models
with more complicated vacuum structure. It could be that
the network frustrates and L� a�t� [10–12] allowing the
network to act as a dark energy candidate with pressure to
density ratio w � P=� � �2=3, if the scale of symmetry
breaking is sufficiently low.

In this paper, we investigate the stability properties and
dynamical evolution of a network of domain walls where a
global O�N� symmetry is broken to a set of discrete vacua
with (hyper)cubic symmetry. In these models walls can be
joined at stringlike junctions in 3D (vortexlike in 2D)
allowing for stable lattice structures. This contrasts with
the Z2 model where the dynamics are typically dominated
by the evolution of an single large domain with closed
walls inside it. In earlier work we have shown that regular
lattices can be constructed which are elastically stable if a
wall network supports junctions and have begun to assess
the cosmological implications of such a network [13–16].
This work was based on a continuum approximation rep-
resenting the lattice macroscopically as an elastic medium,

analogous in many ways to soft condensed matter systems
such as foam and soap films. Here, we are concerned with
whether the formation of a regular lattice can occur from
random initial conditions in a full field theory and whether
the total number of the walls respects the same t�1 scaling
behavior of the Z2 model, or whether they can frustrate and
are dragged along with the Hubble flow and the number of
walls scales like a�1.

The problem with numerical simulations of defects in an
expanding universe is that there are the two very different
length scales involved—the defect thickness and separa-
tion scale. The ratio of the former to latter rapidly becomes
too small to simulate accurately and so the common pro-
cedure taken is to fix the defect size in comoving coordi-
nates while adjusting the equation of motion to ensure
momentum conservation [4]. It has been argued that this
procedure does not significantly effect the evolution. We
choose to evolve our simulations in Minkowski space to
avoid making this approximation which should be accurate
so long as the conclusions we make are based on epochs
before the light crossing time. If a system scales in
Minkowski spacetime, we would expect it to do so in an
expanding universe.

The paper is organized as follows. In Sec. II we intro-
duce the cubic anisotropy model and review the features of
the model relevant for domain wall formation. Section III
then contains details of the numerical simulations and how
we extract the results. In Sec. IV we show how simple
regular lattices can be constructed and investigate their
stability with respect to the continuum approximation.
We then present results for the dynamical evolution of
walls in the Z2 and cubic anisotropy models in Secs. V
and VI respectively. Finally, we discuss the implications of
our results and conclude.

II. CUBIC ANISOTROPY MODEL

We will consider models for a global vector field � �
��1; . . . ; �N� with standard relativistic kinetic term and
potential
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If � � 0 then the model has O�N� symmetry, but this is
broken to a discrete (hyper)cubic symmetry when � � 0.
Critical points of the potential satisfy

 ��i�j�j
2 � �2� � 4��3

i � 0; (2)

for each i � 1, N. The case of N � 1 and � � 0 corre-
sponds to the standard case of Z2 symmetry breaking. In
the case of N � 2, the potentials for � > 0 and � < 0 are,
from the point of view of the structure of the vacuum
manifold, essentially the same modulo a rotation. If we
write the field as ��1; �2� � j�j�cos�; sin�� then, in the
case where � > 0, there are four minima at � �
f�=4; 3�=4; 5�=4; 7�=4g, whereas for � < 0 the minima
are at � � f0; �=2; �; 3�=2g. In fact the potential can be
written as

 V�j�j; �� �
�
4
�j�j2 � �2�2 �

�
4
j�j4�3� cos4��; (3)

and hence for this special case the model is similar to an
axion domain wall model [17,18].

When N � 3 the structure of the vacuum manifold is
different in the two cases � > 0 and � < 0. This is illus-
trated in Fig. 1 for N � 3. In the � > 0 case the minima

reside at the vertices of a (hyper)cube and in the � < 0 case
the minima reside at the faces (or the vertices of an (hyper)-
octahedron—the dual of the cube). A variety of different
types of wall system are then possible. For the brokenO�3�
model with � > 0 a total of three different types of walls
can be produced, each with different tension. The lightest
walls correspond to interpolation across an edge, such as
f�;�;�g ! f�;�;�g. Heavier walls correspond to in-
terpolation across a face, for example f�;�;�g !
f�;�;�g, and across the body diagonal, for example
f�;�;�g ! f�;�;�g. For general N there are 2N dis-
crete minima andN different types of walls are possible. In
the broken O�3� case with � < 0 two types of walls can be
produced with different tension. The lightest walls corre-
spond to interpolation between faces in different perpen-
dicular directions, such as f�; 0; 0g ! f0;�; 0g. Heavier
walls correspond to interpolation between faces in the
same direction, for example f�; 0; 0g ! f�; 0; 0g. For gen-
eral N there are 2N discrete minima, but only two different
types of wall are possible.

The structure of the vacuum manifold means that there is
an important distinction in the types of walls produced in
the � > 0 and � < 0 models. In the former, X type junc-
tions will form (such as four walls meeting at a string/
vortex) while in the latter, Y type junctions will form (such
as three walls meeting at a string/vortex). These configu-
rations are illustrated in Fig. 2. In previous work attention
has been drawn to the difference in the stability properties
of these systems [13,15]. In the Y type junction there is no
freedom of adjustment in the equilibrium angle of inter-
section at the string which must be 2�=3 if the wall
tensions are equal. In the X type junction equilibrium is
maintained by opposing pairs with the same tension, even
if the angle of intersection is not equal to �=2. It was
pointed out that X type junctions are more favorable for
the stability of a lattice. We note the claim of Ref. [19] that
if all the walls have the same tension, then only Y type
junctions are possible does not apply here.

Models with � < 0, giving rise to Y type junctions, have
been previously studied in Ref. [20]. These simulations
suggest some evidence of the formation of cellular hex-
agonal structures and it was suggested that there are devia-
tions from the standard self-similar scaling. However, these

FIG. 1 (color online). Structure of the vacuum manifold from a
broken O�3� symmetry illustrated by a potential isosurface. The
isosurface on the left has an anisotropy parameter � � 0:08 and
the minima reside in the vertices of the cube. The isosurface on
the right has � � �0:08 and the minima reside in the faces of the
cube (or the vertices of an octahedron).

FIG. 2. Wall-string junctions in the N � 3 cubic anisotropy model with � > 0 (left) and � < 0 (right). The diagrams show how the
arrangement of fields on the vacuum manifold gives rise to wall junctions. In the � > 0 model fields can arrange themselves, for
example, on one of the faces of the vacuum manifold. We illustrate how this arrangement gives rise to X type junctions with four walls
meeting at a string. In the � < 0 model Y type junctions can arise with three walls meeting at a string/vortex by connecting three faces
as illustrated.
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deviations are only slight, and only a small number of
simulations with limited dynamical range were considered.

III. NUMERICAL METHODOLOGY

A. Discretization

The equations of motion were computed by minimizing
the action

 S �
Z
d4x

�������
�g
p

�
1

2
�@��i�

2 � V��i�

�
; (4)

where the potential energy is given by (1). For the
Minkowski metric ��	 � diag��1; 1; 1; 1�, we obtain the
Euler-Lagrange equation

 

�� i �r
2�i � ��i�j�j

2 � �2� � 4��3
i � 0: (5)

This equation has been discretized on a regular, two di-
mensional cubic grid with P points in each direction and a
spatial separation size �x. The simulations are evolved in
two dimensions since this allows a larger dynamical range.
Furthermore, we expect the scaling behavior in two dimen-
sions to represent an upper limit on the formation of stable
domains in three dimensions due to the increased dynami-
cal freedom for the decay of walls in three dimensions. We
evolve (5) using a second order time, fourth order space
(2)–(4) leapfrog algorithm to accurately represent any
large spatial gradients associated with the domain walls.
For further details of this particular algorithm, see
Ref. [21]. The boundary conditions we employ are peri-
odic, and so in obtaining any quantitative information
regarding the evolution of the wall network we limit the
total time of the simulation to the light crossing time. This
is the time taken for two signals emitted from the same
point travelling in opposite directions to interfere with each
other, and is given in terms of the number of simulation
timesteps T by P�x=�2�t�. The simulations in this paper
typically use P � 2048 (making them some of the largest
reported to date) with �x � 0:5 and �t � 0:1, which
means that the light crossing time is T � 5000. We use
larger grids and vary grid resolution parameters where
necessary to test the veracity of results. The choice of P,
�x and �t are important for a number of reasons. The first
is that the 2–4 algorithm must be stable and well posed.
The standard Courant condition for a linear equation in two
dimensions requires that

���
2
p

�t < �x. The nature of (5)
leads to a modification of this condition and we choose �t
for a given �x by trial and error, using the Courant condi-
tion as an upper bound. Secondly, one must consider the
wall thickness 
. The wall cannot be too thin, otherwise the
discretization will not be able to fully resolve the wall
profile, which places an upper limit on �x. On the other
hand, the wall cannot be too thick as the typical wall
separation scale l must exceed 
. We found a suitable
full-width-half-maximum (FWHM) of the wall profile
was typically five grid points.

B. Initial conditions

Initial conditions were created by two methods. Both
involve populating each grid point with a value of �i and
_�i according to some prescription. In Sec. IV we show how

regular tilings of domain walls can be constructed and so
suitable initial conditions can be generated using a Voronoi
tessellation of the plane (sometimes known as a Dirichlet
tessellation). This partitions the plane into convex poly-
gons such that each polygon contains a single generating
vacua and each subsequent vacua in a given polygon is
closer to its generating vacua than any other. The Voronoi
tessellation of a set of triangular points, for example, gives
a regular hexagonal lattice.

The second method we use is a random distribution of
�i with a given correlation length, which is more realistic
from a cosmological viewpoint. This was achieved by
distributing all possible vacua in a given model in cubic
domains covering c grid squares. Since this correlation size
introduces an unwanted length scale into the problem we
vary this parameter according to c � 1, 2, 4, 8 to check for
any dependence of the late time dynamics on initial con-
ditions. The initial value of �i is randomly chosen to be
one of the potential minima specified by (2) and the initial
value of _�i was set to zero. Since our main objective is to
observe the late time dynamics the only requirement of the
initial conditions is to distribute the value of �i randomly.
In this way the typical variance of the particular minima
which each mesh point inherits is less than 0.1% over the
entire grid. Any particular bias towards one vacua can
significantly affect the late time dynamics of the network
[5,6].

At the beginning of the evolution (5) is modified to
include a dissipative term. This dissipation smooths out
the initial sharp discontinuity between vacua over neigh-
boring grid points without creating unwanted radiation
which can confuse the interpretation of the late time dy-
namics. Figure 3 shows, for example, the smoothing out of
a an initially sharp static domain wall in the Z2 model
under dissipative dynamics. The level of dissipation is set
at 0.5 and after approximately 200 timesteps the wall
profile has relaxed. We then remove this dissipation over
the next 50 timesteps in a linear fashion and then let the
system freely evolve. In this way this dissipative regime
lasts for approximately 5% of the total simulation time. We
have checked for smoothing of walls for N � 1 and again
an initial dissipative period of approximately 200 timesteps
is sufficient. From measurements of the wall thickness we
find that when N � 1 the wall thickness 
 	 j�j�1=2��1

when � < 0 and 
 	 �N=��1=2��1 when � > 0.

C. Evaluation of number of walls

The total number of the walls in the network is fitted to
the power law n / t�� (in the analysis we fit to the number
of simulation timesteps T since t � T�t) and the density
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of walls is proportional to this, assuming Nambu-Goto
walls. In order to compute the scaling exponent � we
have computed the number of each variety of wall in a
given model. This was achieved by the following method.
At each lattice site we take the value of �i and compute
which minima on the vacuum manifold the field is nearest
to. We then compute the same quantity on an adjacent
lattice site. If the nearest minima is the same on adjacent
lattice sites this does not constitute a wall. If the nearest
minima is different then we assume there is a wall and
increment the wall count by one. In the case of the Z2

model this simply gives an estimate of the surface on which
� � 0. WhenN � 2 there are walls with different tensions
and we are able to keep track of the scaling properties of
each wall type. This method of computing the number of
walls was tested by using regular tilings of domain walls
with a known surface area.

The discrete method of computing the number of walls
leads to an overestimation of the area compared to the
continuous value, as one is approximating a smooth curve
by a set of line segments. A simple estimate of this factor
can be computed by considering a straight wall link at
some orientation in space. The estimation error is depen-
dent on the orientation and so an average factor can be
obtained by integrating over all possible orientations of the
wall link. In two dimensions this overestimation factor is
found to be 4=�. Since our main concern is computing the
scaling exponent �, and not the scaling density, this factor

is negligible if there are a large number of walls in the box
to sample from.

D. Scaling exponent evaluation

In order to compute the scaling exponent one needs to
identify a range over which to fit the data. One expects a
transient regime at the start of the simulation as the system
relaxes after the removal of the dissipative term. On the
other hand, toward the end of the simulation finite size
effects may become important. We therefore expect the
optimum fit to occur near the midpoint of the simulation.
For completeness when quoting results, however, we com-
pute the exponent in bins of time and also vary the size of
these bins. For each simulation we perform ten runs and
compute a mean and variance of the scaling exponent using
a least squares regression of data on the number of walls.

IV. REGULAR LATTICE CONFIGURATIONS

The ability of the vacuum manifold to support junctions
means that regular tilings of the plane can be constructed
and it is interesting to study their stability. In the case of
� > 0, X type junctions can be used to construct a square
type lattice, while the Y type junctions in the � < 0 model
can be used to construct a hexagonal lattice. These are
illustrated in Fig. 4, which shows the output of numerically
solving the field equations. Parameter values were chosen
so that the characteristic wall thickness 
 was far smaller

FIG. 3. Energy density through a static wall in the Z2 model for increasing timesteps T � 0 (top left), 60 (top right), 120 (bottom
left), 180 (bottom right). The initial spike in energy is due to the initial sharp discontinuity between vacua over neighboring grid points.
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than the separation scale l of the lattice. Initial conditions
to correspond to the relevant tiling configuration, set up
using the Voronoi tesselation method, and an initial period
of dissipation was applied to allow the walls to relax from
the initial discontinuity. The system was then left to freely
evolve and the output in Fig. 4 shows the network after a
time period of several light crossing times. In each case a
different color represents a distinct vacuum state. In sub-
sequent sections, where we compute scaling exponents the
simulations are terminated after a single light crossing
time, but for the purpose of demonstrating stability it is
acceptable to run the simulations for longer. Indeed, run-
ning the simulations for longer can only make clearer the
stability properties. For � > 0 the minimal model required
to tile the plane with a square lattice isO�2�, corresponding

to four domain walls with equal tension and a single type of
string. For � < 0 the minimal model required to tile the
plane with a hexagonal lattice is O�4�, corresponding to
four domain walls with equal tension and two types of
strings, again with equal tension. The necessity to useO�4�
arises from the use of periodic boundary conditions in the
numerical simulations. In the unperturbed case with exact
square or hexagonal symmetry both lattices are stable.

In previous work the macroscopic elastic properties of
both the hexagonal and square lattices were discussed [15].
The relevant rigidity coefficients for each lattice were
computed and these were used to evaluate the propagation
velocities for macroscopic scale perturbation modes. In
both cases a marginally stable zero mode was shown to
exist. In the case of the square lattice this zero mode occurs
for a finite number of directions and was shown to be of
infinite extent and not sufficient for the construction of
locally confined perturbations which might lead to an
instability. In particular, it was shown that the zero mode
corresponds to the walls moving toward each other at a
constant velocity. However, in the case of the hexagonal
lattice the zero mode exists for all wavenumber directions
and can provide a sufficient basis for locally destabilizing
perturbations.

These analytic results can be tested in the context of the
cubic anisotropy model studied here. Each lattice was
perturbed from its initial tiling configuration and after an
initial period of dissipation was left to evolve freely. The
energy density of each network at various time slices in the
simulation are shown in Figs. 5 and 6. The overall structure
of the square lattice remains intact at the end of the
simulation. The zero mode is apparent as there is nothing
preventing parallel walls drifting together. If the walls did
drift too far and annihilate each other, the consequent
annihilation would, however, not destabilize the entire
lattice. For the hexagonal lattice the perturbation has rather
more serious consequences. The zero mode allows hexa-
gons to reduce in size with no change in energy. When the
domain is sufficiently small in size, there is annihilation
between walls. Running the simulation beyond the last
frame shown in Fig. 6 confirms that the endpoint is a single
vacuum state. This local mode then continues to grow and
subsequently destroys the entire lattice. Both of these

FIG. 5. Energy density of a perturbed square lattice at subsequent time slices of the simulation. The figures on the left, middle and
right shows the configuration at 0, 2 and 4 light crossing times, respectively.

FIG. 4 (color online). Regular tilings of the plane constructed
from the cubic anisotropy model. The square tilings on the top
are constructed from a broken O�2� model with � > 0 and the
hexagonal tilings on the bottom from a broken O�4� model with
� < 0. The figures on the left show distinct vacuum states in
different colors/shades of gray and the figures on the right the
correspondingly energy density associated with each wall.
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conclusions appear to support the basic picture presented
in Ref. [15].

From a cosmological point of view, the tuning required
to construct stable lattices as we have done here is a severe
limitation of the model. However, studying the properties
of lattice configurations can help in the interpretation of
results when evolving the equations of motion from ran-
dom initial conditions.

V. STANDARD CASE OF Z2 SYMMETRY
BREAKING

In order to calibrate and validate our results for N � 2
(presented in the next section) we have performed an
extensive suite of simulations in the N � 1, � � 0 case.
The simulations use a grid size of 20482, �x � 0:5 and
�t � 0:1 with the potential parameters � � � � 1 which
corresponds to the general case by an overall scaling of the
energy and length of walls. The FWHM wall profile in this
particular case is then approximately four grid points. We

populate the initial grid with random initial conditions
using the second method described in Sec. III B, and the
dynamical evolution for a sample simulation is shown in
Fig. 7. The formation of an infinite domain is clearly
apparent containing what are effectively closed walls,
with a single vacuum state eventually occupying the entire
grid. In Table I we present results for the scaling exponent
� as a function of the initial correlation size. The scaling
exponent is computed in bins of 500 timesteps, where the
time quoted is the central value in each bin. Results are
computed from an ensemble of ten simulations with differ-
ent seeds for the initial conditions. To gain some idea of the
evolution of the wall network, the results in each bin can be
compared with the output for a single run at the equivalent
timestep in Fig. 7.

Results are in broad agreement with other work [4–9],
validating our methods. In particular, there are several
common features which warrant some discussion. The
most significant is evolution of the scaling exponent.
There has been some suggestion of a logarithmic correc-

FIG. 7 (color online). Distribution of vacua in the Z2 model. The time slices are taken in steps of 500 starting from the initial state
(top left to bottom right). The different colors/shades of gray show which of the two minima on the vacuum manifold the field is
nearest to. Blue/dark- gray regions represent the minima f�g and red/light-gray regions the minima f�g. The length of the boundary
between colors gives an estimate of the number of walls.

FIG. 6. Energy density of a perturbed hexagonal lattice at the same time slices as for the perturbed square lattice.
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tion to this exponent [4]. We find hints of some evolution of
the scaling exponent but within the error limits the results
are inconclusive. Indeed, even with very large simulations
it is difficult to pinpoint any such correction [8]. The
approach to scaling is relatively slow, requiring several
hundred timesteps after the termination of the dissipative
regime. This is illustrated in Fig. 8, where we plot each of
the ten runs for c � 2. The results are consistent with t�1

scaling after approximately 1000 timesteps. Referring to
Table I, evaluation of the scaling exponent in the first time
bin gives a value consistent with the results of [4,5] and the
following two bins a value more compatible with [6–9].
The error bars then start to increase significantly as a single
domain begins to dominate the simulation. The similarity
of the scaling exponents obtained for different values c
gives confidence that any residual ‘‘memory‘‘ of the initial
length scale is erased by the time we begin regression.
Indeed, the similarity of the scaling exponents for different
initial conditions provides some evidence that the scaling is
self-similar and any deviation from this is due to limited
dynamical range. In order to compare results with those

when N � 1 we use the combined results, for different
values c, listed in Table I. Rather than choose a single
absolute value for the scaling exponent we compare results
over time bins.

VI. SIMULATIONS OF THE CUBIC ANISOTROPY
MODEL

We now turn our attention to the case where N � 2. The
wall evolution is quantitatively different to the N � 1
model where the dynamics of the network become domi-
nated by the evolution of a single domain. Here, the
existence of nontrivial junctions modifies the dynamical
behavior. Simulation parameters are chosen as in the N �
1 case and Fig. 9 shows the evolution of an N � 3 model
with � � 0:1 using an initial correlation size of two grid
points (c � 2). The initial network is very dense with a
large number of domain walls. The density of walls is
greater than in the N � 1 model at an equivalent timestep.
This is due to the vacuum manifold containing 23 discrete
points admitting a variety of domain wall configurations
rather than just a single wall as in the N � 1 case. Since
three different types of wall can be produced in the N � 3
model, a simple counting exercise reveals that in a random
distribution 3=7 of the initial wall density will correspond
to walls of the lowest tension, 3=7 will have intermediate
tension and 1=7 the highest tension. This is confirmed in
Fig. 10, where we plot the total number of walls for each
variety as a function of time for the single simulation
depicted in Fig. 9. There is an initial conversion of high
tension walls to low tension walls - after only a small
number of timesteps the number of low tension walls has
increased by a factor of 2. The number of high tension
walls decays very rapidly with the system attempting to
minimize energy by rearranging the distribution of vacua
on the vacuum manifold.

A favorable configuration is four low tension walls
meeting at a string, corresponding to the vacua arranging
themselves on a face of a cube on the vacuum manifold.
The appearance of such configurations can be clearly seen
in Fig. 9. In these X type junctions equilibrium is main-
tained by opposing walls of the same tension. However, the
network shows no sign of the formation of stable lattices—
the walls continue to contract under their own surface
tension and decay processes are efficient. As noted in
Sec. IV, there is nothing to prevent parallel walls from
drifting together and annihilating each other. Referring to
Fig. 10, after some initial transient, the low tension walls
enter a scaling regime as they undergo a self-similar re-
arrangement process.

Figure 11 shows the evolution of an N � 3 simulation
with � � �0:1. The initial network is not as dense as the
� � 0:1 case due to a smaller number of minima on the
vacuum manifold. Two types of wall can be produced
when � < 0 and in the N � 3 model 5=6 of the initial
wall density corresponds to walls of the lowest tension.

FIG. 8 (color online). Evolution of the number of walls n as a
function of simulation time T in the Z2 model for each of the ten
simulations with c � 2. Also plotted for comparison is t�1

scaling (thick red line).

TABLE I. Mean and 1� values of the scaling exponent � in
different time bins for variable initial correlation sizes.

Time
c 1000 1500 2000 2500

1 0:86
 0:06 0:98
 0:10 0:97
 0:12 1:14
 0:17
2 0:87
 0:07 0:96
 0:06 0:97
 0:07 0:99
 0:21
4 0:88
 0:07 0:96
 0:06 0:97
 0:07 0:99
 0:22
8 0:87
 0:06 0:95
 0:10 0:98
 0:09 1:04
 0:19
ALL 0:87
 0:06 0:96
 0:08 0:97
 0:09 1:04
 0:20
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The high tension walls again decay rapidly into low tension
walls over a small number of timesteps. A favorable con-
figuration in this case is three light walls meeting at a string
at an intersection angle of 2�=3, corresponding to a trian-
gular arrangement on the vacuum manifold and a hexago-

nal wall lattice. However, the dynamics of the network is
again dominated by the contraction of walls under their
surface tension contrary to the suggestions made in
Ref. [20]. No regular hexagonal domains form and do-
mains frequently join as the network coarsens.

In order to quantify whether the scaling relation is the
same as the N � 1 model we perform ten runs for each set
of parameters and have computed the average scaling
exponent. We investigate models with 2 � N � 7 to check
for any dependence on the number of vacua. It is possible,
for example, that the increased number of vacua for largeN
will lead to a different annihilation probability between
domains, which could slow down the rate of domain
growth. We consider the symmetry breaking parameter
� � 
0:1 which gives rise to the two different types of
network - those which form only X type junctions (� > 0)
and those which form Y type junctions (� < 0). The late
time dynamics were again found to be independent of the
initial conditions and so for clarity we present average
scaling exponents. These results are presented in Table II
and are summarized below:

(i) Typically, in most of the models �< 1, although
not by much. These deviations are not statistically
significant in individual time bins, but it is interest-
ing to note the general trend for �< 1. This is a
feature of most measurements of the scaling expo-
nents reported to date, which is most likely due to
finite size effects. In the N � 1 model we found
hints of a weakly increasing scaling exponent as a
function of time. Here, in some cases, there are

FIG. 10 (color online). Evolution of the number of walls in the
N � 3 model with � � 0:1. There are three types of wall in this
model—walls of low tension (solid black line), intermediate
tension (dotted line) and high tension (dashed line). The low
tension walls enter a scaling regime while the walls of high
tension decay off rapidly. Also plotted for comparison is t�1

scaling (thick red line).

FIG. 9 (color online). Distribution of vacua in the N � 3 model with � � 0:1. The time slices are taken in steps of 500 starting from
the initial state (top left to bottom right). The different colors/shades of gray show which of the eight minima on the vacuum manifold
which the field is nearest to.
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hints of a weakly decreasing scaling exponent, but
the limitation of statistical errors makes it difficult
to give any firm conclusions.

(ii) In the � � �0:1 models there is no significant
change in � as a function of N, in conflict with
the results of Ref. [20]. The larger number of vacua
does not reduce the annihilation probability be-
tween adjacent domains such that the coarsening
of the network is any slower. The network appears
to enter the scaling regime quickly - at 1000 time-
steps with � 	 1 and small error bars. There is an
increase in these error bars as a function of time as

in the N � 1 model. In the N � 1 model these
increased error bars were attributed to a single
vacua dominating the box size. In the models
studied here there are still a large number of walls
present in the box to sample from and so a sample
variance error in measuring the number of walls
seems less likely. The ability of junctions to form
domains means that the variance between simula-
tions could be due to the network actually physi-
cally scaling differently depending on the
particular arrangement of domains. Given the range
of values for the scaling exponent which we found

FIG. 11 (color online). Distribution of vacua in the N � 3 model with � � �0:1. The time slices are taken in steps of 500 starting
from the initial state (top left to bottom right).

TABLE II. Mean and 1� values of the scaling exponent � for variable N and � as a function of simulation time.

Time
N � 1000 1500 2000 2500 3000 3500 4000

2 0.1 0:92
 0:04 1:00
 0:09 0:99
 0:09 0:95
 0:14 0:97
 0:16 1:02
 0:17 1:00
 0:21
2 �0:1 0:91
 0:04 0:96
 0:08 0:98
 0:12 0:94
 0:13 1:05
 0:16 1:05
 0:28 1:09
 0:25
3 0.1 0:88
 0:03 0:99
 0:06 0:99
 0:05 0:93
 0:14 0:90
 0:10 0:91
 0:15 0:90
 0:17
3 �0:1 0:98
 0:04 0:98
 0:07 0:93
 0:09 0:95
 0:11 0:96
 0:15 0:98
 0:17 0:97
 0:21
4 0.1 0:84
 0:02 0:93
 0:05 0:93
 0:08 0:97
 0:08 0:98
 0:12 0:96
 0:07 1:00
 0:17
4 �0:1 0:98
 0:03 0:96
 0:08 0:95
 0:11 0:99
 0:12 0:92
 0:12 0:95
 0:13 0:92
 0:15
5 0.1 0:81
 0:04 0:89
 0:06 0:90
 0:05 0:94
 0:08 0:96
 0:11 0:91
 0:13 0:97
 0:13
5 �0:1 0:98
 0:02 0:96
 0:04 0:99
 0:10 0:94
 0:12 0:92
 0:07 0:92
 0:18 0:91
 0:24
6 0.1 0:80
 0:02 0:88
 0:03 0:94
 0:03 0:95
 0:08 0:92
 0:09 0:91
 0:11 0:99
 0:13
6 �0:1 0:99
 0:03 0:97
 0:07 1:00
 0:06 1:01
 0:07 0:97
 0:10 0:97
 0:11 0:93
 0:14
7 0.1 0:75
 0:02 0:83
 0:05 0:90
 0:06 0:96
 0:07 0:94
 0:08 0:98
 0:07 1:02
 0:08
7 �0:1 0:99
 0:04 0:96
 0:06 0:95
 0:07 1:01
 0:11 1:01
 0:13 0:97
 0:15 1:06
 0:16
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for the Z2 model, which is believed to scale, we
conclude that these models are very much compat-
ible with scaling.

(iii) For � � 0:1 the situation is less clear. The values
computed for� are on the whole lower, particularly
for larger values of N, although they are still not
significantly less than 1 for all times. We also
observe that for increasing N there is a longer
initial transient regime. This effect appears to
weaken with increasing time and might be attrib-
uted to the thickness of the walls. In the case where
� < 0 the wall thickness does not vary with N - the
value of � � �0:1 used here gives rise to a FWHM
wall profile of approximately five grid points. In the
case where � > 0 the wall thickness scales approxi-
mately as N1=2 —in the case where N � 5, for
example, the FWHM wall profile increases to ap-
proximately 11 grid points when � � 0:1 and the
ratio of the wall separation to thickness is de-
creased. In more physically realistic situations,
the thickness of the walls should not affect their
dynamics when well separated.

We have tested the veracity of these basic conclusions by
performing a series of further simulations. As in the N � 1
model we have tried a range of initial correlation sizes c �
1, 2, 4, 8. Again, it is found that the late time dynamics are
independent of the initial conditions. We have also consid-
ered variations in the box size and have reduced the wall
thickness by increasing �. For the most part the results are
compatible with those presented in Table II.

We will concentrate our discussion on the case ofN � 5.
We have performed runs with a larger grid of 30002, an
increased � to 0.5 (which reduces the FWHM of the wall to
5 grid points as is the case for the N � 3, � � 0:1 model)
and an increased value of �x � 0:8 (with �t adjusted to
0.2). The scaling exponents computed as a function of time
are presented in Fig. 12. Each one of these modifications
increases the value of �1=2P�xwhich is proportional to the
size of the box, and hence the natural average wall sepa-
ration, divided by the wall size. This is the figure of merit
when discussing the effect of finite size effects on the
exponents. These results would tend to suggest that one
can explain the low values of � observed in the range T �
1000–2000 for N � 5, 6, 7 can be explained by a decrease
in the ratio of the wall separation to the wall thickness.

VII. DISCUSSION

We have studied the stability and dynamical evolution of
a network of domain walls where a global O�N� symmetry
is broken to a (hyper)cubic symmetry group. In these
models a variety of domain wall systems can arise with
either X or Y type junctions. We have investigated the
stability properties of hexagonal and square lattices arising
from these junctions and have found results consistent with
earlier work [15] using a continuum approximation. These
results are encouraging in that they validate this method of
assessing the stability of various wall configurations.
However, they only show that these lattices are locally
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FIG. 12. Evolution of the scaling exponent � in the N � 5 model. Top right as in Table II, top left using a 30002 grid, bottom right
with � � 0:5 and bottom left using �x � 0:8, �t � 0:2.
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stable to small perturbations. They do not show that they
are global attractor solutions.

In simulations where initial conditions are random, we
find that the networks converge toward a self-similar scal-
ing regime. There are hints that the scaling exponent is
slightly less than 1, but we attribute these as being due to
the finite box size and grid resolution which we are forced
to use. These results are, in some sense, no surprise since
the model has no scale in it which fixes the size of the
domains. The only length scale is the horizon size and
hence the wall network loses energy as fast as the causality
allows, that is, L� t.

We conclude that the models considered here cannot
give rise to a stable lattice from random initial conditions
as would be required to explain the dark energy of the
Universe. This does not, however, preclude the possibility
of more complicated models containing junctions might
lead to a lattice [22,23].
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