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In standard general-relativistic cosmology, for fluids with a linear equation of state (EoS) P � w� or
scalar fields, the high isotropy of the universe requires special initial conditions: singularities are velocity
dominated and anisotropic in general. In brane world effective 4-dimensional cosmological models an
effective term, quadratic in the energy density, appears in the evolution equations, which has been shown
to be responsible for the suppression of anisotropy and inhomogeneities at the singularity under
reasonable assumptions. Thus in the brane world isotropy is generically built in, and singularities are
matter dominated. There is no reason why the effective EoS of matter should be linear at the highest
energies, and an effective nonlinear EoS may describe dark energy or unified dark matter (Paper I
[K. Ananda and M. Bruni, preceding article, Phys. Rev. D 74, 023523 (2006).]). In view of this, here we
investigate the effects of a quadratic EoS in homogenous and inhomogeneous anisotropic cosmological
models in general relativity, in order to understand if in this standard context the quadratic EoS can
isotropize the universe at early times. With respect to Paper I [K. Ananda and M. Bruni, preceding article,
Phys. Rev. D 74, 023523 (2006).], here we use the simplified EoS P � ��� �2=�c, which still allows for
an effective cosmological constant and phantom behavior, and is general enough to analyze the dynamics
at high energies. We first study homogenous and anisotropic Bianchi I and V models, focusing on
singularities. Using dynamical systems methods, we find the fixed points of the system and study their
stability. We find that models with standard nonphantom behavior are in general asymptotic in the past to
an isotropic fixed point IS, i.e. in these models even an arbitrarily large anisotropy is suppressed in the
past: the singularity is matter dominated. Using covariant and gauge-invariant variables, we then study
linear anisotropic and inhomogeneous perturbations about the homogenous and isotropic spatially flat
models with a quadratic EoS. We find that, in the large-scale limit, all perturbations decay asymptotically
in the past, indicating that the isotropic fixed point IS is the general asymptotic past attractor for
nonphantom inhomogeneous models with a quadratic EoS.
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I. INTRODUCTION

Observations of large scale structure (LSS) [1] and
cosmic microwave background radiation (CMBR) [2–4]
indicate that the universe is highly homogenous and iso-
tropic on large scales. Under standard assumptions on the
matter content, in the standard general relativistic cosmo-
logical models isotropy is a special feature, requiring a
high degree of fine tuning (a special set of initial condi-
tions) in order to reproduce the observed universe.
Specifically, in the set of spatially homogeneous cosmo-
logical models with a fluid which satisfy the energy con-
ditions � � jPj and P � 0, those which approach isotropy
at late times is of measure zero [5]. In these models the
anisotropy dominates the dynamics in the neighborhood of
the singularity, while the effect of matter is negligible: thus
the singularity can be said to be velocity dominated [6]. In
general anisotropic models do not isotropize sufficiently as
they evolve into the future (models do not evolve towards a
Friedmann-Robertson-Walker universe rapidly enough).
This problem is known as the isotropy problem and can
be solved by inflation. Many investigations on this issue
show that a large class of models evolve towards a homo-
genous and isotropic model when under the influence of

inflationary matter. This means that even models with
initially high levels of anisotropy can evolve into the uni-
verse we observe today. A large body of work exists
relating specifically to the study of spatially homogenous
and anisotropic Bianchi cosmological models. In a classi-
cal paper, Wald showed that initially expanding Bianchi
models with a cosmological constant asymptotically ap-
proach a de Sitter state (hence a spatially homogenous and
isotropic model), except for the Bianchi type IX mixmaster
models which may recollapse [7]. In the case of inhomoge-
neous models it is not so clear cut and in order for inflation
to begin, sufficiently homogenous initial conditions are
required (see e.g. [8,9]). As far as singularities in general
relativity are concerned, it is widely accepted [10] that the
Belinskii, Khalatnikov and Lifshitz (BKL) [11,12] picture
is correct: for fluids with linear EoS P � w� (w< 1) or
scalar fields,1 when the singularity of generic inhomoge-
neous anisotropic cosmological models is approached, the
dynamics is asymptotically that of the mixmaster model,

1Massless scalar fields are equivalent to a stiff fluid P � �
(w � 1) and are special in this respect, see [13] and references
therein.
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the singularity is thus velocity dominated and the effect of
matter is negligible [13].

More recently various theories of gravity that go beyond
general relativity have been considered. For instance, high
energy modifications of gravity could come from extra
dimensions (as required in string theory). In the brane
world [14–17] scenario the extra dimensions produce a
term quadratic in the energy density in the 4-dimensional
effective energy-momentum tensor, i.e. this quadratic term
appears in the 4-d evolution and constraint equations on the
brane. Under the reasonable assumption of neglecting 5-d
Weyl tensor contributions in these equations, this quadratic
term has the very interesting effect of suppressing
anisotropy at early enough times, as the singularity is
approached. In the case of a Bianchi I brane-world cos-
mology containing a scalar field with a large kinetic term
the initial expansion is quasi-isotropic [18]. In this sce-
nario, the initial anisotropy provides increased damping in
the scalar field equation of motion, thus resulting in an
extended period of inflation. The rapid decay of the an-
isotropy results in the class of initial conditions allowed by
observations to be greatly increased. Under the same as-
sumptions, Bianchi I and Bianchi V brane-world cosmo-
logical models containing standard cosmological fluids
with linear equation of state (EoS) (P=� � w> 0) also
behave in a similar manner [19]. The same is also true for
more general homogeneous models [20,21] and even some
inhomogeneous exact solutions [22]. Finally, within the
limitations of a perturbative treatment, the quadratic-term-
dominated isotropic brane-world models have been shown
to be local past attractors in the larger state space of
inhomogeneous and anisotropic models [23,24]. More pre-
cisely, again assuming that the 5-d Weyl tensor contribu-
tion to the brane can be neglected, large-scale perturbations
of the isotropic models vanish in the past, approaching the
singularity. Large scale perturbations �� H�1 are the
only type relevant to this kind of analysis for noninfla-
tionary matter, because for any given � there is always an
early enough time such that �� H�1 is satisfied.2 Thus in
the brane scenario the observed high isotropy of the uni-
verse is built in, i.e. the natural outcome of generic initial
conditions, unlike in general relativity where general cos-
mological models with a linear EoS are highly anisotropic
in the past, approaching the singularity a la BKL, i.e. with
mixmaster dynamics [11–13].

It would therefore be interesting to see if the behavior of
the anisotropy at the singularity found in the brane scenario
is recreated in the general-relativistic context if we con-
sider a quadratic term in the EoS. That is, do we have a
scenario where, in general relativity, the generic asymp-
totic attractor in the past is an isotropic model, thanks to a
nonlinear EoS. This is the question we aim to investigate,
for the specific case of the EoS P � ��� �2=�c. This is a
simplified version of that used in Paper I [25], where the
focus was on using a quadratic EoS to represent a dark
energy component or unified dark matter. It is general
enough to analyze the high energy dynamics we are inter-
ested here, while still allowing for an effective cosmologi-
cal constant and phantom behavior.

The paper is organized as follows. In Sec. II we outline
the setup of the models under investigation, defining three
classes, one of which represents a fluid with phantom
behavior. Using dynamical system methods [26,27], in
Sec. III we consider the anisotropic Bianchi I and V class
of homogenous models containing a perfect fluid with
quadratic EoS, showing how models with standard non-
phantom matter are asymptotic in the past to an isotropic
fixed point IS. Using covariant and gauge-invariant varia-
bles [28–30], in Sec. IV we give the linearized evolution
and constraint equations for generic inhomogeneous and
anisotropic perturbations about a flat Friedmann model
with a quadratic EoS. We solve the equations in the large
scale limit �� H�1 and show that the perturbations van-
ish as the singularity is approached, indicating that the
isotropic model IS is the generic past attractor. We then
finish with some concluding remarks and discussion in
Sec. V.

II. THE MODEL

We begin with a summary of the most relevant points
that can be derived mostly from an analysis of energy
conservation alone. More details can be found in Sec. II
in Paper I [25].

The energy conservation equation for a cosmological
model containing a perfect fluid is:

 _� � �3H��� P�; (1)

where � is the energy density, P the isotropic pressure and
H is the Hubble expansion scalar. An average scale factor a
is defined, at least locally, by _a=a � H. Through this
relation solutions of Eq. (1) can be found in terms of a,
but first an EoS must be specified. Usually this is taken to
be a linear function of the energy density of the form P �
w�, with w � constant. In this case Eq. (1) gives:

 � � �o

�
a
ao

�
�3�w�1�

: (2)

In the case of the homogenous and anisotropic Bianchi I
cosmological models, the amplitude of the shear scales as:

2We are referring here to the well known fact that during a
noninflationary (i.e. decelerated) phase �a < 0 a given scale much
larger than the Hubble horizon �� H�1 at a given time will
‘‘enter the horizon’’ (� � H�1) at a later time. In practice,
neglecting small scales perturbations is equivalent to neglect
gradients and thus the Laplace operator term in the evolution
equations, which then become ordinary differential equations. In
the perturbative context, this is analogous to the BKL approxi-
mation [11,13].
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 �2 � �2
o

�
a
ao

�
�6
: (3)

This example shows how the shear can decay rapidly in an
expanding model, growing larger for smaller a. If the
dynamics of the model is such that a! 0, both � and �
blow up, and the model has a physical singularity. In the
case w<�1, the so called ‘‘phantom’’ fluid [31], the
energy density counter intuitively decays (grows) in the
past (future) and therefore any shear component always
comes to dominate at the initial ‘‘Big Bang’’ singularity. In
the case when �1 	 w< 1 the energy density decays
during expansion, but at a slower rate than the shear, so
that once again the shear component dominates at the
singularity. In approaching these singularities matter with
linear EoS w< 1 is uninfluential, therefore these singular-
ities may be termed velocity dominated [6]. It is only in the
case when w> 1 (‘‘superstiff’’ fluid) that the energy den-
sity is dominant in the past and therefore the initial singu-
larity is isotropic. This indicates that as the initial
singularity is approached in the standard homogenous
model with w< 1, any residual anisotropy will generally
come to dominate near the singularity. The anisotropy is a
generic feature of these models and the initial singularity is
in general anisotropic and velocity dominated.

As discussed earlier, motivated by the results in the
brane-world models, we aim to investigate the effects of
introducing a nonlinear EoS on the behavior of anisotropic
models. The EoS we propose is quadratic in the energy
density (we neglect the constant pressure term introduced
in Paper I [25] as in general this only modifies late time
behavior):

 P � ���
��2

�c
: (4)

The discrete parameter � denotes the sign of the quadratic
term, � 2 f�1; 1g, and �c > 0 sets the energy scale above
which this term becomes relevant. The energy conservation
Eq. (1) can now be integrated to give the scaling of the
energy density as a function of the scale factor (except for
� � �1)

 � �
A��� 1��c
a3���1� � �A

; (5)

 A �
�oa

3���1�
o

��� 1��c � ��o
; (6)

where �o, ao represent the energy density and scale factor
at an arbitrary time to. This is valid for all values of �, �c
and � (� � �1). Defining

 �� � ���1� ���c; (7)

the fluid admits an effective positive cosmological constant
point, �� > 0, only if ��1� ��< 0. As shown in Paper I
[25], in the case of � � �1 the fluid generally behaves

either in a phantom manner or is asymptotic to a finite
energy density in the past, the effective cosmological
constant ��, for all open and flat models. In this scenario,
the initial singularity is going to be dominated by aniso-
tropic expansion as seen in the standard linear EoS case,
due to the subdominance of the energy density at early
times; therefore we do not consider the � � �1 case
further.

In the case of � � �1, the expression (5) for the energy
density ��a� is conveniently rewritten in three different
ways, defining a? � jAj1=3���1� and assuming � > 0.

(A) �1� ��> 0, �� < 0,

 � �
�1� ���c
� aa?
�3�1��� � 1

: (8)

In this case a? < a <1, with1> �> 0. The past
singularity is similar to certain future singularities
found in dark energy models [32,33] and is referred
to as Type III singularities:

(i) For t! t?, a! a?, �! 1 and jPj ! 1
Where t? and a? are constants with a? � 0
(we reach a
 at a finite t
). The main differ-
ence is that in our case the singularity occurs
in the past. At late times the fluid behaves in a
similar manner to a fluid with a linear EoS
and w � �.

(B) �1� ��< 0, 0< �� <�,

 � �
��

1� � aa?�
3�1���

: (9)

In this case a? < a <1, with 1> �> ��. As in
case A, the fluid approaches a Type III singularity in
the past, but now approaches an effective cosmo-
logical constant at late times.

(C) �1� ��< 0, 0< �< ��,

 � �
��

1� � aa?�
3�1���

: (10)

In this case 0< a<1, with 0< �< ��. The fluid
behaves in a phantom manner but tends to an effective
cosmological constant at late times.

In the cases A and B, as we approach the past singularity
the energy density approaches infinity, in fact the singu-
larity occurs at a finite scale factor, that is for the energy
density one has �! 1 as a! a?. The cosmological
model emerges at a finite scale factor a?, with infinite
energy density and infinite isotropic pressure P. The model
emerges from a curvature singularity, infinitely decelerates
and asymptotically approaches a standard flat Friedmann
model with a linear EoS (case A) or a de Sitter model
(case B). In the case C, the fluid behaves in a phantom
manner and approaches �� at late times. In this case the
energy density is subdominant at early times and the
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anisotropy will dominate as we will show in the proceeding
sections. In cases A and B, we have the possibility that the
energy density could be the dominant component in the
past, forcing the singularity to be isotropic. This would
result in isotropic expansion at early times as seen in the
brane-world model, with the fluid also approaching a non-
superstiff EoS at late times. We will now proceed with the
analysis of anisotropic cosmological models containing a
fluid with a quadratic EoS.

III. DYNAMICS OF BIANCHI MODELS

We now study the dynamics of homogeneous and aniso-
tropic Bianchi cosmological models. In particular we in-
vestigate the Bianchi I and V classes of models that contain
the flat and open Friedmann models. The matter content
will be modeled by a nontilted (that is the fluid flow
remains orthogonal to the group orbits) perfect fluid with
a quadratic EoS.

We make use of the orthonormal frame formalism which
results in a system of first-order evolution equations. We
have adopted a notation consistent with that used in [26]
(Greek indices run from � � 1; . . . ; 3 and Latin indices run
from i � 0; . . . ; 3). The orthonormal frame formalism is a
1� 3 decomposition of the Einstein field equations into
evolution and constraint equations. The decomposition is
carried out relative to the timelike vector field e0 of a given
orthonormal frame feig. In the case of models which admit
an isometry group, e0 is chosen to be the normal (u) to the
spacelike group orbits. The Bianchi models are such cos-
mological models, they admit a three dimensional group of
isometries which act simply and transitively on the space-
like hyper-surfaces (surfaces of homogeneity). The ortho-
normal frame fu; e�g, is such that:

 u � u � �1; u � e� � 0; e� � e� � ���: (11)

The dynamics can then be described in terms of the spatial
commutation functions, the kinematical quantities and the
matter variables. The spatial commutation functions,
���	, are defined by the commutation relations between
the spatial basis vectors such that:

 �e�; e� � �	��e	: (12)

The spatial commutation functions can be decomposed
into a 2-index symmetric object and a 1-index object which
determine the connections on the spacelike 3-surfaces.

 ���	 � "�	
n�
 � a��	� � a	��
�: (13)

The kinematical quantities include the Hubble scalar H,
the shear tensor ��� and the angular velocity ��, relative
to a Fermi-propagated spatial frame, of the spatial frame
fe�g along the timelike vector u. The relevant matter
variables are the energy density � and the isotropic pres-
sure P, while the energy flux and the anisotropic pressure
are set to zero as we are considering a perfect fluid. The

decomposed Einstein field equations for a general Bianchi
model containing a perfect fluid then take the form

 

_H � �H2 � 2
3�

2 � 1
6��� 3P�; (14)

 

_��� � �3H��� � �3�S�� � 2�
�"	
���	 � "	
���	�;

(15)

 � � 3H2 � �2 � 1
2
�3�R; (16)

 0 � 3��
�a� � "�

�	��

n
	: (17)

The trace-free spatial Ricci tensor (3S�� �
3R�� �

1
3

3R���) and the spatial curvature scalar (3R � 3R��) can
be given in terms of the spatial commutation functions

 

3S�� � b�� �
1
3�b	

	���� � 2a
�"

	

�n�	 � "

	

�n�	�;

(18)

 

3R � �1
2b	

	 � 6a	a
	: (19)

The quantity b��, can be expressed in terms of the spatial
commutation functions and has the form

 b�� � 2n�	n	� � n		n��: (20)

The Jacobi identity for vector fields when applied to the
spatial frame vectors e�, in conjunction with the Einstein
field equations give a set of evolution and constraints
equations:

 _n �� � �Hn�� � 2���	n�	 � ��
	n�	�

� 2�
�"	
���	 � "	
���	�; (21)

 _a � � �Ha� � ���a� � "�	
a	�
; (22)

 0 � n��a�: (23)

The evolution equation for the energy density results from
the contracted Bianchi identities, or more directly from the
conservation equations, and has the form (1). The latter
with the above system of equations reduce to the evolution
and constraint equations for given nontilted perfect fluid
Bianchi model by making further restrictions on the spatial
commutation functions �n��; a�� and kinematical quanti-
ties ����;���. The Bianchi I and V models are considered
separately in the following subsections.

A. Bianchi I cosmologies

The Bianchi I models are a subclass of the Bianchi
Class A models (a� � 0). These models are homogeneous
and anisotropic cosmological models containing the flat
Friedmann (F) model. In the case of Bianchi I, the group
invariant orthonormal frame fu; e�g can be further speci-
alized such that:
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 a� � n�� � 0; (24)

 �	�� � 0: (25)

This in turn means that the three curvature of the spatial
hyper-surfaces (18) and (19) is zero:

 

�3�R�� � 0: (26)

The Einstein field Eqs. (15) and (17) and the Jacobi identity
(21) imply:

 ��� � diag��11; �22; �33�; �� � 0: (27)

The analysis of the system of equations can be simplified
by introducing the following set of normalized dimension-
less variables:

 x �
�
�c
; y �

H������
�c
p ; z �

�������
�c
p ; � �

������
�c
p

t;

(28)

where � �
�����������������������
������=2

q
. In addition, it is customary to

introduce

 � �
�
H
�
z
y

(29)

as a dynamically dimensionless measure of anisotropy: we
can refer to a cosmological model as isotropic in some
limit if, in that limit, �! 0. In particular, if there is a
singularity for some as (possibly zero), we refer to the
singularity as isotropic if �! 0 in the limit a! as.

The above normalization to �c is useful because the
energy scale �c itself disappears from the dynamical sys-
tem: in terms of the dimensionless variables above, the
complete system of equations for Bianchi I models is
explicitly made scale invariant, and is:

 y2 �
x
3
�
z2

3
; (30)

 x0 � �3y���� 1�x� x2�; (31)

 y0 � �y2 �
1

6
��3�� 1�x� 3x2�; (32)

 z0 � �3yz: (33)

The primes denote differentiation with respect to �, the
normalized time variable. The variable x is the normalized
energy density, y is the normalized Hubble scalar and z is
the normalized shear. The effective cosmological constant
point is now given by x� � ��1� ��. We only consider
the region of the state space for which the energy density
remains positive (x � 0) and models which are expanding
(y � 0). The evolution equation for the shear can be inte-
grated to give:

 z � zo

�
a
ao

�
�3
: (34)

The shear tends to grow in the past and rapidly decays at
late times. Using Eqs. (8)–(10) and (34) we can see how
the shear scales with respect to the energy density (by
substituting for the scale factor in each case) for each of
the three subcases of the fluid.
Case A: �1� ��> 0, �� < 0,

 z � zo

�
x

j�� 1j � x

�
�1=j��1j�

: (35)

In this case, at early times the energy density
diverges, x! 1 and the shear goes to a constant
value, z! zo. The initial singularity is domi-
nated by the energy density and is forced to be
isotropic, as �! 0. At late times, x! 0 and z!
0.

Case B: �1� ��< 0, 0<�� <�,

 z � zo

�
x� x�

x

�
�1=j��1j�

: (36)

In this case, at early times the energy density
diverges, x! 1; the shear goes to a constant,
z! zo. The initial singularity is again dominated
by the energy density and is forced to be iso-
tropic, with �! 0. At late times the energy
density approaches a constant value, x! x�

and z! 0.
Case C: �1� ��< 0, 0<�< ��,

 z � zo

�
x� � x
x

�
�1=j��1j�

: (37)

In the final case, the fluid behaves in a phantom
manner. At early times x! 0 and z! 1. The
initial singularity is now dominated by the shear
and is anisotropic. At late times the energy den-
sity approaches a constant value, x! x� and z!
0.

In cases A and B we expect the generic past attractor to
be an isotropic singularity, while at late times we expect
either a Minkowski or de Sitter model to be the attractor. In
case C, the fluid behaves in a phantom manner and we
expect models to be asymptotic to a anisotropic singularity
in the past and a de Sitter model in the future. We now carry
out a dynamical systems analysis of the above system. The
system can be reduced from a 3D system to a 2D system by
substituting for a variable using the generalized Friedmann
Eq. (30). We choose to remove the normalized Hubble
scalar y, assuming expansion, y > 0. The resulting reduced
planar dynamical system is then:

 x0 � �
��������������������
3�x� z2�

q
���� 1�x� x2�; (38)
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 z0 � �
��������������������
3�x� z2�

q
z: (39)

The above system of equations is of the form u0i � fi�uj�.
Since this system is autonomous, trajectories in state space
connect the fixed/equilibrium points of the system (uj;o),
which satisfy the system of equations fi�uj;0� � 0. The
stability nature of the fixed points can be found by carrying
out a linear stability analysis, see Section II.B in Paper I
[25] for a summary, and e.g. [26,27] for more details. The
fixed points of the reduced planar system (38) and (39), the
corresponding eigenvalues and there existence conditions
(the energy density remains positive (x � 0) and all three
variables are real �x; y; z 2 R�) are given in Table I.

The first point represents the vacuum static Minkowski
model. Eigenvalues of the linearized system are zero,
hence the linearization theorem [27] does not apply at
this point and we resort to numerical analysis to determine
the stability character. In the case �>�1, this is the only
finite valued fixed point present. This is clearly seen in
Fig. 1(a), corresponding to case A, where the black lines
represent separatrices, the dots represent fixed points and
the thin gray lines are example trajectories. The
Minkowski point M is clearly the future attractor for all
trajectories in the region. The behavior in the past is not
clear from this diagram (but trajectories do appear to
evolve to a constant z). The horizontal black line represents
the Bianchi I Kasner vacuum models, with line element:

 ds2 � �dt2 � t2p1dx2
1 � t

2p2dx2
2 � t

2p3dx2
3: (40)

The parameters p� satisfy the following constraints:

 

X3

n�1

pn � 1;
X3

n�1

p2
n � 1; (41)

and the average scale factor for expanding models of this
type is given by:

 a � ao��� �o�
1=3: (42)

Although these models are asymptotic to Minkowski at late
times, as seen in Fig. 1(a), they are always anisotropic, in
the sense that � �

���
3
p

at all times. The Kasner singularity
is a paradigmatic, characteristic of many models; the more
general Bianchi IX singularity is approximated by a series
of jumps from a Kasner phase to another, see e.g. [12,26].
The vertical black line represents the expanding flat

Friedmann model with a quadratic EoS. In the case of a
spatially flat model as in this case, the Friedmann equation
can be integrated to give the dependence of the scale factor
on time:

 � �
6

�3��� 1�3=2
� f

�����������������������������������
�a=a?�3���1� � 1

q

� arctan�
�����������������������������������
�a=a?�

3���1� � 1
q

�g (43)

The scale factor starts at finite size a? (we have fixed
constants so that this corresponds to �? � 0), expands

TABLE I. Location, eigenvalues and existence conditions
(x � 0 and x, y, z 2 R) for the fixed points of the reduced
Bianchi I planar system (38) and (39). To simplify we use � �
���� 1�.

Name x, z Eigenvalues Existence

M (0, 0) 0, 0 � 2 R

dS (�, 0) ��
������
3�
p

, �
������
3�
p

�<�1

M
0

2

4

6

8

10

x

0 2 4 6 8 10
z

dS

M
0

2

4

6

8

10

x

0 2 4 6 8 10
z

FIG. 1. The state space for the Bianchi I reduced planar system
(38) and (39), showing fixed points at finite values of the energy
density and shear. (a) Left panel: the state space for �>�1; the
only fixed point present represents a Minkowski model. (b) Right
panel: the state space for �<�1; in this case there is a new
fixed point dS which represents a flat expanding de Sitter model
with �� � ��1� ���c. The separatrix represents models with
� � ��. Models below this line have phantom behavior.
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and asymptotically approaches the behavior of a model
with the standard linear EoS,

 a � a?��� �o�
2=3���1�: (44)

For �<�1, Fig. 1(b), there is a second fixed point dS
representing the generalized flat expanding de Sitter
model. This point has attractor stability character, i.e. in
this case the generalized de Sitter model is the generic
future attractor. The new horizontal black line in Fig. 1(b)
is a separatrix representing models with x� � ���� 1�; it
is the dividing line between the phantom (x < x�) and
standard behavior (x > x�). The trajectories below this
line represent phantom models (corresponding to
case C), that is the energy density increases as the model
expands. The models in this region appear to be dominated
by shear in the past (x! 0, z! 1 as �! �1) and
asymptotically approach a de Sitter model in the future
(x! x��, z! 0 as �! 1). The scale factor for an ex-
panding flat de Sitter model has the form:

 a � aoe
����o�: (45)

The trajectories above the separatrix (corresponding to
case B) also asymptotically approach the generalized de
Sitter model in the future.

The behavior in the past is not clear from the state space
in Fig. 1. In order to analyze the dynamics at infinity, we
introduce compactified Poincaré variables Xi; these can be
expressed in terms of the standard variables xi as:

 Xi �
xi�������������������������

1�
Pn
i�1 x

2
i

q : (46)

The relationship can be inverted to give:

 xi �
Xi��������������������������

1�
Pn
i�1 X

2
i

q : (47)

The new variables allow one to analyze the dynamics at
infinity more easily, as xi ! 1 ) Xi ! 1. The evolution
equations for the new variables are then given by:

 X0i �

����������������������
1�

Xn
j�1

X2
j

vuut �
x0i � Xi

Xn
k�1

Xkx
0
k

�
; (48)

where the x0i represent the evolution equations for the
original variables. We now study the compactified and
reduced system �X; Z�; the fixed points of the system are
given in Table II.

The first two fixed points (M and dS) represent the
Minkowski and generalized de Sitter points as in the non-
compactified case and retain the same stability character.

TABLE II. Location and existence conditions (X � 0 and X,
Z 2 R) for the compactified planar Bianchi I system. To sim-
plify we use � � ���� 1�. The * is shown when the point does
not exist.

Name X, Z Existence Stability ��<�1; � >�1�

M (0, 0) � 2 R Saddle, Attractor
dS ( ����������

1��2
p , 0) �<�1 Attractor, *

IS (1, 0) � 2 R Repeller, Repeller
KS (0, 1) � 2 R Saddle, Saddle

KSM

IS

0

1

X

1
Z

M

IS

KS

dS

0

1

X

1
Z

FIG. 2. The compactified state space �X; Z� for the Bianchi I
reduced system, including fixed points at infinity. These repre-
sent the isotropic singularity (IS) and the Kasner anisotropic
singularity (KS). (a) Left panel: the state space for �>�1,
corresponding to case A, Fig. 1(a). (b) Right panel: the state
space for �<�1. The separatrix corresponds to that of
Fig. 1(b), with � � ��. Above this line we have models of
type B. Models below this line are phantom, of type C, and
Kasner-like at the singularity KS. Clearly the nonphantom
models of type A and B are asymptotic to the IS fixed point in
the past.
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The third point (IS) represents the isotropic singularity,
which is matter dominated (X ! 1, or x! 1). This fixed
point always has repeller stability and is the generic past
attractor. The final fixed point (KS) represents the aniso-
tropic Kasner singularity (Z! 1, or z! 1). This fixed
point has saddle stability. The full state space for the
system can now be reconstructed, and is depicted in
Fig. 2, where as before the black lines represent separa-
trices, the dots represent fixed points and the thin gray lines
are example trajectories.

In the case �>�1, Fig. 2(a) (this corresponds to
case A, i.e. this is the compactified version of Fig. 1(a)],
there are three fixed points, M, IS and KS. The horizontal
black line X � 0 represents the anisotropic Kasner model.
The vertical black line Z � 0 represents the flat Friedmann
model containing a fluid with a quadratic EoS. The
Minkowski point M is the future attractor for all trajecto-
ries in the region. The isotropic singularity IS is the generic
past attractor and the anisotropic Kasner singularity KS has
saddle stability character. The set of initial conditions for
which anisotropy dominates in the past are special, corre-
sponding to vacuum models X � 0, as opposed to being
generic as in the case of the linear EoS.

In the case �<�1, Fig. 2(b), there are four fixed points,
M, dS, IS and KS. The state space is split into two regions
by the separatrix joining the points dS and KS and given by
X � X�, where:

 X� � �

���������������
1� Z2

1� �2

s
: (49)

and � � ���� 1�. In the region above the separatrix (X >
X�, corresponding to case B) the fluid behaves in a stan-
dard manner. The IS fixed point has repeller stability
character and all trajectories are asymptotic to it in the
past. The dS fixed point has attractor stability and is the
generic future attractor. The KS fixed point has saddle
stability in this region. In the region below the separatrix
(X < X�, corresponding to case C) the fluid behaves in a
phantom manner. The KS fixed point has repeller stability
character and the dS fixed point is an attractor. The M fixed
point has saddle stability character. In general, phantom
trajectories in this region are asymptotic to the Kasner
singularity in the past and the generalized de Sitter model
in the future.

B. Bianchi V cosmologies

The models of type Bianchi V are a subclass of the
Bianchi Class B models (a� � 0). These are homogeneous
and anisotropic cosmological models containing both the
flat Friedmann (F) model and the open Friedmann models
(the Milne model for � � 0). In the case of Bianchi V
models the group invariant orthonormal frame fu; e�g can
again be specialized further:

 a2 � a3 � n�� � 0; (50)

 a1 � 0; (51)

 �	�� � 0: (52)

This in turn means that the spatial curvature scalar is:

 

3R � �6a2
1: (53)

Where the evolution equation for a1 is:

 _a 1 � �Ha1: (54)

The Einstein field Eq. (17) implies:

 ��1 � 0: (55)

We will continue to use the normalized variables intro-
duced in the previous subsection, x, y, z and �.
Additionally we introduce the new normalized curvature
variable c:

 c �
a1���������
j�cj

p : (56)

The generalized Friedmann equation is now:

 y2 �
x
3
�
z2

3
� c2: (57)

As with the previous case, this constraint equation can be
used to reduce the dimension of the dynamical system:
again we chose to remove y. The resulting set of evolution
equation is then:

 x0 � �
��������������������������������
3x� 3z2 � 9c2

p
���� 1�x� x2�; (58)

 z0 � �z
��������������������������������
3x� 3z2 � 9c2

p
; (59)

 c0 � �c

�������������������������
x
3
�
z2

3
� c2

s
: (60)

The fixed points of the new reduced system, the corre-
sponding eigenvalues and their existence conditions (the
energy density remains positive, x � 0, and all four vari-
ables are real, x, y, z, c 2 R) are given in Table III. The
fixed points are identical to those found in the Bianchi I
case. As with the Bianchi I case, in order to analyze the
dynamics at infinity, we introduce the Poincaré variables
Xi. We then study the compactified and reduced system
�X; Z; C�, with the fixed points given in Table IV.

TABLE III. Location, eigenvalues and existence conditions
(x � 0 and x, y, z, c 2 R) for the finite value fixed points of
the reduced Bianchi V system. To simplify we use � � ����
1�.

Name x, z, c Eigenvalues Existence

M (0, 0, 0) 0, 0, 0 � 2 R

dS (�, 0, 0) ��
������
3�
p

, �
������
3�
p

, �
��������
�=3

p
�<�1
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The first two fixed points M and dS represent the
Minkowski and generalized de Sitter points as in the
Bianchi I case and retain the same stability character.
The third point (CS) is the curvature singularity,3 which
is curvature dominated (C! 1, or c! 1). The fourth
point (IS) represents the isotropic singularity and the final
fixed point (KS) represents the anisotropic Kasner singu-
larity. We now discuss the state space diagrams for this
system. The case �>�1 is shown in Fig. 3(a) (this
corresponds to case A). The X-Z plane (C � 0) is the
invariant manifold which represents the reduced and com-
pactified Bianchi I state space, which is a manifold of the
larger Bianchi V state space. The Z-C plane (X � 0) is the
vacuum invariant manifold and the X-C plane (Z � 0) is
the isotropic invariant manifold. The Minkowski point M is
the future attractor for all trajectories in the region. The
isotropic singularity (IS) is the generic past attractor, while
the anisotropic Kasner singularity (KS) and curvature sin-
gularity (CS) have saddle stability character. As in the
Bianchi I case, in general the past singularity is isotropic.

In the case �<�1, depicted in Fig. 3(b), there are five
fixed points, M, dS, CS, IS and KS. The state space is split
into two regions by the separatrix manifold joining the
points dS, CS and KS. This manifold is given by X �
X�, where:

 X� � �

���������������������������
1� C2 � Z2

1� �2

s
: (61)

and � � ���� 1�. In the Z-C plane (X � 0, vacuum
invariant manifold) the dynamics are unaffected by the
change in �. The X-C plane (Z � 0, isotropic invariant
manifold) is divided into two regions by the separatrix. In
the region above the separatrix (X > X�, corresponding to
case B) the fluid behaves in a standard manner. The IS fixed
point has repeller stability character and all trajectories are
asymptotic to it in the past. The dS fixed point is the
generic future attractor. The CS and KS fixed points have

saddle stability character in this region. In the region below
the separatrix (X < X�, corresponding to case C) the fluid
behaves in a phantom manner. The KS fixed point is a
repeller and the dS fixed point the attractor. The M and CS
fixed points have saddle stability character. In general,
trajectories are asymptotic to the Kasner singularity in
the past and the generalized de Sitter model in the future.

IV. DYNAMICS OF ANISOTROPY AND
INHOMOGENEITY

We have seen in the previous section that generic tra-
jectories of Bianchi I and V anisotropic models with stan-
dard (nonphantom) matter of type A and B asymptotically

TABLE IV. Location and existence conditions (X � 0 and X,
Z, C 2 R) for the compactified and reduced Bianchi V system.
To simplify we use � � ���� 1�. The * is shown when the
point does not exist.

Name X, Z, C Existence Stability ��<�1; � >�1�

M (0, 0, 0) � 2 R Saddle, Attractor
dS ( ����������

1��2
p , 0, 0) �<�1 Attractor, *

CS (0, 0, 1) � 2 R Saddle, Saddle
IS (1, 0, 0) � 2 R Repeller, Repeller
KS (0, 1, 0) � 2 R Saddle, Saddle

FIG. 3. The compactified state space �X; Z; C� for the
Bianchi V reduced system, including fixed points at infinity.
These represent the isotropic singularity (IS), the Kasner aniso-
tropic singularity (KS) and the curvature singularity (CS).
(a) Left panel: The state space when �>�1. (b) Right panel:
the state space when �<�1. It is clear that standard (non-
phantom) trajectories are asymptotic to the IS fixed point in the
past.

3Strictly speaking, this points represents at the same time the
true past curvature singularity of open Friedmann models (the
left face of the sphere quarter in Fig. 3) as well as the coordinate
singularity of the Milne model, the line X � Z � 0 in the same
figure.
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approach an isotropic singularity in the past, with the
Hubble normalized shear vanishing, �! 0. Since the
Bianchi I and V models are rather special and homoge-
neous, we now want to see if this behavior is restricted to
these models only, or if instead is stable against small
generic inhomogeneuos perturbations. That is, we want
to see if appropriately defined dimensionless quantities
measuring the deviation from homogeneity in a covariant
gauge-invariant way decay to zero when the singularity is
approached. Since we are only interested in the neighbor-
hood of the singularity, we only need to consider perturba-
tions of the spatially flat (K � 0) homogenous and
isotropic cosmological models (the flat Friedmann models,
i.e. the vertical X axis in Figs. 2 and 3) with quadratic EoS

 P � ���
�2

�c
: (62)

Given this EoS, �� 3P> 0 is always satisfied for high
enough �, whatever � is, hence at high enough energies the
background evolution is noninflationary, �a < 0. Therefore
we only need to consider large-scale perturbations, i.e.
scales much larger than the Hubble horizon H�1, because
for any given perturbation scale � there is always a time tH
(the horizon crossing time) such that for t� tH we have
�� H�1.

For simplicity we now focus on models of type A only,
with �>�1; it can be shown that similar results can be
obtained in case B, �<�1. For this case we rewrite
Eq. (8) as

 ��a� �
�c��� 1�

� aas
�3���1� � 1

; (63)

where

 as � A�1=3���1�� (64)

is the finite value of the scale factor such that the energy
density has a pole like singularity. A is a constant given by
(6) and is expressed in terms of �o, ao, �c and �. Given
that the background is a spatially flat Friedmann model the
Friedmann equation (H2 � �=3) gives directly the Hubble
expansion scalar H, while ao can be fixed arbitrarily, a
freedom that we will use later. The sound speed for the
fluid is given by:

 c2
s �

@P
@�
� ��

2�
�c
: (65)

The more commonly used EoS parameter w is:

 w �
P
�
� ��

�
�c
: (66)

The sound speed and EoS variable are then related by the
following relationship:

 c2
s � 2w� �: (67)

Thus in case A our parameter � could be replaced by the
combination � � 2w� c2

s of the more commonly used
parameters w and c2

s .

A. Dimensionless variables and harmonics

We use the covariant 1� 3 approach [28–30] to study
inhomogeneous and anisotropic gauge-invariant perturba-
tions. In this approach, the information relating to inho-
mogeneous and anisotropic perturbations is contained in a
set of (1� 3) covariant variables. These variables are
defined with respect to a preferred timelike observer con-
gruence ua. We use appropriate dimensionless density,
expansion and curvature gradients which describe the sca-
lar and vector parts of the corresponding perturbations:

 �a �
a
�
ra�; (68)

 Za �
Za

H
�
a
H
raH; (69)

 C a � a3ra
�3�R: (70)

The dimensionless expansion normalized quantities for the
shear �ab, the vorticity !a, the electric Eab and magnetic
Hab parts of the Weyl tensor are:
 

�ab �
�ab
H

; Wa �
!a

H
;

Eab �
Eab
H2 ; H ab �

Hab

H2 ;
(71)

where H is the Hubble scalar, H � _a=a. Here !a �
�abc!

bc is the usual vorticity vector. In order to calculate
all the relevant tensor perturbations it is useful to define a
set of variables corresponding to the curls of the standard
quantities. The curl of a given quantity will be denoted by
an over-bar.

 

�� ab �
1

H
curl �ab; �Eab �

1

H
curl Eab;

�H ab �
1

H
curlH ab:

(72)

The harmonics defined in [29] are used to expand the above
tensors Xa, Xab in terms of scalar (S), vector (V) and tensor
(T) harmonics Q. This results in a covariant and gauge-
invariant splitting of the evolution and constraint equations
for the above quantities into three sets of evolution and
constraint equations for scalar, vector and tensor modes.
The scalar, vector and tensor quantities can be split such
that:

 X � XSQS (73)

 Xa � k�1XSQS
a � X

VQV
a (74)

 Xab � k�2XSQS
ab � k

�1XVQV
ab � X

TQT
ab: (75)
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As said above, we will carry out our analysis in the long-
wavelength limit �� H�1, or k2=a2H2 � 1 (� � a=k).
This is analogous to dropping the Laplacian terms in the
evolution and constraint equations.

B. Scalar perturbations

The evolution and constraint equations are greatly sim-
plified if we use the previously defined dimensionless time
derivative:

 � �0 �
1

H
d
dt
� a

d
da
: (76)

The linearized evolution equations for scalar perturbations
are:

 �0 � 3w��
�w� 1�

H
Z; (77)

 Z 0 � �2Z�
3H
2

�; (78)

 E0 � �3E�
3H
2
�w� 1��; (79)

 �0 � �2��
E
H
: (80)

The set of equations contain a mixture of Hubble normal-
ized and non-normalized variables, however all solutions
presented are appropriately normalized. In a addition we
have a set of constraint equations for the scalar quantities:

 C � �4a2HZ� 2a2��; (81)

 3� � 2Z; (82)

 E � �: (83)

The system of equations is particularly difficult to solve in
the above form. This is due to the form of ��a�, H�a� and
w�a� (the pole like behavior at a � as). In order to solve
the system of equations we carry out a change of variables.
This is a parameter specific (�c and �) nonlinear trans-
formation of the scale factor. Once the solutions are ob-
tained, they are again expressed in terms of the original
normalized scale factor a. The solutions to the system of
equations can be split into modes which are sourced by the
gradient of the 3-curvature (C, which is constant in the
long-wavelength limit) perturbation (subscript �) and
those which are not (subscript �). The solutions for the
scalar contribution to the density and expansion gradient’s
are of the form:

 �� � �1

���������������������������������������������
�c��� 1�a3���1� � 1

q
a3 ; (84)

 �� � �2
��c��� 1�a3���1� � 1

a2 �

�
1�

B1

a
�
�
; (85)

 Z� � Z1

���������������������������������������������
�c��� 1�a3���1� � 1

q
a3 ; (86)

 Z� � Z2
��c��� 1�a3���1� � 1

a2 �

�
1�

B2

a
�
�
: (87)

The �i’s �i � 1; 2� are the arbitrary constants of integration
and correspond to the two independent modes. The other
constants Bi and Zi can be expressed in terms of the
arbitrary constants �i and the EoS parameters �c and �.
The symbol � represents the generalized hypergeometric
function and is of the form:

 � � 2F 1

��
1

2
;

3�� 2

3��� 1�

�
;
�

3

2

�
; 1� b

�
; (88)

 b � �c��� 1�a3���1�: (89)

The generalized hypergeometric function is equal to unity
at the singularity (2F 1��i; j; �k; 0� � 1), where also b � 1
after using the freedom in ao to set A � ��c�1� ���1. In
addition the quantity �1� Bi�=a� ! 1 as a� as, the
hypergeometric function is a correction to the solutions
at the singularity and plays a subdominant role at late
times. The perturbations all decay as we approach the
singularity in the past (�� ! 0 and Z� ! 0 as a! as).
At late times (a� as) the various modes are approxi-
mately:

 �� � �1a
3���1�=2; (90)

 �� � �2a
3��1; (91)

 Z� � Z1a3���1�=2; (92)

 Z� � Z2a3��1: (93)

This is the corresponding behavior one would expect for a
fluid with a linear EoS. The modes asymptotically evolve
as there linear EoS counterparts at late times. The pertur-
bation modes for each of the scalar quantities can be found
in Table V. The constants of integration are the �i’s and all
other constants (Zi, �i, Ei, Bi and C0) can be expressed in
terms of these constants and the EoS parameters. The
behavior of each mode is also given in the two limits, the
first is at the singularity (a! as) and the second is at late
times (a� as). The limits are given assuming �>�1
and �c > 0.

C. Vector perturbations

The linearized evolution equations for the vector com-
ponents of the perturbations in the large-scale limit are:
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 �0 � 3w��
�w� 1�

H
Z; (94)

 Z 0 � �2Z�
3H
2

�; (95)

 !0 � �3c2
s � 2�!; (96)

 E0 � �3E�
3H
2
�w� 1��; (97)

 �0 � �2��
E
H
: (98)

The constraint equations for the vector variables are

 C � �4a2HZ� 2a2��; (99)

 H �
3a
2
�w� 1�HW; (100)

 3� � 2Z; (101)

 E � �: (102)

The perturbation modes for each of the vector quantities
can be found in Table VI. The constants of integration (�i
and W1) correspond to the three independent modes. The
nonzero constants Bi, Zi, C0, H 1, �i and Ei can all be
expressed in terms of the constants of integration and the
EoS parameters. The last two columns give the behavior of
the perturbation in the two limits. As in the case of the
scalar contributions all perturbations decay at the singu-
larity and asymptotically approach the standard linear EoS
behavior at late times.

D. Tensor perturbations

The linearized evolution equations for the tensor com-
ponents of the perturbations in the large-scale limit are:

 E0 � �3E�
3H
2
�w� 1��; (103)

 �0 � �2��
E
H
; (104)

TABLE V. The large scale behavior of the scalar quantities. The constants of integration (�i) correspond to the two independent
modes. The nonzero constants Bi, Zi, C0, �i and Ei can all be expressed in terms of �1;2, �c and �. The symbol � represents the
generalized hypergeometric function given in Eq. (88). The third column gives the behavior of the perturbation at the singularity. The
last column gives the approximate late time behavior of the perturbation. The limits are given under the assumption that �>�1 and
�c > 0.

Quantity X� Mode X� Mode Limit (a! as) Limit (a� as)

� �1

�����������������������������
�c���1�a3���1��1
p

a3 �2
��c���1�a3���1��1

a2 �1� B1

a �� 0, 0 a3���1�=2, a3��1

Z Z1

�����������������������������
�c���1�a3���1��1
p

a3 Z2
��c���1�a3���1��1

a2 �1� B2

a �� 0, 0 a3���1�=2, a3��1

C 0 C0 0, C0 0, C0

� �1

�����������������������������
�c���1�a3���1��1
p

a3 �2
��c���1�a3���1��1

a2 �1� B2

a �� 0, 0 a3���1�=2, a3��1

E E1

�����������������������������
�c���1�a3���1��1
p

a3 E2
��c���1�a3���1��1

a2 �1� B1

a �� 0, 0 a3���1�=2, a3��1

TABLE VI. The large scale behavior of the vector quantities. The constants of integration (�i and W1) correspond to the three
independent modes. The nonzero constants Bi, Zi, C0, H 1, �i and Ei can all be expressed in terms of �1;2, W1, �c and �. See the
caption of Table V for further details.

Quantity X� Mode X� Mode Limit (a! as) Limit (a� as)

� �1

�����������������������������
�c���1�a3���1��1
p

a3 �2
��c���1�a3���1��1

a2 �1� B1

a �� 0, 0 a3���1�=2, a3��1

Z Z1

�����������������������������
�c���1�a3���1��1
p

a3 Z2
��c���1�a3���1��1

a2 �1� B2

a �� 0, 0 a3���1�=2, a3��1

C 0 C0 0, C0 0, C0

W W1
��c���1�a3���1��15=2

a3��8 � � � 0 a�9��1�=2

H H 1
��c���1�a3���1��1

a4 � � � 0 a3���1�

� �1

�����������������������������
�c���1�a3���1��1
p

a3 �2
��c���1�a3���1��1

a2 �1� B2

a �� 0, 0 a3���1�=2, a3��1

E E1

�����������������������������
�c���1�a3���1��1
p

a3 E2
��c���1�a3���1��1

a2 �1� B1

a �� 0, 0 a3���1�=2, a3��1
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 H 0 � �3H �
1

H
�E (105)

 

�E 0 � �3 �E�
3H
2
�w� 1�H : (106)

The constraint equations for the tensor variables are

 H � ��; (107)

 

�H � 0: (108)

The perturbation modes for each of the tensor quantities
can be found in Table VII. The constants of integration (�i
and H i) correspond to the four independent modes. The
nonzero constants Bi, Ei, �Ei and ��i can all be expressed in
terms of the constants of integration and the EoS parame-
ters. The perturbations all decay at the singularity and
evolve as there linear EoS counterparts at late times.

V. CONCLUSIONS

In this paper we have investigated the effects of a
quadratic EoS in homogenous and inhomogeneous aniso-
tropic cosmological models in general relativity, in order to
understand if in this context the quadratic EoS can iso-
tropize the universe at early times, when the initial singu-
larity is approached.

The first motivation for this work is that in the context of
brane world cosmological models the term quadratic in the
energy density that appears in the effective 4-dimensional
equations of motion on the brane dominates at early times,
driving the evolution to an initial isotropic singularity
under reasonable assumptions. Therefore, under these as-
sumptions, in the brane world scenario we do not have the
classical isotropy problem: the isotropy we observe today
is built in, that is it follows from generic initial conditions.
This is at odds with the classical and now widely accepted
results in general relativity [11–13], where general cosmo-
logical models with a linear EoS are highly anisotropic in
the past, approaching the singularity a� la BKL, i.e. with

mixmaster dynamics, so that in general one needs special
initial conditions to have isotropy at late times, even to
initiate an inflationary phase [8].

Secondly, we also wanted to study the effects at early
times and at high energies of the same type of EoS used in
Paper I [25], relaxing the symmetries assumed there. The
focus in Paper I [25] was on the possible use of a quadratic
EoS as an effective way of representing a dark energy
component or unified dark matter in the context of homo-
geneous isotropic models of relevance for the universe at
late times. Here we have used the simplified EoS P �
��� �2=�c, which still allows for an effective cosmo-
logical constant and phantom behavior, and is general
enough to analyze the dynamics at high energies.

In summary, our aim here was to investigate if the
behavior of the anisotropy at the singularity found in the
brane scenario is recreated in the general relativistic con-
text if we consider a quadratic term in the EoS. That is to
say, in the language of dynamical system theory, do we
have a scenario where the generic asymptotic past attractor
in general relativity is an isotropic model, thanks to a
nonlinear (specifically, quadratic) EoS.

To this end, we have first summarized in Sec. II the
classification of the energy density evolution in three
classes, A, B and C, following from the energy conserva-
tion for the EoS P � ��� �2=�c (a broader classification
can be found in Sec. II of Paper I [25]). In Sec. III, using
dynamical system methods [26,27], we have studied the
Bianchi I and V cosmological models with a fluid with this
EoS. We first considered the case when �>�1 (case A).
The physically interesting quantity �, the Hubble normal-
ized dimensionless measure of shear, describes the anisot-
ropy. In the expanding Bianchi I and V models this
quantity always decreases at late times, as in the case
with a linear EoS, approaching a Minkowski model.
However, we can now have stages at early times in which
� grows, vanishing at the initial singularity, and generic
trajectories in the compactified state space asymptotically
approach in the past the isotropic fixed point IS, as depicted
in Figs. 2 and 3. This behavior is similar to the quasi-

TABLE VII. The large scale behavior of the tensor quantities. The constants of integration (�i and H i) correspond to the four
independent modes. The nonzero constants Bi, Ei, �Ei and ��i can all be expressed in terms of �1;2, H 1;2, �c and �. See the caption of
Table V for further details.

Quantity X� Mode X� Mode Limit (a! as) Limit (a� as)

� �1

�����������������������������
�c���1�a3���1��1
p

a3 �2
��c���1�a3���1��1

a2 �1� B2

a �� 0, 0 a3���1�=2, a3��1

E E1

�����������������������������
�c���1�a3���1��1
p

a3 E2
��c���1�a3���1��1

a2 �1� B1

a �� 0, 0 a3���1�=2, a3��1

H H 1
��c���1�a3���1��1

a4 H 2
��c���1�a3���1��13=2

a3 �1� B3

a �� 0, 0 a3��1, a3�3��1�=2

�E �E1
��c���1�a3���1��1

a4
�E2
��c���1�a3���1��13=2

a3 �1� B4

a �� 0, 0 a3��1, a3�3��1�=2

�� ��1
��c���1�a3���1��1

a4
��2
��c���1�a3���1��13=2

a3 �1� B3

a �� 0, 0 a3��1, a3�3��1�=2

�H 0 0 � � � � � �
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isotropic expansion seen in the anisotropic brane world
models, but occurs for different reasons. The quasi-
isotropic expansion is caused by the fact that the EoS
becomes ‘‘superstiff’’ at early times but decreases to finite
values at late times. At the initial singularity (which is of
Type III, see [32,33]) the anisotropy is always subdominant
and we recover the standard linear EoS behavior at late
times. In the case �<�1, the state space can be divided in
two regions. In the standard fluid region (X > X�, case B)
the behavior at early times is similar to the �>�1 case,
with generic trajectories in the compactified state space
approaching the isotropic fixed point IS of Figs. 2 and 3. At
late times instead trajectories asymptotically approach
generalized expanding de Sitter models. Finally, in the
phantom fluid region (X < X�, case C) the anisotropy
dominates at early times and the past singularity is aniso-
tropic. Trajectories are asymptotic to the expanding de
Sitter model at late times.

The submanifold � � 0 in the state space for the
Bianchi models represents homogeneous isotropic spa-
tially flat Friedmann-Robertson-Walker models, with IS
as past attractor. In order to see if IS can be regarded as
the past attractor of a larger class of general models with no
symmetries, we have studied in Sec. IV, using covariant
and gauge-invariant variables [28–30], the first-order in-
homogeneous anisotropic perturbations of these flat iso-
tropic models, focusing on those of class A. The linearized
equations have been solved in the large scale limit ��
H�1, neglecting the Laplacian operators terms. As ex-
plained in Sec. I, only perturbations larger then the
Hubble horizon H�1 are relevant in our analysis. The
main results of this section are given in Tables V, VI, and
VII. The tables contain the form of the solutions and
asymptotic behavior of the physically relevant quantities
for both early (a! as) and late times (a� as). The
quantities have been harmonically decomposed into the
standard scalar, vector and tensor components. These in-
clude the expansion normalized vorticity, shear, and elec-
tric and magnetic contributions of the Weyl tensor. In
addition, we consider the gradients of the energy density,
expansion and three-curvature. As expected, at late times
the perturbations evolve as if the fluid obeyed a linear EoS,
i.e. the standard behavior is recovered in this limit. The
evolution of the perturbations at early times is our main
result. Indeed, we find that all perturbations tend to zero
near the singularity. Thus a perturbed quasi-isotropic
model with generic initial condition evolves from the iso-

tropic past attractor IS. This indicates that in general
relativity with matter described by a nonlinear EoS there
are general cosmological models, corresponding to a non-
zero measure subset of all possible generic initial condi-
tions [12], that isotropize as the initial singularity is
approached, with IS as the past attractor. As for the brane
models, this would be at odds with the standard BKL
results [11–13].

Singularities are commonly regarded as signaling the
failure of classical gravitational theories, requiring a quan-
tum theory of gravity to deal with trans-Planckian energies.
Even in effective theories, perhaps cosmology does not
require them, as in the pre-big-bang scenario [34]. In any
case, it is important to understand which is the typical
classical dynamical behavior in the neighborhood of sin-
gularities, as this possibly signals what the generic out-
come of a quantum theory should be at low (sub-
Planckian) energies. In the BKL picture for fluids with
linear EoS and other simple type of matter [13] this be-
havior is mixmaster and the effects of matter become
negligible close to the singularity: we may say that effec-
tively in this limit the space-time still tells matter how to
move, but matter is no longer able to tell the space-time
how to curve. Perhaps this behavior should be regarded as
pathological, and peculiar of the energy-momentum tensor
of linear EoS matter (or other simple energy-momentum
tensor) in general relativity. In practice we know close to
nothing about matter fields at the highest (close to
Planckian) cosmological energies, and these may require
a nonlinear effective EoS description in general, or maybe
Einstein equations with an effective nonlinear EoS are the
Einstein frame version of some effective low energy (sub-
Planckian) theory. In both cases, our analysis of Einstein
equations with a fluid with a quadratic EoS indicates that
the typical initial state is isotropic. The singularity is matter
dominated, and of a type that could admit an extension.
Interestingly, the EoS considered here are a subclass of
those used in Paper I [25] to model a dark energy compo-
nent or unified dark matter, allowing for effective cosmo-
logical constants.
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