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We investigate the general relativistic dynamics of Robertson-Walker models with a nonlinear equation
of state (EoS), focusing on the quadratic case P � Po � ��� ��

2. This may be taken to represent
theTaylor expansion of any arbitrary barotropic EoS, P���. With the right combination of Po, � and �, it
serves as a simple phenomenological model for dark energy, or even unified dark matter. Indeed we show
that this simple model for the EoS can produce a large variety of qualitatively different dynamical
behaviors that we classify using dynamical systems theory. An almost universal feature is that accelerated
expansion phases are mostly natural for these nonlinear EoS’s. These are often asymptotically de Sitter
thanks to the appearance of an effective cosmological constant. Other interesting possibilities that arise
from the quadratic EoS are closed models that can oscillate with no singularity, models that bounce
between infinite contraction/expansion and models which evolve from a phantom phase, asymptotically
approaching a de Sitter phase instead of evolving to a ‘‘big rip’’. In a second paper we investigate the
effects of the quadratic EoS in inhomogeneous and anisotropic models, focusing, in particular, on
singularities.
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I. INTRODUCTION

Model building in cosmology requires two main ingre-
dients: a theory of gravity and a description of the matter
content of the universe. In general relativity (GR) the
gravity sector of the theory is completely fixed, there are
no free parameters. The matter sector is represented in the
field equations by the energy-momentum tensor, and for a
fluid the further specification of an equation of state (EoS)
is required. Apart from scalar fields, typical cosmological
fluids such as radiation or cold dark matter (CDM) are
represented by a linear EoS, P � w�.

The combination of cosmic microwave background ra-
diation (CMBR) [1–3], large scale structure (LSS) [4] and
supernova type Ia (SNIa) [5] observations provides support
for a flat universe presently dominated by a component,
dubbed in general ‘‘dark energy’’, causing an accelerated
expansion. The simplest form of dark energy is an ad hoc
cosmological constant � term in the field equations, what
Einstein called his ‘‘biggest blunder’’. However, although
the standard �CDM ‘‘concordance’’ model provides a
rather robust framework for the interpretation of present
observations (see e.g. [2,3,6]), it requires a � term that is at
odds by many order of magnitudes with theoretical pre-
dictions [7]. This has prompted theorists to explore pos-
sible dark energy sources for the acceleration that go
beyond the standard but unsatisfactory �. With various
motivations, many authors have attempted to describe dark
energy as quintessence, k-essence or a ghost field, i.e. with
scalar fields with various properties. There have also been
attempts to describe dark energy as a fluid with a linearized
EoS [8] or a specific nonlinear EoS like the Chaplygin gas
[9], generalized Chaplygin gas [10], van der Waals fluid
[11], wet dark fluid [12], power law [13,14] and other

specific gas EoS’s [15], and to compare these models
with observations (e.g. [16–18]). Recently, various ‘‘phan-
tom models’’ (w � P=� <�1) have also been considered
[19–21]. More simply, but also with a higher degree of
generality, many authors have focused on phenomenologi-
cal models where dark energy is parameterized by assum-
ing a w � P=� � w�a�, where a � a�t� is the expansion
scale factor (see e.g. [22,23]).

Another possibility is to advocate a modified theory of
gravity. At high energies, modification of gravity beyond
general relativity could come from extra dimensions, as
required in string theory. In the brane-world [24–28] sce-
nario the extra dimensions produce a term quadratic in the
energy density in the effective 4-dimensional energy-
momentum tensor. Under the reasonable assumption of
neglecting 5-dimensional Weyl tensor contributions on
the brane, this quadratic term has the very interesting effect
of suppressing anisotropy at early enough times. In the case
of a Bianchi I brane-world cosmology containing a scalar
field with a large kinetic term the initial expansion is quasi-
isotropic [29]. Under the same assumptions, Bianchi I and
Bianchi V brane-world cosmological models containing
standard cosmological fluids with linear EoS also behave
in a similar fashion1 [31], and the same remains true for
more general homogeneous models [32,33] and even some
inhomogeneous exact solutions [34]. Finally, within the
limitations of a perturbative treatment, the quadratic-term-
dominated isotropic brane-world models have been shown
to be local past attractors in the larger phase space of

1This only requires P=� � w> 0, as opposed to w> 1 in the
GR case. In the case of ekpyrotic/cyclic and prebig bang models
the initial expansion is only isotropic if w> 1 as in the case of
GR [30].
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inhomogeneous and anisotropic models [35,36]. More pre-
cisely, again assuming that the 5-d Weyl tensor contribu-
tion to the brane can be neglected, perturbations of the
isotropic models decay in the past. Thus in the brane
scenario the observed high isotropy of the universe is the
natural outcome of generic initial conditions, unlike in GR
where in general cosmological models with a standard
energy-momentum tensor are highly anisotropic in the
past (see e.g. [37,38]).

Recently it has been shown that loop quantum gravity
corrections result in a modified Friedmann equation [39],
with the modification appearing as a negative term which is
quadratic in the energy density. Further motivation for
considering a quadratic equation of state comes from re-
cent studies of k-essence fields as unified dark matter
(UDM) models2 [40,41]. The general k-essence field can
be described by a fluid with a closedform barotropic equa-
tion of state. The UDM fluid discussed in [40] has a non-
linear EoS of the form P / �2 at late times. More recently,
it has been shown that any purely kinetic k-essence field
can be interpreted as a barotropic perfect fluid with an EoS
of the form P � P��� [42]. Also, low energy dynamics of
the Higgs phase for gravity have been shown to be equiva-
lent to the irrotational flow of a perfect fluid with equation
of state P � �2 [43].

Considering the isotropizing effect that the quadratic
energy density term has at early times in the brane sce-
nario, it is rather natural to ask if a term quadratic in the
energy density can have the same effect in general relativ-
ity. This question is nontrivial as the form of the equations
in the two cases is quite different. On the brane, for a
given EoS the effective 4-dimensional Friedmann and
Raychaudhuri equations are modified, while the continuity
equation is identical to that of GR. IN GR, adding to the
same EoS a term quadratic in the energy density leaves the
Friedmann equation unchanged, while the continuity and
Raychaudhuri equations are modified.

Taking into account this question (to be explored in
detail in Paper II [44]), the diverse motivations for a
quadratic energy density term mentioned above and with
the dark energy problem in mind, in this paper we explore
the GR dynamics of homogeneous isotropic Robertson-
Walker models with a quadratic barotropic EoS, P � Po �
��� ��2. This is the simplest model we can consider
without making any more specific assumptions on the EoS
[13]. It represents the first terms of the Taylor expansion of
any barotropic EoS function P � P��� about � � 0. It can
also be taken to represent (after regrouping of terms) the
Taylor expansion about the present energy density �o, see
[13]. In this sense therefore the out-coming dynamics is
very general. Indeed it turns out that this simple model can

produce a large variety of qualitatively different dynamical
behaviors that we classify using methods of dynamical
systems theory [45,46]. An outcome of our analysis is
that accelerated expansion phases are mostly natural for
nonlinear EoS’s. These are in general asymptotically de
Sitter thanks to the appearance of an effective cosmological
constant. This suggests that an EoS with the right combi-
nation of Po, � and � may provide a good and simple
phenomenological model for UDM, or at least for a dark
energy component. Other interesting possibilities that arise
from the quadratic EoS are closed models that can oscillate
with no singularity, models that bounce between infinite
contraction/expansion and models which evolve from a
phantom phase, asymptotically approaching a de Sitter
phase instead of evolving to a ‘‘Big Rip’’ or other patho-
logical future states [19,21,47].

As mentioned before, the question of the dynamical
effects the quadratic energy density term has on the an-
isotropy in GR is explored in Paper II [44]. There we focus
our analysis on homogeneous anisotropic Bianchi I and V
models with EoS P � ��� ��2, with �> 0. We antici-
pate that Bianchi I and V nonphantom models with �> 0
have an isotropic singularity, i.e. they are asymptotic in the
past to a certain isotropic model. We also study perturba-
tions of this isotropic past attractor, showing that they
decay in the past. This indicates that generic nonphantom
cosmological models with a positive quadratic energy
density term in the EoS are isotropic at the singularity,
i.e. isotropy is built in for generic initial data. Phantom
anisotropic models with �> 0 are necessarily asymptoti-
cally de Sitter in the future, but the shear anisotropy
dominates in the past. For �< 0 all models are anisotropic
in the past, while their specific future evolution depends on
the value of �.

The paper is organized as follows. In section II we make
some general remarks based mostly on conservation of
energy only, then for the EoS P � Po � ��� ��2 we
group the models we will investigate in three main classes
and in subcases. In section III we study the dynamics of
isotropic cosmological models in the high energy limit
(neglecting the Po term). We find the critical points, the
type of their stability and the occurrence of bifurcations of
the dynamical system. In section IV we consider the low
energy limit (neglecting the �2 term). The full system is
then analyzed in section V, showing the qualitatively dif-
ferent behavior with respect to the previous cases. We then
finish with some concluding remarks in section VI. Units
are such that 8�G=c4 � 1.

II. COSMOLOGY WITH A QUADRATIC EOS

A. Dynamics with nonlinear EoS

The evolution of Friedmann-Robertson-Walker iso-
tropic models with no cosmological constant � term is
given in GR by the following nonlinear planar autonomous
dynamical system:

2These attempt to provide a unified model for both the dark
matter and the dark energy components necessary to make sense
of observations.
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 _� � �3H��� P�; (1)

 

_H � �H2 �
1

6
��� 3P�; (2)

whereH is the Hubble expansion scalar, related to the scale
factor a by H � _a=a. Equation (1) is the energy conser-
vation and Eq. (2) is the Raychaudhuri equation for
Friedmann-Robertson-Walker models (cf. [45,48]). In or-
der to close the system (1) and (2), an EoS must be
specified, relating the isotropic pressure P and the energy
density �. When an EoS P � P��� is given, the above
system admits a first integral, the Friedman equation

 H2 �
1

3
��

K

a2 ; (3)

where K is the curvature, K � 0;�1 as usual for flat,
closed and open models. We shall assume that � must be
non-negative; the case � < 0 can occur dynamically in
open models, but we shall regard it as unphysical.

Here we are interested in exploring the general dynami-
cal features of a nonlinear barotropic EoS P � P���.
Before considering the specific case of a quadratic EoS,
we note some important general points.

First, it is immediately clear from Eq. (1) that a effective
cosmological constant is achieved whenever there is an
energy density value �� such that P���� � ���. More
specifically:

Remark 1. If for a given barotropic EoS function P �
P��� there exists a �� such that P���� � ���, then ��

has the dynamical role of an effective cosmological
constant.

Remark 2. A given nonlinear EoS P��� may admit more
than one point ��. If these points exist, they are fixed
points of Eq. (1).

Remark 3. From Eq. (2), since _H �H2 � �a=a, an ac-
celerated phase is achieved whenever P���<��=3.

Remark 4. Remark 3 is only valid in GR, and a different
condition will be valid in other theories of gravity.
Remarks 1 and 2, however, are only based on conservation
of energy, Eq. (1). The latter is also valid (locally) in
inhomogeneous models, provided that the time derivative
is taken to represent the derivative along the fluid flow lines
(e.g. see [48]), and is a direct consequence of Tab;b � 0.
Thus Remarks 1 and 2 are valid in any gravity theory where
Tab;b � 0, as well as (locally) in inhomogeneous models.

Second, assuming expansion, H > 0, we may rewrite
Eq. (1) as:

 

d�
d�
� �3��� P����; (4)

where � � lna. Equation (4) is a 1-dimensional dynamical
system with fixed point(s) ��(s), if they exist. If ��
P���< 0 the fluid violates the null energy condition
[49,50] and Eq. (1) implies what has been dubbed phantom
behavior [19] (cf. [51]), i.e. the fluid behaves counter

intuitively in that the energy density increases (decreases)
in the future for an expanding (contracting) universe. Then:

Remark 5. Any fixed point �� is an attractor (repeller) of
the autonomous system Eq. (4) (i.e. for the evolution
during expansion) if �� P���< 0 (> 0) for � < �� and
�� P���> 0 (< 0) for � > ��.

Remark 6. Any fixed point �� is a ‘‘shunt’’3 of the
autonomous system Eq. (4) if either �� P���< 0 or ��
P���> 0 on both sides of �� on the phase line. In this case
the fluid is, respectively, phantom or standard on both sides
of ��. It follows from Remark 5 that a shunt point �� is an
attractor (repeller) for a phantom fluid with � < �� (� >
��) and a a repeller (attractor) for a standard fluid with � <
�� (� > ��).

Let us now consider the specific case of a general
quadratic EoS of the form:

 P � Po � ��� ��2: (5)

The parameter � sets the characteristic energy scale �c
of the quadratic term as well as it’s sign �

 � �
�
�c
: (6)

Remark 7. Eq. (5) represents the Taylor expansion, up to
O�3�, of any barotropic EoS function P � P��� about � �
0. It also represents, after regrouping of terms, the Taylor
expansion about the present energy density value �o [13].
In this sense, the dynamical system (1) and (2) with EoS (5)
is general, i.e. it represents the late evolution, in GR, of any
cosmological model with nonlinear barotropic EoS ap-
proximated by Eq. (5).

The usual scenario for a cosmological fluid is a standard
linear EoS (Po � � � 0), in which case � � w is usually
restricted to the range �1<�< 1. For the sake of gen-
erality, we will consider values of � outside this range,
considering dynamics only restricted by the request that
� 	 0. The first term in Eq. (5) is a constant pressure term
which in general becomes important in what we call the
low energy regime. The second term is the standard linear
term usually considered, with

 � �
dP
d�

����������0
: (7)

If it is positive,� has an interpretation in terms of the speed
of sound of the fluid in the limit �! 0, � � c2

s . The third
term is quadratic in the energy density and will be impor-
tant in what we call the high energy regime.

In the following, we first split the analysis of the dy-
namical system (1) and (2) with EoS (5) in two parts, the
high energy regime where we neglect Po and the low
energy regime where we set � � 0, then we consider the
full system with EoS (5). Using only the energy conserva-

3This is a fixed point which is an attractor for one side of the
phase line and a repeller for the other [46].
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tion Eq. (1) we list the various subcases, also briefly
anticipating the main dynamical features coming out of
the analysis in Sections III, IV, and V.

B. Quadratic EoS for the high energy regime

In the high energy regime we consider the restricted
equation of state

 PHE � ���
��2

�c
: (8)

The energy conservation Eq. (1) can be integrated in
general to give:

 �HE�a� �
A��� 1��c
a3���1� � �A

; (9)

 A �
�oa

3���1�
o

��� 1��c � ��o
; (10)

where �o, ao represent the energy density and scale factor
at an arbitrary time to. This is valid for all values of �, �c
and �, except for � � �1. In the case � � �1 the evolu-
tion of the energy density is:

 �HE�a� �
�

1

�o
�

3�
�c

ln
�
a
ao

��
�1
: (11)

The EoS with this particular choice of parameters has
already been considered as a possible dark energy model
[21,52]. We will concentrate on the broader class of models
where � � �1.

In Section III we will give a dynamical system analysis
of the high energy regime, but it is first useful to gain some
insight directly from Eq. (9).

We start by defining

 �� :� ���1� ���c: (12)

It follows from Eq. (1) with EoS (8) and Remark 1 in
Section II A that this is an effective positive cosmological
constant point if and only if ��1� ��< 0. It is then
convenient to rewrite Eq. (9) in three different ways,
defining a? � jAj1=3���1�, each representing two different
subcases. For each of these, in the following we indicate
the range of a and the corresponding corange of the
function ��a�.
A: ��1� ��> 0, �� < 0,

 �HE �
j1� �j�c
� aa?
�3�1��� � 1

: (13)

A1: � > 0, �1� ��> 0. In this case a? < a <1, with
1> �> 0. Further restrictions on the actual range of
values that a and � can take may come from the geometry
(the spatial curvature). For a subset of appropriate initial
conditions closed (positively curved) models may expand
to a maximum a (minimum �) and recollapse, and for �<
�1=3 not all closed models have a past singularity at a �

a?, having instead a bounce at a minimum a (maximum �).
A2: � < 0, �1� ��< 0. In this case 0< a< a?, with 0<
�<1, and the fluid exhibits phantom behavior. All mod-
els have a future singularity at a � a?, but in general
closed models contract from a past singularity, bounce at
a minimum a and �, then reexpand to the future singularity
(we will refer to this as a phantom bounce).
B: �� > 0, � > ��,

 �HE �
��

1� � aa?�
3�1���

: (14)

B1: � > 0, �1� ��< 0, A> 0. In this case a? < a <1,
with 1> �> ��. As in case A1, further restrictions on
the actual range of values that a and � can take may come
from the geometry. For a subset of initial conditions closed
models may expand to a maximum a (minimum �) and
recollapse, while for another subset closed models do not
have a past singularity at a � a?, having instead a bounce
at a minimum a (maximum �).
B2: � < 0, �1� ��> 0, A< 0. In this case 0< a< a?,
with �� < �<1. As in the case A2, the fluid has a
phantom behavior. All models have a future singularity at
a � a?, with closed models contracting from a past singu-
larity to a minimum a and � before reexpanding.
C: �� > 0, � < ��,

 �HE �
��

1� � aa?�
3�1���

: (15)

C1: � > 0, �1� ��< 0, A < 0. In this case 0< a<1,
with 0< �< ��. The fluid behaves in a phantom manner
but avoids the future singularity and instead evolves to a
constant energy density ��. Closed models, however, typi-
cally bounce with a minimum � at a finite a.
C2: � < 0, �1� ��> 0, A > 0. In this case 0< a<1,
with �� > �> 0. Again, closed models may evolve within
restricted ranges of a and �, even oscillating, for � 	
�1=3, between maxima and minima of a and �.

C. Low energy regime: Affine EoS

In the low energy regime we consider the affine equation
of state:

 PLE � Po � ��: (16)

This particular EoS has been investigated as a possible dark
energy model [12,53], however, only spatially flat
Friedmann models where considered.

In the case � � �1, the evolution of the energy density
is:

 �LE�a� � �o � 3Po ln
�
a
ao

�
; (17)

This is a standard fluid for Po > 0 and a phantom fluid for
Po < 0. As in the high energy case, we will concentrate on
the broader class of models where � � �1.
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Defining

 ~� � :� �Po=�1� ��; (18)

the scale factor dependence of the energy density is in
general given by

 �LE�a� � ~�� � ��o � ~���

�
a
ao

�
�3���1�

: (19)

From (18) we see that a positive effective cosmological
constant point exists, ~�� > 0, if and only if Po=�1� ��<
0. In Section IV we present the dynamical system analysis
of the low energy regime, but first let us gain some insight
from Eq. (19). As with the high energy case, in many cases
the fluid violates the null energy condition (�� P< 0)
and exhibit phantom behavior. Equation (19) can be re-
written in three different ways, each representing two
different subcases.
D: Po=�1� ��> 0, ~�� < 0,

 �LE�a� � �j~��j � ��o � j~��j�

�
a
ao

�
�3���1�

(20)

D1: Po > 0, �1� ��> 0. In this case 0< a<1, with
1> �>�j~��j. The geometry places further restrictions
on the values that a and � can take. The subset of open
models (negative curvature) are all nonphysical as they
evolve to the � < 0 region of the phase space. The spatially
flat models expand to a maximum a (when � � 0) and
recollapse. The closed (positively curved) models expand
to a maximum a (minimum �) and recollapse, and for
�1 
 �<�1=3 a subset of closed models oscillate be-
tween a maximum and minimum a (minimum and maxi-
mum �).
D2: Po < 0, �1� ��< 0. In this case 0< a<1, with
�j~��j< �<1. In this case the fluid exhibits phantom
behavior. The subset of open models are all nonphysical as
they evolve from the � < 0 region of the phase space. The
spatially flat models contract, bounce at a minimum a
when � � 0 and reexpand in the future. The closed models
contract, bounce at a minimum a and �, then reexpand in
the future.
E: ~�� > 0, � > ~��,

 �LE�a� � ~�� � j�o � ~��j

�
a
ao

�
�3���1�

(21)

E1: Po > 0, �1� ��< 0, B> 0. In this case 0< a<1,
with ~�� < �<1. As in the case D2, the fluid behaves in a
phantom manner. The flat and open models are asymptoti-
cally de Sitter in the past, when their energy density
approaches a finite value (�! ~�� as a! 0), and when
~�� becomes negligible in Eq. (21) they evolve as standard
linear phantom models, reaching a future singularity in a
finite time (�! 1 as a! 1). The closed models contract
to a minimum a (minimum �), bounce and reexpand.
E2: Po < 0, �1� ��> 0, B> 0. In this case 0< a<1,
with1> �> ~��. All flat and open models expand from a

singularity and asymptotically evolve to a de Sitter model,
with � � ~��. The closed models evolve from a contracting
de Sitter model to minimum a (maximum �), bounce and
then evolve to an expanding de Sitter model.
F: ~�� > 0, � < ~��,

 �LE�a� � ~�� � j�o � ~��j

�
a
ao

�
�3���1�

(22)

F1: Po > 0, �1� ��< 0, B< 0. In this case 0< a<1,
with ~�� > �>�1. The subset of open models are all
nonphysical as they evolve to the � < 0 region of the phase
space. The flat models evolve from an expanding de Sitter
phase to a contracting de Sitter phase. The closed models
oscillate between a maximum and minimum a (minimum
and maximum �).
F2: Po < 0, �1� ��> 0, B< 0. In this case 0< a<1,
with �1< �< ~��. The fluid exhibits phantom behavior.
The open models are all nonphysical as they evolve from
the � < 0 region of the phase space. The flat and closed
models evolve from a contracting de Sitter phase, bounce
at minimum a and �, then reexpand, asymptotically ap-
proaching a expanding de Sitter phase.

D. The full quadratic EoS

In Section V we present the dynamical system analysis
of the full quadratic EoS models given by Eq. (5), but again
we first study the form of ��a� implied by conservation of
energy, Eq. (1). As with the previous cases the fluid can
violate the null energy condition (�� P< 0) and there-
fore may exhibit phantom behavior. The system may admit
two (possibly negative) effective cosmological constant
points:

 ��;1 :�
1

2�
����� 1� �

����
�
p
�; (23)

 ��;2 :�
1

2�
����� 1� �

����
�
p
�; (24)

if

 � :� ��� 1�2 � 4�Po (25)

is non-negative. Clearly, the existence of the effective
cosmological points depends on the values of the parame-
ters in the EoS. This in turn affects the functional form of
��a�. In order to find ��a� the following integral must be
evaluated:

 � 3 ln
�
a
ao

�
�
Z �

�o

d�

Po � ��� 1��� ��2 : (26)

This is done separately for the cases when no effective
cosmological points exist (�< 0), when one cosmological
point exist, ��;1 � ��;2 � ��� � 0 (� � 0) and when two
cosmological points exist, ��;1 � ��;2 � 0 (�> 0). We
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now consider these three separate subcases.
G: �1� ��2 < 4�Po, �< 0,

 � �
��

�������
j�j

p
tan�32

�������
j�j

p
ln� aao��

2�� 2������
j�j
p � tan�32

�������
j�j

p
ln� aao��

�
��� 1�

2�
;

� � 2��o � ��� 1�:

(27)

G1: �> 0, Po > 0. In this case a1 < a< a2, with 1>
�>�1. The fluid behaves in a standard manner and all
models have a past singularity at a � a1. All open models
are nonphysical as they evolve to the � < 0 region of the
phase space. The flat models expand to a maximum a (� �
0) and then recollapse. The closed models can behave in a
similar manner to flat models except they reach a minimum
� before recollapsing. Some closed models oscillate be-
tween maxima and minima a and �.
G2: �< 0, Po < 0. In this case a1 < a< a2, with �1<
�<1. The fluid behaves in a phantom manner. All open
models are nonphysical as they evolve from the � < 0
region of the phase space. The flat and closed models
represent phantom bounce models, that is they evolve
from a singularity at a � a1 (� � 1), contract to a mini-
mum a (minimum �) and then reexpand to the future
singularity at a � a2.
H: �1� ��2 � 4�Po, � � 0,

 � � ��� �
1

3� ln� aao� �
2�
�

: (28)

Physical models only exists if ��� > 0, otherwise � < 0
can be negative for some times in all subcases.
H1: �> 0, Po > 0, � < ���. In this case 0< a< a1 with
��� >�>�1. The fluid behaves in a standard manner.
The subset of open models are all nonphysical as they
evolve to the � < 0 region of the phase space. The flat
models evolve from an expanding de Sitter phase to a
contracting de Sitter phase. The closed models oscillate
between maxima and minima a and �.
H2: �> 0, Po > 0, � > ���. In this case a1 < a<1with
1> �> ��� and the fluid behaves in a standard manner. If
��� > 0, the open and flat models evolve from a past
singularity (a � a1) and evolve to a expanding de Sitter
phase. For a subset of initial conditions closed models may
expand to a maximum a (minimum �) and recollapse,
while for another subset closed models avoid a past singu-
larity, instead having a bounce at a minimum a (maximum
�). If ��� < 0, the open models are nonphysical, while flat
and closed models represent recollapse models.
H3: �< 0, Po < 0, � < ���. In this case a1 < a<1with
�1< �< ���. The fluid behaves in a phantom manner.
The open models are all nonphysical as they evolve from
the � < 0 region of the phase space. The flat and closed
models evolve from a contracting de Sitter phase, bounce

at minimum a and �, then reexpand, asymptotically ap-
proaching an expanding de Sitter phase.
H4: �< 0, Po < 0, � > ���. In this case 0< a< a1 with
��� < �<1 and the fluid behaves in a phantom manner.
All models have a future singularity at a � a1. If ��� > 0,
closed models contract from a past singularity to a mini-
mum a and � before reexpanding (phantom bounce), while
flat and open models are asymptotic to generalized de
Sitter models in the past. If ��� < 0, open models are
nonphysical, while flat and closed models contract from
a past singularity to a minimum a and � before
reexpanding.
I: �1� ��2 > 4�Po, �> 0,

 � �
��;2�

a
ao
��3

���
�
p

� ��;1C

� aao
��3

���
�
p

� C
; (29)

 C �
�o � ��;2

�o � ��;1
: (30)

Note that �> 0 (< 0) implies ��;2 < ��;1 (��;1 < ��;2),
and C< 0 implies ��;2 < �o < ��;1 for �> 0 (��;1 <
�o < ��;2 for �< 0). More interesting cases arise when
at least one of the two effective cosmological constants is
positive. In section V we shall assume that they are both
positive. Limitations arising when one of the ��;i is nega-
tive will be obvious from the general discussion.
I1: �> 0, Po > 0, � < ��;2, hence we consider ��;2 > 0.
In this case 0< a< a1 with ��;2 > �>�1 and the fluid
behaves in a standard manner. The open models are all
nonphysical as they evolve to the � < 0 region of the phase
space. The flat models evolve from an expanding de Sitter
phase to a contracting de Sitter phase. The closed model
region contains a generalized Einstein static fixed point
and models which oscillate indefinitely (between minima
and maxima a and �).
I2: �> 0, Po > 0, ��;2 < �< ��;1. In this case 0< a<
1 with ��;2 < �< ��;1 and the fluid behaves in a phan-
tom manner. The open models evolve from one expanding
de Sitter phase (� � ��;2) to more rapid (greater � and H)
de Sitter phase (� � ��;1), however the spatial curvature is
negative in the past and asymptotically approaches zero in
the future. The flat models behave in a similar manner. The
closed models undergo a phantom bounce with asymptotic
de Sitter behavior, that is they evolve from a contracting de
Sitter phase, reach a minimum a, minimum � and then
evolve to a expanding de Sitter phase.
I3: �> 0, Po > 0, � > ��;1. In this case a1 < a<1with
1> �> ��;1 and the fluid behaves in a standard manner.
All flat and open models expand from a singularity at a �
a1 and asymptotically evolve to a expanding de Sitter
phase (� � ��;1). A subset of closed models evolve from
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a contracting de Sitter phase to minimum a (maximum �),
bounce and then evolve to an expanding de Sitter phase.
Another subset of closed models expand from a singularity
at a � a1, reach a maximum a and minimum �, only to
recollapse.
I4: �< 0, Po < 0, � < ��;1. In this case a1 < a<1,
with �1< �< ��;1 and the fluid behaves in a phantom
manner. The open models are all nonphysical as they
evolve from the � < 0 region of the phase space. The flat
and closed models evolve from a contracting de Sitter
phase, bounce at minimum a and �, then reexpand, asymp-
totically approaching a expanding de Sitter phase.
I5: �< 0, Po < 0, ��;1 <�< ��;2. In this case 0< a<
1with ��;2 > �> ��;1 and the fluid behaves in a standard
manner. The open models evolve from a expanding de
Sitter phase (� � ��;2) to less rapid (lower � and H) de
Sitter phase (� � ��;1) with the spatial curvature being
negative in the past and zero asymptotically in the future.
The flat models behave in a similar manner, except that the
curvature remains zero throughout the evolution. The
closed models can undergo a phantom bounce with asymp-
totic de Sitter behavior in the future and past, a subset of
these models enter a loitering phase both before and after
the bounce. There are a subset of closed models which
oscillate indefinitely.
I6: �< 0, Po < 0, � > ��;2. In this case 0< a< a1 with
��;2 < �<1 and the fluid behaves in a phantom manner.
All models have a future singularity at a � a1, with closed
models contracting from a past singularity to a minimum a
and � before reexpanding (phantom bounce).

E. The singularities

In general, singularities may behave in qualitatively
different ways. The singularities present for the nonlinear
EoS are quite different from the standard past/future ‘‘Big
Bang/Big Crunch’’ singularity. The standard singularities
are such that:

(i) Big Bang/Big Crunch: For a! 0, �! 1.
In order to differentiate between various types of
singularities, we will use the following classification
system for future singularities [21] (cf. also [54]):

(ii) Type I (‘‘Big Rip’’): For t! t?, a! 1, �! 1
and jPj ! 1.

(iii) Type II (‘‘sudden’’): For t! t?, a! a?, �! �?
or 0 and jPj ! 1.

(iv) Type III : For t! t?, a! a?, �! 1 and jPj !
1.

(v) Type IV : For t! t?, a! a?, �! �? or 0, jPj !
jP?j or 0 and derivatives of H diverge.

Here t?, a?, �? and jP?j are constants with a? � 0. The
main difference in our case is that the various types of
singularities may occur in the past or the future. The future
singularity described in case A2 is of Type III, however, the
past singularity mentioned in case A1 is also of Type III. In

the case of the full quadratic EoS, all singularities which
occur for a finite scale factor (a � a1) are of Type III.

III. HIGH ENERGY REGIME DYNAMICS

A. The dimensionless dynamical system

It is convenient to describe the dynamics in terms of
dimensionless variables. In the high energy regime these
are:

 x �
�
j�cj

; y �
H���������
j�cj

p ; � �
���������
j�cj

q
t: (31)

The system of Eqs. (1) and (2) then changes into:

 x0 � �3y���� 1�x� �x2�;

y0 � �y2 � 1
6��3�� 1�x� 3�x2�;

(32)

and the Friedman Eq. (3) gives

 y2 �
x
3
�

K

j�cja2 : (33)

The discrete parameter � denotes the sign of the quadratic
term, � 2 f�1; 1g. The primes denote differentiation with
respect to�, the normalized time variable. The variable x is
the normalized energy density and y the normalized
Hubble function. We will only consider the region of the
phase space for which the energy density remains positive
(x 	 0). The system of equations above is of the form u0i �
fi�uj�, with u1 � x, u2 � y. Since this system is autono-
mous, trajectories in phase space connect the fixed (or
equilibrium) points of the system (uj;o), which satisfy the
system of equations fi�uj;o� � 0. The fixed points of the
high energy system and their existence conditions (the
conditions for which x 	 0 and xo; yo 2 R) are given in
Table I.

The first fixed point (M) represents an empty flat
(Minkowski) model. The parabola y2 � x=3 is the union
of trajectories representing flat models, K � 0 in Eq. (33)
(see Figs. 1 and 3–7). The trajectories below the parabola
represent open models (K � �1), while trajectories above
the parabola represent closed models (K � �1). The sec-
ond fixed point (E) represents a generalized static Einstein
universe. This requires some form of inflationary matter
and therefore may only exists when �<�1=3 if � � �1
and when �>�1=3 if � � �1. The last two points rep-

TABLE I. Location and existence conditions (x 	 0 and
xo; yo 2 R) of the fixed points of the high energy regime system.

Name x y Existence

M 0 0 �1<�<1
E � ��3��1�

3 0 ��3�� 1�< 0

dS� ����� 1� �
���������������
�����1�

3

q
���� 1�< 0

dS� ����� 1� �
���������������
�����1�

3

q
���� 1�< 0
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resent expanding and contracting spatially flat de Sitter
models (dS�). These points exist when the fluid permits
a positive effective cosmological constant point, x� :�
��=�c � ����� 1�. There are further fixed points at
infinity, these can be found by studying the corresponding
compactified phase space. The first additional fixed point is
at x � y � 1 and represents a singularity with infinite
expansion and infinite energy density. The second point
is at x � 1, y � �1 and represents a singularity with
infinite contraction and infinite energy density.

B. Generalities of stability analysis

The stability nature of the fixed points can be found by
carrying out a linear stability analysis. In brief (see e.g.
[46] for details), this involves analyzing the behavior of
linear perturbations uj � uj;o � vj around the fixed points,
which obey the equations v0i �Mvj. The matrix M is the
Jacobian matrix of the dynamical system and is of the
form:

 M ij �
@fi
@uj

��������uk�uk;o

: (34)

The eigenvalues �i of the Jacobian matrix evaluated at
the fixed points tell us the linear stability character of the
fixed points. The fixed point is said to be hyperbolic if the
real part of the eigenvalues is nonzero (R��i� � 0). If all
the real parts of the eigenvalues are positive (R��i�> 0)
the point is said to be a repeller. Any small deviations from
this point will cause the system to move away from this
state. If all the real parts are negative (R��i�< 0), the point
is said to be an attractor. This is because if the system is
perturbed away from this state, it will return to the equi-
librium state. If some of the values are positive, while
others are negative then the point is said to be a saddle
point. If the eigenvalues of the fixed point are purely
imaginary then the point is a center. If the center nature
of the fixed point is confirmed by some nonlinear analysis,
then the trajectories will form a set of concentric closed
loops around the point. If the eigenvalues do not fall into
these categories, we will resort to numerical methods to
determine their stability.

The eigenvalues for the fixed points of the system
(Eq.’s (32)) are given in Table II and the linear stability
character is given in Table III.

C. The � � �1 case

We first consider the system when we have a positive
quadratic energy density term (� � �1) in the high energy
regime EoS. We will concentrate on the region around the
origin as this is where the finite energy density fixed points
are all located.

The plots have been created using the symbolic mathe-
matics application Maple 9.5. Here and in the following
sections the individual plots are made up by three layers,
the first is a directional (represented by gray arrows) field
plot of the state space. The second layer represents the
separatrices and fixed points of the state space. A separatrix
(black lines) is a union of trajectories that marks a bound-
ary between subsets of trajectories with different properties
and can not be crossed. The fixed points are represented by
black dots. The final layer represents some example tra-
jectories ( gray lines) which have been calculated by
numerically integrating the system of equations for a set
of initial conditions.

The character of the fixed point M is undefined and so is
determined numerically. The fixed point representing the
generalized Einstein static solution is a saddle point. The
fixed points representing the generalized expanding (con-
tracting) de Sitter points are attractor (repeller) points. The
trajectories or fixed points in the y > 0 (y < 0) region
represent expanding (contracting) models. We will mainly
discuss the right hand side of the state space (expanding
models) as in general the corresponding trajectory on the
left hand side is identical under time reversal.

1. The �<�1 subcase

The phase space of the system is considered when �<
�1 and is shown in Fig. 1. The lowest horizontal line (x �
0) is the separatrix for open models (K � �1) and will be
referred to as the open Friedmann separatrix (OFS). The
trajectories on the separatrix represent Milne models (x �
0, K � �1 and a��� / �) which are equivalent to a
Minkowski space-time in a hyperbolic co-ordinate system.
The second higher horizontal line (x� � ���� 1�) is the
union of trajectories of de Sitter models in flat, open or
closed co-ordinates, and is the separatrix which is the
dividing line between regions of phantom (x < x�) and
nonphantom/standard behavior(x > x�); we will call this
the phantom separatrix (PS). The standard region corre-
sponds to the case B1, while the phantom region corre-

TABLE II. Eigenvalues for the fixed points of the high energy
regime system.

Name �1 �2

M 0 0
E

���
�
p �3��1�

3 �
���
�
p �3��1�

3

dS� ��� 1�
��������������������������
�3���� 1�

p
� 2

3

��������������������������
�3���� 1�

p
dS� ���� 1�

��������������������������
�3���� 1�

p
2
3

��������������������������
�3���� 1�

p

TABLE III. The linear stability of the fixed points for the high
energy regime system.

Name � � �1 � � �1

M undefined undefined
E Saddle (� � �1=3) Center (� � �1=3)
dS� Attractor (�<�1) Saddle (�>�1)
dS� Repeller (�<�1) Saddle (�>�1)
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sponds to the case C1. In the phantom region the fluid
violates the null energy condition, �� P< 0. This means
the energy density is increasing (decreasing) in the future
for an expanding (contracting) universe. In the standard
case of the linear EoS in GR, this occurs whenw<�1 and
ultimately leads to a Type I singularity [47,55]. The parab-
ola (y2 � x=3) represents the separatrix for flat Friedmann
models (K � 0), we will call this the flat Friedmann sep-
aratrix (FFS). The inner most thick curve is the separatrix
for closed Friedmann models (K � �1) and will be called
the closed Friedmann separatrix (CFS). The separatrix has
the form:

 y2 �
x
3
�

�
A��� 1�x
��� 1� � �x

�
2=3���1�

: (35)

The constant A is fixed by ensuring that the saddle fixed
point coincides with the fixed point representing the gen-
eralized Einstein static model (E). The constant is given in
terms of the EoS parameters and has the form:

 A � �
2

��3�� 1���� 1�

�
�
��3�� 1�

9

�
3���1�=2

: (36)

The Minkowski fixed point is located at the intersection of
the OFS and FFS. The generalized flat de Sitter fixed points
are located at the intersection of the PS and FFS. The
generalized Einstein static fixed point is located on the
CFS. The trajectories between the OFS and the PS (0<
x< x�) represent models which exhibit phantom behavior
(the case C1). The open models in the phantom region are
asymptotic to a Milne model in the past and to a general-
ized flat de Sitter model (dS�) in the future. The closed
models in the phantom region evolve from a contracting de
Sitter phase, through a phantom phase to an expanding de
Sitter phase (phantom bounce). It is interesting to note that

unlike the standard GR case the phantom behavior does not
result in a Type I singularity but asymptotically evolves to
a expanding de Sitter phase. This is similar to the behavior
seen in the phantom generalized Chaplygin gas case [47].
The trajectories on the PS all represent generalized de
Sitter models (x0 � 0). The fixed points represent general-
ized flat de Sitter models (K � 0). The open model on the
PS represent generalized open de Sitter models (K � �1)
in hyperbolic co-ordinates. The closed models on the PS
evolve from a contracting phase to an expanding phase and
represent generalized closed de Sitter models (K � �1).
The Friedmann equation can be solved for such models to
give:

 a��� �

�����
3

xo

s
cosh

� �����
xo
3

r
��� �o�

�
for k � 1;

a��� � e
�������
xo=3
p

����o� for k � 0;

a��� �

�����
3

xo

s
sinh

� �����
xo
3

r
��� �o�

�
for k � �1;

(37)

The region above the PS represents models which evolve
in a nonphantom/standard manner (the case B1). The
trajectories in the expanding region (y > 0) of the phase
space are asymptotic to a Type III singularity in the past.4

The trajectories outside the FFS represent open models
which evolve from a Type III singularity to a flat de
Sitter phase, as do the trajectories on the FFS. The trajec-
tories in between the CFS and the FFS represent closed
models evolving from a Type III singularity to a flat
expanding de Sitter phase and may enter a phase of loiter-
ing. Loitering is characterized by the Hubble parameter
dipping to a low value over a narrow red-shift range,
followed by a rise again. In order to see this more clearly,
we have plotted the normalized Hubble parameter (y) as a
function of scale factor for three different trajectories in
Fig. 2. The top two curves represent the open and flat
models, with the Hubble parameter dropping off quicker
for the flat Friedmann model. The lower most curve is the
Hubble parameter for the closed model. The plot shows
that the closed model evolves to a loitering phase.
Loitering cosmological models in standard cosmology
were first found for closed FLRW models with a cosmo-
logical constant. More recently, brane-world models which
loiter have been found [56], these models are spatially flat
but can behave dynamically like a standard FLRW closed
model. The interesting point here is that the models men-
tioned above loiter without the need of a cosmological
constant, due to the appearance of an effective cosmologi-
cal constant. The trajectories inside the CFS can have two
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y

FIG. 1. The phase space for the high energy regime system
with � � �1 and �<�1. The upper (lower) region corresponds
to the case B1 (C1).

4The Type III singularity appears to be a generic feature of the
high energy regime EoS and can occur both in the future and the
past.
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distinct types of behavior corresponding to the central
regions above and below the generalized Einstein static
fixed point. Trajectories in the lower region represent
closed models which evolve from a contracting de Sitter
phase, bounce and then evolve to a expanding de Sitter
phase. The trajectories in the upper region evolve from a
Type III Singularity, expand to a maximum a (minimum x)
and then recollapse to a Type III singularity (we will refer
to such recollapsing models as turn-around models).

2. The �1<�<�1=3 subcase

The phase space for the system when �1<�<�1=3
is shown in Fig. 3. The open, flat and closed Friedmann

separatrices (OFS, FFS, and CFS) remains the same. The
phantom separatrix (PS) is no longer present and all tra-
jectories represent models with nonphantom/standard flu-
ids (this corresponds to the case A1). The main difference
is that the generic future attractor is now the Minkowski
model. The trajectories between the OFS and FFS now
evolve from a Type III singularity to a Minkowski model,
as do the flat Friedmann models. The models between the
FFS and CFS now evolve from a Type III singularity to a
Minkowski with the possibility of entering a loitering
phase (as before the model is asymptotically flat in the
future). The trajectories inside the CFS and above the
Einstein static fixed point still represent turn-around mod-
els. The trajectories inside the OFS and below the Einstein
static model now represent standard bounce models, that is
they evolve from a Minkowski model, contract to a finite
size, bounce and then expand to a Minkowski model.

3. The � 	 �1=3 subcase

Next we consider the system when� 	 �1=3, the phase
space is shown in Fig. 4. The fixed point representing the
Einstein static models is now located in the x < 0 region of
the phase space. The fluid in the entire physical region
behaves in a nonphantom manner and corresponds to the
case A1. The OFS and FFS remain the same and the CFS is
no longer present. The trajectories between the OFS and
FFS evolve from a Type III singularity to a Minkowski
model. All trajectories above the FFS now represent turn-
around models which start and terminate at a Type III
singularity. The behavior of the models is qualitatively
the same as that of the standard FLRW model with a linear
EoS where w � �, in the linear EoS case the Type III
singularity is replaced by a standard Big Bang or Big
Crunch.
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FIG. 3. The phase space for the high energy regime system
with � � �1 and �1<�<�1=3. The entire region corre-
sponds to the case A1.
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FIG. 2. The normalized Hubble parameter, y for models with
differing curvature. Starting from the top we have open, flat and
the closed models.
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FIG. 4. The phase space for the high energy regime system
with � � �1 and � 	 �1=3. The entire region corresponds to
the case A1.
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D. The � � �1 case

We now consider the system when we have a negative
quadratic energy density term (� � �1) in the high energy
regime EoS. The character of the fixed point M is still
undefined by the linear stability analysis. The fixed point
representing the generalized Einstein static model is now a
center. The fixed points representing the expanding/con-
tracting flat de Sitter points now have saddle stability. As
before, the trajectories or fixed points in the y > 0 (y < 0)
region represent expanding models (contracting models).

1. The �<�1 subcase

The phase space of the system when�<�1 is shown in
Fig. 5. The horizontal line x � 0 is still the open
Friedmann separatrix OFS. The parabola is the flat
Friedmann separatrix FFS. The intersection of the OFS
and FFS coincides with the Minkowski fixed point M.
All the trajectories in the physical region of the phase
space exhibit phantom behavior corresponding to the
case A2, the energy density increases in an expanding
model. The trajectories in the expanding (contracting)
region in general evolve to a Type III singularity in the
future (past). The trajectories between the OFS and the FFS
are asymptotic to a Milne model in the past and are
asymptotic to a Type III singularity in the future. The
trajectories on the FFS start from the Minkowski fixed
point M and enter a phase of superinflationary expansion
and evolve to a Type III singularity. Trajectories that start
in a contracting phase during which the energy density
decreases, reach a minimum a (minimum x) and then
expand where the energy density increases represent phan-
tom bounce models. The trajectories above the FFS repre-
sent closed models which evolve through a phantom
bounce, but start and terminate in a Type III singularity.
The behavior of the models is qualitatively the same as that

of the FLRW models with a phantom linear EoS (w<�1)
except that the Type III singularity is replaced by a Type I
(Big Rip) singularity.

2. The �1<�<�1=3 subcase

The phase space for the system when �1<�<�1=3
is shown in Fig. 6. The lowest horizontal line (x � 0) is the
OFS. The second higher horizontal line, x� � ��� 1� is
the phantom separatrix (PS), this divides the state space
into regions of phantom (x > x�) and nonphantom/stan-
dard behavior (x < x�). The phantom region corresponds
to the case B2 and the standard region corresponds to the
case C2. The flat de Sitter (dS�) points are located at the
intersection of the FFS and the PS. The open models in the
standard matter region (0< x< x�) are past asymptotic to
open expanding de Sitter models in the past and evolve to
Minkowski models in the future. The closed models in the
region represent the standard bounce models, that is they
evolve from a Minkowski model, contract to a minimum a
(maximum x) and then expand to a Minkowski model. The
trajectories above the PS (x > ��� 1�) all exhibit phantom
behavior. The open models in this region are past asymp-
totic to open de Sitter models in the past and evolve to a
Type III singularity in the future. The closed models in the
region all represent models which undergo a phantom
bounce but start and terminate in a Type III singularity.

3. The � 	 �1=3 subcase

We now consider the system when � 	 �1=3, the phase
space is shown in Fig. 7. The OFS, FFS and the PS are all
still present, the phantom regions still corresponds to the
case B2 and the standard region to the case C2. The
trajectories in the phantom region (x > x�) behave in a
similar manner to the previous case, as do the open models
in the standard matter region (0< x< x�). The main
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FIG. 6. The phase space for the high energy regime system
with � � �1 and �1<�<�1=3. The upper (lower) region
corresponds to the case B2 (C2).
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FIG. 5. The phase space for the high energy regime system
with � � �1 and �<�1. The entire region corresponds to the
case A2.
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difference is in the region representing closed models
(K � 1) with nonphantom behavior. There is now a new
fixed point which represents a generalized Einstein static
model E. The closed models in the region now represent
oscillating models. This is represented by closed concen-
tric loops around the Einstein static fixed point. These
oscillating models also appear in the low energy system
and will be discussed in more detail later.

IV. LOW ENERGY REGIME DYNAMICS

A. The dimensionless dynamical system

We now consider the system of equations for the low
energy regime EoS, which can be simplified and expressed
in terms of the following dimensionless variables:

 x �
�
jPoj

; y �
H���������
jPoj

p ; � �
���������
jPoj

q
t: (38)

The system of equations is then:

 x0 � �3y��p � ��� 1�x�; (39)

 y0 � �y2 �
1

6
�3�p � �3�� 1�x�; (40)

 y2 �
x
3
�

K

jPoja2 : (41)

The discrete parameter �p denotes the sign of the pressure
term, �p 2 f�1; 1g. The primes denote differentiation with
respect to the new �. The variables x and y are the new
normalized energy density and Hubble parameter. The
fixed points of the system and the existence conditions
are given in Table IV. As before, by existence we mean
the conditions on the parameters to insure x 	 0 and
xo; yo 2 R.

The Minkowski model (x � y � 0) is no longer a fixed
point of the system. The first fixed point E represents a
generalized static Einstein model. This requires the overall
effective equation of state to be that of inflationary matter
and therefore only exists when �p=�3�� 1�< 0. The last
two points represent generalized expanding and contract-
ing flat de Sitter models. These points only exist if the fluid
permits a positive effective cosmological constant point
~x� � ~��=jPoj � ��p=��� 1�> 0 in the physical region
of the phase space. The eigenvalues of the equilibrium
points are given in Table V, while the linear stability
character is given in Table VI.

B. The �p � �1 case

We start by considering the system when we have a
positive constant pressure term (�p � �1) in the low
energy regime EoS. If present, the fixed point E represent-
ing a generalised Einstein static solution has the stability
character of a center. The fixed points dS� representing the
generalized expanding/contracting de Sitter models now
have saddle stability.

1. The �<�1 subcase

The phase space for the system when �<�1 is shown
in Fig. 8. The open Friedmann separatrix (x � 0) is no
longer present, and the x � y � 0 point is no longer a fixed

TABLE IV. Location and existence conditions of the fixed
points of the low energy regime system.

Name x y Existence

E �
3�p
�3��1� 0 �p

�3��1�< 0

dS� �
�p
���1� �

������������
��p

3���1�

q
�p
���1�< 0

dS� �
�p
���1� �

������������
��p

3���1�

q
�p
���1�< 0

TABLE V. Eigenvalues of the fixed points of the low energy
regime system.

Name �1 �2

E
����������
��p
p

�
����������
��p
p

dS�
���������������
�3���1�

�p

q
� 2������������������

�3�p���1�
p

dS� �
���������������
�3���1�

�p

q
2������������������

�3�p���1�
p
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FIG. 7. The phase space for the high energy regime system
with � � �1 and � 	 �1=3. The upper (lower) region corre-
sponds to the case B2 (C2).

TABLE VI. The linear stability of the fixed points for the low
energy regime system.

Name �p � �1 �p � �1

E Center (� � �1=3) Saddle (� � �1=3)
dS� Saddle (�<�1) Attractor (�>�1)
dS� Saddle (�<�1) Repeller (�>�1)
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point of the system. The horizontal line (~x� �
���� 1��1) is the phantom separatrix PS, dividing the
state space into regions with phantom (x > ~x�) and stan-
dard (x < ~x�) behavior. The phantom region corresponds
to the case E1 and the standard region corresponds to the
case F1. The parabola y2 � x=3 is the separatrix FFS
representing the flat Friedmann models, this divides the
remaining trajectories into open and closed models. The
intersection of the PS and FFS coincides with the fixed
points representing the generalized flat de Sitter models.

The trajectories in the upper region that start in a con-
tracting phase (during which the energy density decreases),
reach a minimum a (minimum x) and then expand, repre-
senting phantom bounce closed models which start and
terminate in a Type I singularity.5 The open models in the
phantom region are asymptotic to open de Sitter models in
the past and evolve to a Type I singularity in the future. The
trajectories below the PS (x < ~x�) represent models which
all behave in a standard manner (the F1 case). The open
models in this region are all nonphysical as they all evolve
to the x < 0 region of the phase space. The region corre-
sponding to closed models (above the FFS) contain a fixed
point E which represents the generalized Einstein static
model. This region is filled by a infinite set of closed loops
centered on the Einstein static fixed point E, the closed
loops representing oscillating models. The Friedmann
equation for such closed models (K � �1) is given by:

 y2 �
x
3
�

�
1� ��� 1�x
B��� 1�

�
2=3���1�

; (42)

where B is a constant of integration. In the case of the
Einstein static fixed point this can be fixed and is given in

terms of �:

 BE �
�2

��� 1��3�� 1�
���3�� 1��3���1�=2: (43)

In the case of the oscillating models B> BE. These oscil-
lating models appear for�1<�<�1=3 when �p � �1
and are qualitatively similar to the oscillating models seen
in the high energy case. The exact behavior of the variables
for these models can be calculated by fixing the EoS
parameter �. The qualitative behavior remains the same
for the models, however the maximum and minimum
values of the variables change. In the case of � � �2=3
the equations are greatly simplified, the scale factor oscil-
lates such that

 a��� � ao�1�
�������������
1� ~K

p
sin��o � ���; (44)

where the parameter ~K is given by

 

~K �
�
B
BE

�
�2=3���1�

: (45)

In the case B � BE we recover the case of the Einstein
static model. For B> BE the maximum and minimum
scale factor is

 amax � ao�1�
�������������
1� ~K

p
�; amin � ao�1�

�������������
1� ~K

p
�:

(46)

The normalized hubble parameter (y) is

 y � yo

�������������
1� ~K
p

cos��o � ��

1�
�������������
1� ~K
p

sin��o � ��
: (47)

The maximum and minimum y is given by

 ymax � yo

�������������
1� ~K

~K

s
; ymin � �yo

�������������
1� ~K

~K

s
: (48)

The normalized energy density (x) is given by

 x � xo

�
1�

�������������
1� ~K
p

sin��o � ��

1�
�������������
1� ~K
p

sin��o � ��

�
: (49)

The maximum and minimum x are

 xmax � xo

�
1�

�������������
1� ~K
p

1�
�������������
1� ~K
p

�
; xmin � xo

�
1�

�������������
1� ~K
p

1�
�������������
1� ~K
p

�
:

(50)

2. The �1<�<�1=3 subcase

We now consider the case when �1<�<�1=3, the
phase space is shown in Fig. 9. All trajectories in the
physical region of the phase space exhibit standard behav-
ior and correspond to the case D1. There is only one fixed
point E in the x 	 0 region of the phase space, representing
the generalized Einstein static model. The FFS represent
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FIG. 8. The phase space for the low energy regime system with
�p � �1 and �<�1. The upper (lower) region corresponds to
the case E1 (F1).

5The Type I singularity is a generic feature of the low energy
regime EoS and can appear both in the future and the past.
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models which evolve from a standard Big Bang, evolve to a
Minkowski model and then to a standard Big Crunch (turn-
around model). The open models (below the FFS) are
nonphysical as the evolve into the x < 0 region. The tra-
jectories above the separatrix represent closed models
(K > 0) which oscillate indefinitely between a maximum
and minimum a (minimum and maximum x), as seen in the
previous case.

3. The �1=3 
 � subcase

The phase space for the system when �1=3 
 � is
shown in Fig. 10. As in the previous subcase the fluid
behaves in a standard manner and corresponds to the
case D1. There are no fixed points in the physical region
of the phase space. The parabola is the FFS and represents

flat model which evolve from a Big Bang, approach a
Minkowski model and then recollapse (turn-around mod-
els) to a Big Crunch. The open models (below the FFS) are
all nonphysical as they evolve to the negative energy
density region (x < 0) of the phase space. The closed
models evolve from a Big Bang, reach a maximum a
(minimum x) and recollapse to a Big Crunch.

C. The �p � �1 case

We now consider the system when we have a negative
constant pressure term (�p � �1) in the low energy re-
gime EoS. As before, the Minkowski (x � y � 0) point is
no longer a fixed point of the system and the OFS is not
present. The fixed point E representing the generalized
Einstein static model has the stability character of a saddle.
The fixed points dS� representing the generalized expand-
ing (contracting) flat de Sitter points now have attractor
(repeller) stability.

1. The �<�1 subcase

The phase space for the low energy system when �<
�1 is shown in Fig. 11. All the trajectories in the x > 0
region of the phase space now exhibit phantom behavior
and correspond to the case D2. The open models are all
nonphysical as they all evolve from the negative energy
density region of the phase space. The flat and closed
models represent phantom bounce models which start
and end in a Type I singularity. They evolve from a
Type I singularity, contract, bounce at a minimum a (mini-
mum x) and expand to a Type I singularity.

2. The �1<�<�1=3 subcase

The phase space for the system when �1<�<�1=3
is shown in Fig. 12. The horizontal line, ~x� � ��� 1��1 is
the phantom separatrix PS, dividing the state space into
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FIG. 10. The phase space for the low energy regime system
with �p � �1 and �1=3 
 �. The entire region corresponds to
the case D1.
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FIG. 11. The phase space for the low energy regime system
with �p � �1 and �<�1. The entire region corresponds to the
case D2.
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FIG. 9. The phase space for the low energy regime system with
�p � �1 and �1 
 �<�1=3. The entire region corresponds
to the case D1.
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regions with phantom (x < ~x�) and standard behavior (x >
~x�). The standard region corresponds to the case E2 and
the phantom region corresponds to the case F2. The inter-
section of the PS and FFS coincides with the fixed points
dS� representing the generalized flat de Sitter models. The
flat expanding (contracting) de Sitter model is the generic
future attractor (repeller). The open models in the standard
matter region (x > ~x�) evolve from a standard Big Bang to
a flat expanding de Sitter phase. The closed models in this
region evolve from a contracting flat de Sitter phase, reach
a minimum a (maximum x), bounce and then evolve to
expanding flat de Sitter phase. These models represent
standard bounce models with asymptotic de Sitter behav-
ior. The open models in the phantom region (x < ~x�) are
all nonphysical. The flat and closed models in this region
represent models exhibiting phantom bounce behavior
which avoid the Big Rip and instead evolve to an expand-
ing flat de Sitter phase.

3. The �1=3 
 � subcase

We now consider the system in the parameter range
�1=3 
 �, the phase space is shown in Fig. 13. The PS
(~x� � ��� 1��1), FFS (y2 � x=3) and the generalized flat
de Sitter points dS� still remain. The flat expanding (con-
tracting) de Sitter model is the generic future attractor
(repeller). The inner most black curve is the closed
Friedmann separatrix CFS and contains the generalized
Einstein static fixed point E, which has saddle stability.
The CFS is given by:

 y2 �
x
3
�D

�
��� 1�x� 1

2

�
2=3���1�

: (51)

The constantD is a constant of integration and can be fixed
by the location of the fixed point E. The constant is given in
terms of � and has the form:

 D � �3�� 1����3��1�=3���1��: (52)

The region below the PS (x < ~x�) remains qualitatively
the same. The open models in the standard matter region
(x > ~x�) all evolve from a Big Bang to a expanding flat de
Sitter phase. The trajectories between the FFS and the CFS
also evolve from a Big Bang to a generalized expanding
flat de Sitter model with the possibility of entering a loiter-
ing phase. The models inside the CFS can behave in one of
two ways. The trajectories above the generalized Einstein
static point represent turn-around models which evolve
from a Big Bang, reach a maximum a (minimum x) and
then recollapse to a Big Crunch. The trajectories below
evolve from a contracting de Sitter phase to an expanding
de Sitter phase and represent bounce models.

V. THE FULL SYSTEM

A. The dimensionless dynamical system

We now consider the system of equations with the full
quadratic EoS, this can be simplified in a similar fashion to
the previous case by introducing a new set variables:
 

x �
�
j�cj

; y �
H���������
j�cj

p ;

� �
���������
j�cj

q
t; 	 �

Po���������
j�cj

p :
(53)

The system of equations then become:

 x0 � �3y�	� ��� 1�x� �x2�; (54)

 y0 � �y2 �
1

6
�3	� �3�� 1�x� 3�x2�; (55)
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FIG. 12. The phase space for the low energy regime system
with �p � �1 and �1 
 �<�1=3. The upper (lower) region
corresponds to the case E2 (F2).
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FIG. 13. The phase space for the low energy regime system
with �p � �1 and �1=3 
 �. The upper (lower) region corre-
sponds to the case E2 (F2).
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 y2 �
x
3
�

K

j�cja2 : (56)

The parameter � denotes the sign of the quadratic term,
� 2 f�1; 1g. The parameter 	 is the normalized constant
pressure term. For 	 � 0 the above dynamical system
reduces to the high energy system analyzed in
Section III. The primes denotes differentiation with respect
to the new normalized time variable � and only the physi-
cal region of the phase space is considered (x 	 0). The
fixed points and their existence conditions are given in

Table VII. The phase space undergo’s a topological change
for special values of the 	 parameter, these values can be
expressed in terms of � and are:

 	1 �
�3�� 1�2

36
; 	2 �

��� 1�2

4
: (57)

In the following section we will consider the case when the
choice of 	 lies between 	1 and 	2, however 	2 < 	1 when
�<�2=3 and 	2 > 	1 when �>�2=3. We will there-
fore consider the cases 	2 < 	< 	1 and 	2 > 	> 	1 for
the two subcases �<�2=3 and �>�2=3 separately. As
in the previous case, by existence we mean x 	 0 and
xo; yo 2 R. The general eigenvalues derived from the lin-
ear stability analysis are given in Table IX. The linear
stability character of the fixed points is given in Table VIII.

The system has six fixed points and the sign of � no
longer affects the linear stability character of the fixed
point (but changes it’s position in the x� y plane). The
first fixed point M represents a Minkowski model and is
only present if 	 � 0, the linear stability character is un-
defined. The second fixed point E1 represents an Einstein
static model and has the linear stability character of a
saddle. The third fixed point E2 represents an Einstein
static model with the linear stability character of a center.
In general, this fixed point is surrounded by a set of closed

TABLE VII. The locations of the fixed points of the full system. The existence conditions are also given, that is xo; yo 2 R and
x 	 0. To simplify the expressions special values of 	 are used which can be expressed in terms of �, these values are 	1 �

�3��1�2

36 and
	2 �

���1�2

4 .

Name x y Existence (� � �1) Existence (� � �1)

M 0 0 	 � 0 	 � 0
E1 � �3��1�

6� �

������������������������
�3��1�2�36�	
p

6� 0 	 
 	1, �<�1=3 �	1 < 	< 0, �>�1=3
	 < 0, �>�1=3

E2 � �3��1�
6� �

������������������������
�3��1�2�36�	
p

6� 0 0< 	< 	1, �<�1=3 	 > 0, �<�1=3
	 	 �	1, �>�1=3

dS1;� � ���1�
2� �

��������������������
���1�2�4�	
p

2� ��� ���1�
6� �

��������������������
���1�2�4�	
p

6� �1=2 	 
 	2, �<�1 �	2 < 	< 0, �>�1
	 < 0, �>�1

dS2;� � ���1�
2� �

��������������������
���1�2�4�	
p

2� ��� ���1�
6� �

��������������������
���1�2�4�	
p

6� �1=2 0< 	< 	2, �<�1 	 > 0, �<�1
�	2 
 	, �>�1

TABLE VIII. The linear stability character of the fixed points
for the full system. The stability character is only valid for
choices of parameters which are consistent with the existence
conditions and constraints given below.

Name � � �1 Exceptions

M Undefined -
E1 Saddle 36�	 � �3�� 1�2

E2 Center 36�	 � �3�� 1�2

dS1;� Attractor 4�	 � ��� 1�2

dS1;� Repeller 4�	 � ��� 1�2

dS2;� Saddle 4�	 � ��� 1�2

dS2;� Saddle 4�	 � ��� 1�2

TABLE IX. The eigenvalues derived from the linear stability analysis of the fixed points for the full system. In order to simplify the
form of the eigenvalues we introduce the following variables, 
1 � �3�� 1�, 
2 � ��� 1� and � �

���������������������������������
��� 1�2 � 4�	

p
. These

eigenvalues are only valid for the choice of parameters consistent with the existence conditions.

Name �1 �2

M 0 0

E1 ��

2

1�
1

���������������

2

1�36�	
p

�36�	
18� �1=2 ��


2
1�
1

���������������

2

1�36�	
p

�36�	
18� �1=2

E2 ��

2

1�
1

���������������

2

1�36�	
p

�36�	
18� �1=2 ��


2
1�
1

���������������

2

1�36�	
p

�36�	
18� �1=2

dS1;� �
���������
��
2

6�

q
�1� 3�

2 � � �
6�2�3��3
2�4��8�
2�3��1����

48� �1=2 �
���������
��
2

6�

q
�1� 3�

2 � � �
6�2�3��3
2�4��8�
2�3��1����

48� �1=2

dS2;� �
���������������
����
2�

6�

q
�3�2 � 1� � �� 6�2�3��3
2�4��8�
2�3��1����

48� �1=2 �
���������������
����
2�

6�

q
�3�2 � 1� � �� 6�2�3��3
2�4��8�
2�3��1����

48� �1=2
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concentric loops representing oscillating models. The next
pair of fixed points dS1;� represents a set of generalized flat
de Sitter models, the expanding (contracting) model has
attractor (repeller) stability. The next pair of fixed points
dS2;� also represents a set of generalized flat de Sitter
models, but now they have saddle stability. The separatrix
FFS for open Friedmann models OFS is only present if 	 �
0. The parabola y2 � x=3 still separates the open and
closed models. The separatrix for the closed Friedmann
models (CFS) is present for a narrow range of the parame-
ters and always contains the fixed points E1 representing a
generalized Einstein static model. The fluid permits two
possible effective cosmological constants points, they are
given by:

 x�;1 �
��;1

j�cj
� �

��� 1�

2�
�

����
�
p

2�
; (58)

 x�;2 �
��;2

j�cj
� �

��� 1�

2�
�

����
�
p

2�
: (59)

Where � � ��� 1�2 � 4�	. There is also a separatrix
associated with each of the effective cosmological points,
which divide the regions of phantom and nonphantom
behavior. The separatrices will be referred to as the phan-
tom separatrix (PSi which corresponds to the line x �
x�;i), with the appropriate subscript. For special choices
of parameters the separatrices coincide. The discussion of
the system will be split into the two categories, � � �1
and � � �1.

B. The � � �1 case

We first consider the system when we have a positive
quadratic energy density term (� � �1). The dynamical
system can be further subdivided into subcases with differ-
ent values of the parameters � and 	. The various subcases
have been highlighted in Table X. The majority of subcases
result in a phase space diagram which is qualitatively
similar to cases discussed in previous sections. That is

the qualitative behavior of trajectories is the same even
though the functional form of ��a� is different. The figure
numbers not in bold indicate choices of variable for which
the phase space is qualitatively similar to a previous case,
with the following differences:

(1) The regions which corresponded to different types
of behavior of the fluid now change (replaced by
new ��a� behavior):

(a) The case D1! G1,
(b) The case E2! I3,
(c) The case F2! I2,

(2) The Type I singularities are now replaced by
Type III singularities.

There is a narrow range of the parameters for which the
state space is qualitatively different. In Table X, the figure
numbers given in bold correspond to values of 	 such that
the state space is qualitatively different to previously dis-
cussed cases. We will now discuss the four subcases which
are different to those discussed in previous sections.

1. The �<�1, 	 � 	1 subcase

The phase space of the system when �<�1 and 	 �
	1 is shown in Fig. 14. The fluid behaves in a standard
manner and corresponds to the case G1. This choice of
parameters results in the two Einstein points Ei coinciding.
The resulting fixed point is highly nonlinear and cannot be
classified into the standard linear stability categories as in
previous cases. The fixed point is contained in the CFS; the
parabola is the FFS. The open models are all nonphysical
as they evolve to the x < 0 region of the phase space. The
models between the FFS and the CFS represent turn-
around models which evolve from a Type III singularity,6

TABLE X. The various subcases of the full system when � �
�1. The figure numbers given in bold, indicate the choice of
variables for which the state space is qualitatively different to
previously discussed cases.

�<�1, �1 
 �< �2
3 , �2

3 
 �< �1
3 , �1

3 
 �.

	 > 	1 FIG. 10 FIG. 10 FIG. 10 FIG. 10
	 � 	1 FIG. 14 FIG. 14 FIG. 14 FIG. 10
	2 < 	< 	1 FIG. 15 FIG. 15 - -
	2 > 	> 	1 - - FIG. 15 FIG. 10
	 � 	2 FIG. 16 FIG. 15 FIG. 15 FIG. 10
0< 	< 	2 FIG. 17 FIG. 15 FIG. 15 FIG. 10
	 � 0 FIG. 1 FIG. 3 FIG. 3 FIG. 4
	 < 0 FIG. 13 FIG. 13 FIG. 13 FIG. 13
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FIG. 14. The phase space for the full system with � � �1,
�<�1 and 	 � 	1 (additionally when �<�1=3 and 	 � 	1).
The entire region corresponds to the case G1.

6As with the case of the high energy EoS, the Type III
singularity is a generic feature of the fully quadratic EoS.
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evolve to a maximum a (minimum x) and then recollapse.
The trajectories above the CFS also represent similar turn-
around models.

2. The �<�1, 	2 < 	< 	1 subcase

The phase space of the system when �<�1 and 	2 <
	< 	1 is shown in Fig. 15. The fluid behaves in a standard
manner and corresponds to the case G1. The Einstein fixed
point of the previous case splits into two individual
Einstein fixed points Ei via bifurcation. The first Einstein
fixed point E1 is contained in the CFS, while the second
Einstein fixed point E2 is located inside the lower region
enclosed by the CFS. Only the trajectories between the
CFS and FFS differ from the previous case. They still
represent turn-around models which evolve from a
Type III singularity but may now enter a loitering phase.
As in the previous case, trajectories above the CFS and the
Einstein fixed point (E1) evolve from a Type III singularity,
reach a maximum a and then recollapse to a Type III
singularity. The trajectories inside the closed loop of the
CFS represent closed oscillating models around are the
second Einstein fixed point E2.

3. The �<�1, 	 � 	2 subcase

The phase space of the system when �<�1 and 	 �
	2 is shown in Fig. 16. The fluid behaves in a standard
manner in both regions and the upper (lower) region cor-
responds to the case H2 (H1). This choice of parameters
results in the two sets of generalized de Sitter points dSi;�
coinciding. They are located at the intersections of the PS
(x � x�) and the FFS. The resulting fixed points are highly
nonlinear, the points have shunt stability along the FFS
direction and the generalized expanding (contracting) de
Sitter point has attractor (repeller) stability along the PS
direction. The two Einstein points Ei and the CFS are still

present. In the x < x� region, the open models are all
nonphysical as they evolve to the x < 0 region and the
closed models represent oscillating models which are cen-
tered on the Einstein point (E2) with center linear stability.
In the x > x� region, the open models are asymptotic to a
Type III singularity in the past and a expanding flat de
Sitter fixed point dSi;� in the future. The trajectories
between the FFS and the CFS evolve from a Type III
singularity to dSi;� with the possibility of entering a loiter-
ing phase. The models inside the CFS and above the E1

point represent turn-around models which asymptotically
approach a Type III singularity. The closed models inside
the CFS and below the E1 point are asymptotic to a con-
tracting de Sitter model phase (dSi;�) in the past and a
expanding de Sitter phase (dSi;�) in the future. For forever
expanding models, the generic attractor in the x > x�;i

region is the dSi;� fixed point.

4. The �<�1, 0< 	< 	2 subcase

The phase space of the system when �<�1 and 0<
	< 	2 is shown in Fig. 17. The upper (lower) horizontal
line is the PS1 (PS2). The region above PS1 corresponds to
the case I3 and is qualitatively similar to the H2 region in
the previous subcase. The region below PS2 corresponds to
the case I1 and is qualitatively similar to the H1 region in
the previous subcase. The set of generalized flat de Sitter
fixed points dSi;� of the previous case split into two sets of
generalized flat de Sitter fixed points via bifurcation. The
upper (lower) set of generalized de Sitter points, dS1;�

(dS2;�) have attractor/repeller (saddle) stability. The re-
gion between PS1 and PS2 corresponds to the case I2 and
the fluid behaves in a phantom manner. The open models in
this region are asymptotic to open de Sitter models in the
past and flat de Sitter models in the future. The closed
models in the phantom region represent phantom bounce
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FIG. 16. The phase space for the full system with � � �1,
�<�1 and 	 � 	2. The upper (lower) region corresponds to
the case H2 (H1).
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FIG. 15. The phase space for the full system with � � �1,
�<�1 and 	2 < 	< 	1 (additionally when �1<�<�1=3
and 0< 	< 	1). The entire region corresponds to the case G1.
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models which asymptotically approach a expanding (con-
tracting) de Sitter phases in the future (past).

C. The � � �1 case

We now consider the system when we have a negative
quadratic energy density term (� � �1). As before the
system can be subdivided into various subcases with differ-
ent values of parameters of � and 	. The various subcases
have been highlighted in Table XI

As before, the figure numbers not in bold correspond to
values of 	 such that the phase space is qualitatively similar
to a previous case, with the following differences:

(1) The regions which corresponded to different types
of behavior of the fluid now change (replaced by
new form of ��a�):

(a) The case D2! G2,
(b) The case E1! I6,
(c) The case F1! I5,

(2) The Type I singularities are now replaced by
Type III singularities.

There are choices of parameters for which the phase space
is different (figure numbers in bold in Table XI) and these
four subcases will be discussed in the following sections.

1. The �>�1=3, �	1 < 	< 0 subcase

The phase space of the system when �>�1=3 and
�	1 < 	< 0 is shown in Fig. 18. The upper (lower)
horizontal line at x � x�;2 (x � x�;1) is the PS2 (PS1)
(they have swapped position with respect to the � � �1
case). The region above PS2 corresponds to the case I6, the
region below PS1 corresponds to the case I4 and the fluid
behaves in a phantom manner in both regions. The region
between PS1 and PS2 corresponds to the case I5 and the
fluid behaves in a standard manner. The lower set of
generalized de Sitter points (dS1;�—at the intersection
of PS1 and FFS) have attractor/repeller stability, while
the upper set (dS2;�—at the intersection of PS2 and FFS)
have saddle stability. The CFS is located in between PS1

and PS2 and coincides with the Einstein point (E1). The
open models in the x < x�;1 region (the case I4) are all
nonphysical as they evolve from the x < 0 region of the
phase space. The closed models in this region represent
phantom bounce models which evolve from a contracting
de Sitter phase (dS1;�) to a expanding de Sitter phase
(dS1;�). The open models in the standard region (x�;1 <
x< x�;2 corresponding to the case I5) are asymptotic to a
generalized open de Sitter model in the past and general-
ized flat de Sitter model in the future (the future attractor
has lower x and y). The models between the CFS and the
FFS in this region represent bounce models which evolve
from a contracting de Sitter phase to a expanding de Sitter
phase with the possibility of entering a loitering phase. The
models enclosed by the CFS can be split into two groups.
The models above the fixed point, E1 represent oscillating
models, the closed loops are centered on the fixed point E2.
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FIG. 18. The phase space for the full system with � � �1,
�>�1=3 and �	1 < 	< 0. The upper, middle and lower
regions correspond to the cases I6, I5 and I4, respectively.

TABLE XI. The various subcases of the � � �1 full system.
The figure numbers given in bold, indicate the choice of varia-
bles for which the phase space is qualitatively different to
previous cases.

�<�1, �1 
 �< �2
3 , �2

3 
 �< �1
3 , �1

3 
 �.

	 > 0 FIG. 8 FIG. 8 FIG. 8 FIG. 8
	 � 0 FIG. 5 FIG. 6 FIG. 6 FIG. 7
�	1 < 	< 0 FIG. 11 FIG. 20 FIG. 20 FIG. 18
	 � �	1 FIG. 11 FIG. 20 FIG. 20 FIG. 19
�	2 < 	<�	1 - - FIG. 20 FIG. 20
�	2 > 	>�	1 FIG. 11 FIG. 20 - -
	 � �	2 FIG. 11 FIG. 21 FIG. 21 FIG. 21
	 <�	2 FIG. 11 FIG. 11 FIG. 11 FIG. 11
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FIG. 17. The phase space for the full system with � � �1,
�<�1 and 0< 	< 	2. The upper, middle and lower regions
correspond to the cases I3, I2 and I1, respectively.
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The models below the fixed point, E1 represent bounce
models which evolve from dS1;� to dS1;�. In the x > x�;2

region (the case I6) the open models are asymptotic to
generalized open de Sitter models in the past and a Type III
singularity in the future. The closed models in this region
represent phantom bounce models which evolve from a
Type III singularity, reach a minimum a (minimum x) and
then evolve to a Type III singularity. The generalized
expanding flat de Sitter model, dS1;� (Type III singularity)
is the generic future attractor in the region x < x�;2 (x >
x�;2). The trajectories in the regions, x < x�;1 and x > x�;2

remain qualitatively similar in the following two cases
(Fig. 19 and 20).

2. The �>�1=3, 	 � �	1 subcase

The phase space of the system when �>�1=3 and 	 �
�	1 is shown in Fig. 19. The phase space is equivalent to
the previous subcase, except for the region x�;1 < x< x�;2

(the case I5). The open models in this region are still
asymptotic to generalized open (flat) de Sitter models in
the past (future). The behavior of the closed models has
now changed, there are no longer trajectories representing
oscillating models. The two generalized Einstein fixed
points (Ei) have now coalesced to form one fixed point
via bifurcation. The closed models above Ei represent
bounce models which evolve from dS1;� to dS1;�, with
the possibility of entering a loitering phase. The closed
models below Ei represent bounce models which evolve
from dS1;� to dS1;� without entering a loitering phase.

3. The �>�1=3, �	2 < 	<�	1 subcase

The phase space of the system when �>�1=3 and
�	2 < 	<�	1 is shown in Fig. 20. The phase space is
qualitatively similar to the previous subcases except for the
x�;1 < x< x�;2 region. There are no longer any fixed
points representing generalized Einstein static models
and the CFS is no longer present. The open models in the
region behave as in previous subcases. The closed models
in the region represent bounce model, which evolve to a
expanding (collapsing) de Sitter phase in the future (past)
without the possibility of entering a loitering phase.

4. The �>�1=3, 	 � �	2 subcase

The next case is the phase space of the system when�>
�1=3 and 	 � �	2 and is shown in Fig. 21. The fluid
behaves in a phantom manner in both regions and the upper
(lower) region corresponds to the case H4 (H3). The two
sets of generalized de Sitter points dSi;� have now coa-
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FIG. 21. The phase space for the full system with � � �1,
�>�1=3 and 	 � �	2 (additionally when �1<�<�1=3
and 	 � �	2). The upper (lower) region corresponds to the
case H4 (H3).
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FIG. 20. The phase space for the full system with � � �1,
�>�1=3 and �	2 < 	<�	1 (additionally when �1<�<
�1=3 and �	2 < 	< 0). The upper, middle and lower regions
correspond to the cases I6, I5 and I4, respectively.
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FIG. 19. The phase space for the full system with � � �1,
�>�1=3 and 	 � �	1. The upper, middle and lower regions
correspond to the cases I6, I5 and I4, respectively.
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lesced into a single set of generalized de Sitter points dS�
which are located at the intersection of the FFS and the PSi
which have also coalesced to form a single separatrix
(x�;1 � x�;2). The resulting fixed points are highly non-
linear, the points have shunt stability along the FFS direc-
tion and the generalized expanding (contracting) de Sitter
point has attractor (repeller) stability along the PSi direc-
tion. The Type III singularity is the generic attractor in the
upper region (x > x�;i) and the dSi;� is the generic attrac-
tor in the lower region (x < x�;i).

VI. DISCUSSION AND CONCLUSIONS

In this paper we have systematically studied the dynam-
ics of homogeneous and isotropic cosmological models
containing a fluid with a quadratic EoS. This has it’s own
specific interest (see Section I for a variety of motivations)
and serves as a simple example of more general EoS’s. It
can also be taken to represent the truncated Taylor expan-
sion of any barotropic EoS, and as such it serves (with the
right choice of parameters) as a useful phenomenological
model for dark energy, or even UDM. Indeed, we have
shown the dynamics to be very different and much richer
than the standard linear EoS case, finding that an almost
generic feature of the evolution is the existence of an
accelerated phase, most often asymptotically de Sitter,
thanks to the appearance of an effective cosmological
constant. Of course to properly build physical cosmologi-
cal models would require to consider the quadratic EoS for
dark energy or UDM together with standard matter and
radiation. Our analysis was aimed instead to derive and
classify the large variety of different dynamical effects that
the quadratic EoS fluid has when is the dominant compo-
nent. In this respect, it should be noticed that a positive
quadratic term in the EoS allows, in presence of another
fluid such as radiation, equi-density between the two fluid
to occur twice, i.e. the quadratic EoS fluid can be dominant
at early and late times, and subdominant in an intermediate
era.

In Section II we have made some general remarks,
mostly based on conservation of energy only and as such
valid independently of any specific theory of gravity. We
have also given the various possible functional forms of the
energy density as a function of the scale factor, ��a�, and
listed the many subcases, grouped in three main cases,
what we call: i) the high energy models (no constant Po
term); ii) the low energy affine EoS with no quadratic term;
iii) the complete quadratic EoS.

The quadratic term in the EoS affects the high energy
behavior as expected but can additionally affect the dy-
namics at relatively low energies. First, in Section III, we
have concentrated on the high energy models. The specific
choice of parameters fixes the behavior of the fluid, it can
behave in a phantom or standard manner. In the case of
phantom behavior, � can tend to zero at early times and
either tend to an effective cosmological constant (C1) or a

Type III singularity (A2) at late times. Alternatively � can
also tend to an effective cosmological constant in the past
(B2) and a Type III singularity at late times. When the fluid
behaves in a standard manner, it can tend to a Type III
singularity at early times, with � either tending to zero
(A1) or to an effective cosmological constant (B1) at late
times. The fluid can also behave as an effective cosmologi-
cal constant at early times with � decaying away at late
times (C2). The effective cosmological constant allows for
the existence of generalized Einstein static (E) and flat de
Sitter fixed (dS�) points which modify the late time be-
havior. The main new feature is the existence of models
which evolve from a Type III singularity and asymptoti-
cally approach a flat de Sitter model (dS�). Of specific
interest are the closed models of this type, which can also
evolve through an intermediate loitering phase.

Neglecting the quadratic term, in Section IV we have
considered the low energy models with affine EoS. As
expected, the constant term in the quadratic EoS affects
the relatively low energy behavior. It can result in a variety
of qualitatively different dynamics with respect to those of
the linear EoS case. Again, the fluid can have a phantom or
standard behavior. When the fluid behaves in a phantom
manner, � can tend to an effective cosmological constant
(F2), or can tend to a Type I (Big Rip) singularity (D2) at
late times. Alternatively, � can also tend to an effective
cosmological constant in the past and a Big Rip in the
future (E1). When the fluid behaves in a standard manner,
we recover the linear EoS at early times and � can either
tend to zero (D1) or to an effective cosmological constant
(E2) at late times. The fluid can also behave as an effective
cosmological constant at early times, with � decaying
away at late times (F1). The effective cosmological con-
stant allows for the existence of new fixed points E and
dS�. Comparing with standard linear EoS cosmology, the
most interesting differences are new closed models which
oscillate indefinitely and new closed models which exhibit
phantom behavior which do not terminate in a Big Rip, but
asymptotically approach an expanding flat de Sitter model
(flat and closed models where the fluid behaves as case F2).

When we study the dynamics of the system with the
complete quadratic EoS, Section V, we see the appearance
of new fixed points representing generalized Einstein and
de Sitter models which are not present in the high/low
energy systems. The various models of the simplified
systems are present in the full system (but with differing
��a�), but there are also models with qualitatively new
behavior. As with the previous cases, in the case of phan-
tom behavior, � can tend to zero at early times and either
tend to an effective cosmological constant (H3 and I4) or a
Type III singularity (G2) at late times. Alternatively � can
also tend to an effective cosmological constant in the past
(H4 and I6) and a Type III singularity at late times. Finally,
in the phantom case � can also tend to an effective cos-
mological constant both in the past and future (I2). In the
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case of standard behavior the fluid can tend to a Type III
singularity at early times, with � either tending to zero
(G1) or to an effective cosmological constant (H2 and I3)
at late times. The fluid can also behave as an effective
cosmological constant at early times with � decaying away
at late times (H1 and I1). Finally, in the standard fluid case
� can also tend to an effective cosmological constant both
in the past and future (I5). There are models which evolve
from a Type III singularity, reach a maximum a (minimum
x) and then evolve to Type III singularity. These also enter
a loitering phase before and after the turn-around point. We
also see bounce models which enter a loitering phase and
asymptotically tend to generalized expanding (contracting)
de Sitter models at late (early) times.

Of specific interest are models which evolve from a
Type III singularity as opposed to the standard Big Bang
(A1, B1). The simplest models of this type correspond to
the high energy EoS with a positive quadratic term (is
possible to recover standard behavior at late times). For
these models the positive quadratic energy density term has
the potential to force the initial singularity to be isotropic.
The effects of such a fluid on anisotropic Bianchi I and V
models is investigated in Paper II [44]. This is achieved by

carrying out a dynamical systems analysis of these models.
Additionally, using a linearized perturbative treatment we
study the behavior of inhomogeneous and anisotropic per-
turbations at the singularity. The singularity is itself repre-
sented by an isotropic model and, If the perturbations of the
latter decay in the past, this model represents the local past
attractor in the larger phase space of inhomogeneous and
anisotropic models (within the validity of the perturbative
treatment). This would mean that in inhomogeneous an-
isotropic models with a positive nonlinear term (at least
quadratic) in the EoS isotropy is a natural outcome of
generic initial conditions, unlike in the standard linear
EoS case where generic cosmological models are, in GR,
highly anisotropic in the past.
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