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The present spatial distribution of galaxies in the Universe is non-Gaussian, with 40% skewness in
50h~! Mpc spheres, and remarkably little is known about the information encoded in it about cosmo-
logical parameters beyond the power spectrum. In this work we present an attempt to bridge this gap by
studying the bispectrum, paying particular attention to a joint analysis with the power spectrum and their
combination with CMB data. We address the covariance properties of the power spectrum and bispectrum
including the effects of beat coupling that lead to interesting cross-correlations, and discuss how baryon
acoustic oscillations break degeneracies. We show that the bispectrum has significant information on
cosmological parameters well beyond its power in constraining galaxy bias, and when combined with the
power spectrum is more complementary than combining power spectra of different samples of galaxies,
since non-Gaussianity provides a somewhat different direction in parameter space. In the framework of
flat cosmological models we show that most of the improvement of adding bispectrum information
corresponds to parameters related to the amplitude and effective spectral index of perturbations, which can
be improved by almost a factor of 2. Moreover, we demonstrate that the expected statistical uncertainties

in og of a few percent are robust to relaxing the dark energy beyond a cosmological constant.
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L. INTRODUCTION

Several recent studies have stressed the importance of
combining different observations to constrain cosmologi-
cal parameters. A clear example is provided by the analysis
of the galaxy power spectrum in the Sloan Digital Sky
Survey (SDSS) [1], and in the 2dF Galaxy Redshift Survey
[2], which have shown the central role played by the
information contained in the large-scale galaxy distribu-
tion to break the degeneracies still present in the cosmic
microwave background (CMB) data despite the precision
of the WMAP satellite observations [3,4].

One of the main challenges in extracting cosmological
information from galaxy clustering is knowing how good
tracers of the underlying mass distribution galaxies are.
This is often bypassed altogether, for example, in [1,2]
only information on the shape of the galaxy power spec-
trum was used, since its amplitude is degenerate with the
linear bias parameter relating galaxy to dark matter fluc-
tuations at large scales.

The determination of galaxy bias has been, so far,
among the main reasons of interest in the galaxy higher-
order statistics in general [5—16] and the bispectrum in
particular [17-21]. At large scales, the dependence on
triangle configuration of the bispectrum generated by
gravitational instability allows to disentagle the gravita-
tional contribution from the bispectrum generated by non-
linear biasing and ultimately remove the degeneracy
between the linear bias and the amplitude of the dark
matter perturbations. In weak gravitational lensing at
smaller scales, the bispectrum can similarly be used to
break degeneracies between matter content and the ampli-
tude of fluctuations and probe dark energy [22-26].
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Observational applications of this method to the galaxy
distribution in the past involved fixing the cosmological
model [16,18-20], thus the information of the bispectrum
on cosmological parameters has not been properly taken
advantage of. In this work we study the constraining power
of the bispectrum as a tool in the determination of cosmo-
logical parameters and the nature of primordial fluctua-
tions, going beyond the determination of galaxy bias alone.
As shown in [27], higher-order correlation functions such
as the bispectrum or the trispectrum in galaxy surveys
show, when all measurable configurations are taken into
account, a signal-to-noise ratio comparable or even ex-
ceeding the signal-to-noise of the power spectrum at mildly
nonlinear scales.

Postponing a detailed discussion of our method to the
following sections, we show in Fig. 1 how the power
spectrum and the bispectrum measured from the same
data set compare in constraining cosmological parameters.
We consider flat cosmological models depending on nine
parameters: the physical dark matter density w, = Q h?,
the physical baryon density w, = Q,h?, the dark energy
density {),, the amplitude of scalar fluctuations A, the
scalar spectral index n,, the dark energy equation of state
parameter w, the optical depth to Thomson scattering 7,
plus the linear (b,) and quadratic (b,) galaxy bias parame-
ters. We also show “derived” parameters such as h, the
Hubble constant in units of 100 kms~! Mpc ™!, the baryon
density (), and the amplitude of dark matter fluctuations at
8h~! Mpc, o.

These constraints are from a hypothetical analysis that
combines the CMB data from WMAP (first year) with
measurements in the North part of SDSS by the end of
the survey in two cases: using the SDSS galaxy power
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FIG. 1 (color online). An example showing the constraining
power of the bispectrum compared to the power spectrum. The
panels show marginalized likelihood functions corresponding to
a hypothetical joint analysis of WMAP (first year) and SDSS
North (by the end of the survey) where only the galaxy power
spectrum is used (blue, dashed line), or only the galaxy bispec-
trum is used (red, solid line). Assumes a flat cosmology and
scales up to k,,, = 0.3h Mpc™ .

spectrum (blue, dashed line) and replacing the SDSS
power spectrum by the bispectrum (red, continuous line).
Both cases include the covariance between different power
spectrum bins or bispectrum configurations (see below for
a full discussion). Figure 1 shows that when all triangle
configurations are included down to wavenumber k,, =
0.3h Mpc ™! the bispectrum even improves the power spec-
trum results.

In practice one would like to combine the information in
the power spectrum and bispectrum, which requires a
calculation of their covariance properties. This is the
main subject of the present work. The cross-covariance
between the power spectrum and bispectrum turns out to
have some nontrivial properties that help constraining
cosmological parameters, in a way that is unexpected
from a separate consideration of the covariance of each
statistic by itself.

Although the main properties of the covariance matrices
can be understood analytically, the details of the survey
under consideration are important in practice, thus we
compute covariance matrices from mock catalogs designed
to reproduce the geometry of the SDSS survey by its
completion. In particular, we consider the power spectrum
and bispectrum of the north hemisphere main sample (MS)
of galaxies. We also discuss how our constrains change as
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we include the power spectrum of the Luminous Red
Galaxies (LRG) sample in the same geometry. As an
example of what should be expected in combining large-
scale structure (LSS) with the CMB we use the WMAP
first year data; after the present work appeared as a preprint
the WMAP 3-year (WMAP3) data became available [4].
The new data provides a somewhat different angle on the
constraining power of the bispectrum, not just incremental
improvements, for this reason we consider separately in the
Appendix what happens when WMAP3 is added.

This paper is organized as follows. In Sec. II we review
some basic results regarding the large-scale bispectrum of
the galaxy distribution and discuss the main features of the
covariance measured from our mock catalogues in Sec. III.
In Sec. IV we present the likelihood functions both for the
LSS and CMB correlations. In Sec. V we present results on
expected constraints on cosmological parameters, derived
assuming the WMAP 1-year data (WMAP1). We conclude
in Sec. VI. The Appendix discusses what happens when we
replace WMAP1 by WMAP3.

I1. PREDICTIONS AND MOCK CATALOGS

We will assume primordial fluctuations to be Gaussian,
so that every connected higher-order correlation function
in the dark matter overdensity field 6 results from gravita-
tional instability. The dark matter bispectrum B, i.e. the
Fourier counterpart of the 3-point correlation function, is
defined as the ensemble average

(0K, Ok, 0x,) = Op(Ki23)B(ky, ky, k), ()

with &y the density contrast in Fourier space and k,3 =
k; + k, + kj. If the bispectrum can be reliably predicted
by tree-level perturbation theory (PT), it follows that [28]

B(kl, k2, k3) = 2F2(k1, kZ)PlPZ + cyc., (2)

where P, = P(k;) is the linear power spectrum while the
kernel F, reads

5 x(k  k 2
Fy(k,, ko) =5+§<k—;+k—?> +22, 3)
with x = K, - k.

A second source of non-Gaussianity in the galaxy den-
sity field is given by nonlinear galaxy bias. At scales much
larger than the typical size of virialized structures the
relation between the galaxy distribution and the underlying
dark matter distribution is expected to be local [29-31],
that is, in terms of the respective overdensities, & g(x) =
f18(x)]. For small fluctuations we can Taylor-expand and
describe such function in terms of few, constant, bias
parameters [31]

1 1
Bg(x)=b15+§b252+§b353+ (4)

The large-scale galaxy power spectrum will therefore be
given P, (k) = b1 P(k) while the galaxy bispectrum B, will
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be related to dark matter bispectrum B as
Bg(kl, kz, k3) = b?B(kl, k2, k3) + b%bZ(PIPZ + CyC.).
&)

The different behavior of the first and second terms on the
right hand side of Eq. (5) as a function of triangle configu-
ration given by the wavenumbers k;, k, and k3 allows a
simultaneous measurement of the linear bias parameter b;
and the quadratic bias parameter b, [5,17]. This becomes
obvious when Eq. (5) is rewritten in terms of the reduced
bispectrum, defined, for the dark matter field as Q =
B(ky, ky, k3)/ (PP, + cyc.) and analogously for the galaxy
distribution, so that

Q,(ky, ky, k3) = biQ(kp ky, k3) + % (6)
1 1
While the first term on the left-hand side depends on the
specific triangle via the F,(k, k,) kernel, the second just
amounts to an overall additive constant.

As mentioned above, the scale-dependence of the bias
parameter is expected to be very weak at the scales con-
sidered in the present analysis. This can be shown in the
framework of the halo model and it can probed, observa-
tionally, by looking at the dependence of measured values
of b, and b, on the smallest scale, or largest wavenumber
kmax, included in the analysis. If there is a scatter about the
deterministic relationship given by Eq. (4), the bispectrum
method recovers the mean relationship between galaxy and
matter overdensities. This has been shown for models with
significant scatter (see Fig. 1 in [32]) and galaxies popu-
lated using halo occupation distributions (HOD) where the
scatter is typically not very significant at the scales we
consider here (see Fig. 6 in [33]).

In this work we consider scales up to k < 0.32 Mpc™!,
for which the validity of Eq. (2) is only accurate to about
20% [32,34]. A more accurate description of the bispec-
trum at these scales, particularly in redshift space, is given
by second-order Lagrangian PT (2LPT), [32]. Therefore,
we will only use tree-level PT to model deviations from a
fiducial model calculated by using mock catalogs gener-
ated by PTHalos [35] and 2LPT simulations, which are
similar at these scales, since halos in PTHalos are placed
in the large-scale 2LLPT density field. The advantage of
using PTHalos is that a biased population of galaxies can
be chosen by using appropriate prescriptions for their
occupation inside halos. This method is therefore neces-
sary for LRG galaxies, which are strongly biased tracers,
whereas main sample galaxies are close enough to being
unbiased that the difference between using 2LPT and
PTHalos is not significant.

We therefore use the mock catalogs for the main sample
of galaxies in SDSS generated by using 2LPT in [36],
where the following cosmological parameters were used:
dark matter density ), = 0.225, baryon density ), =
0.045, cosmological constant with density , = 0.73,
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Hubble constant # = 0.71 and fluctuation amplitude og =
0.82 at the mean redshift of the survey of zc., = 0.1. As
discussed above, we assume these galaxies to be unbiased,
and have included the detailed geometry of the expected
final angular and radial selection functions. The redshift-
space density field is weighted using the Feldman-
Kaiser-Peacock (FKP) procedure [32,37,38] with Py =
5000 (h~! Mpc)?. We measure the power spectrum from
kpin = 0.02h Mpc ™! to k,,x = 0.31h Mpc™!, with a bin
size given by Ak = 0.0152 Mpc~!. We consider N, = 20
k-bins for the power spectrum, corresponding to Ny =
1015 triangle bins, including all triangle shapes and ori-
entations corresponding to 7.5 X 10! elementary tri-
angles. We use 6000 realizations of the survey [27,36],
such a large number is needed in order to estimate covari-
ance matrices larger than 10° X 10% in size (see next
section).

For the mock catalogs of the LRG sample, we use 6000
mock catalogs constructed with PTHalos, using the fol-
lowing cosmological parameters: dark matter density
Q, = 0.229, baryon density (), = 0.046, cosmological
constant with density (), = 0.725, Hubble constant i =
0.71 and fluctuation amplitude og = 0.75 at the mean
redshift of the survey of z;.,, = 0.35. In these mock cata-
logs the LRG galaxies populate dark matter halos accord-
ing to an HOD prescription [39] for the mean number of
galaxies in a halo of mass m

(Nga () = e‘mmin/’"[l T (ﬂﬂ ™)
m

where the first contribution is that due to a central galaxy
(with nearest integer scatter), the rest being satellite gal-
axies which are taken with a Poisson distributed scatter
[40]. The parameters are chosen by a best fit procedure of
the large-scale redshift-space correlation function given
in [41] (including the survey covariance matrix) and
the small-scale redshift-space correlation function given
in [42]. The resulting parameters are my;, =35 X
108Moh™!, m; =10Myoh™! and « = 1.95. Given
Eq. (7), the large-scale bias parameters are given by,

b = ni f dmn(m)(N g (m))b;(m), ®)

where n(m) is the halo mass function (assumed to be that in
[43]), b;(m) are the corresponding halo bias parameters
[44] and the galaxy number density is given by

n, = / dmn(m)(N g (m). ©)

For the parameters given above, n, = 8 X 1075, b, =
2.11, b, = 1.1 and b3 = —2.8. In practice, the values of
the bias parameters measured in the mock catalogs are
slightly different from the analytical calculations due to
the particular prescription adopted to describe how indi-
vidual halos are populated. We find, for example, b; =
2.17 and we use this as our fiducial value for the LRG
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large-scale linear bias. The mock catalogs have the radial
selection function expected by the end of the SDSS survey
and described in [41] and an angular selection function
equal to unity inside the survey region. The redshift-space
density field in them is weighted according to the FKP
method with P, = 40000 (h~! Mpc)>.

In Sec. IV below we discuss in more detail how we take
into account redshift distortions. In brief, we assume the
2LPT or PTHalos simulations give the correct answer
(note that these do not assume perturbation theory for the
real-to-redshift space mapping), and compute deviations
from the fiducial model by tree-level perturbation theory. A
full discussion about accurate theoretical predictions for
statistics of galaxies in redshift-space and their possible
systematics is beyond the scope of this paper, and will be
presented elsewhere.

ITII. COVARIANCE MATRICES

In order to perform a joint likelihood analysis of the
power spectrum and bispectrum, as detailed in Sec. IV
below, we need to compute their covariance properties.
The full covariance matrix C;; obtained from our mocks
catalogs by measuring the power spectrum and bispectrum,
is defined as

Ci; = (6X;8X), (10)

where 8X; = X; — X, and X; equals the power spectrum P;
for i =1, ..., N;, with N; the number of power spectrum
bins, or the bispectrum for i = N, + 1, ..., N, + Ny, with
Nr the number of bins in triangle space.

In what follows, we consider the three contributions to
the general covariance matrix C;;, that is (8P;6P;),
(6B;8B;) and (6P;6B;) in turn, and compare the expected
contributions to the values measured from the mock
catalogues.

A. Power spectrum covariance

Our power spectrum estimator can be written as

=k f a1 [ P00, 00, (A1)

where

Vp(k) = ﬁ &g, ﬁ Bgrdp(an) = 472AL  (12)

and the integral over the bin k of width Ak is given by

k+Ak/2
jd3 ] / dkszdﬂ. (13)
Ak/2

The bin width Ak does not necessarily coincide with the
fundamental frequency &, (in our analysis we will consider
the case Ak = 3ky). If the value of the power spectrum
averaged over all the realizations is P(k) = (P(k)), it is
easy to see that the covariance between power spectrum
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bins can be expressed as [45,46]
= <5P(k-)5P(k-)>

=, P(k;) +

ij Vp(k ) f_ dcosOT (k;, k »0), (14)
where the first diagonal term is the Gaussian contribution
and in the second, non-Gaussian, term T(k; k i 0) =
Tk, -k, k »—k j) is the trispectrum of the dark matter
field and 6 is the angle between the vectors k; and k ;.

Note that expressions such as Eq. (14), or the analogue
ones for the bispectrum and mixed covariance discussed in
the next sections, assume that the survey window is effec-
tively a delta function in Fourier space, and they are there-
fore exact in the case of a periodic box. However, they
provide a simple estimate of the covariance for more
generic survey geometries except for the case of the mixed
power spectrum—bispectrum covariance, (5P;6B;) as we
will see in Sec. III C below. Of course, in analyzing our
mock catalogs we do not make any such approximation as
the survey geometry is properly taken into account by the
FKP method. The estimators for power spectrum and
bispectrum will therefore include convolutions with the
window function and shot noise terms and the covariance
will then be computed from the measured statistics in each
mock catalogue.

Figure 2 shows the redshift-space power spectrum cross-
correlation coefficients

v (15)

for the main (left) and LRG (right) sample power spectra
measured from our mock catalogs. The values are ranging
from O (white) to 1 (black). We used N, = 20 bins for the
main sample, NFRS = 27 bins in the LRG sample case.
The numerical value of the cross-correlation coefficients
for the main sample power spectrum is given in Table I,
whereas Table II presents the LRG power spectrum case.
Note that in this case the maximum value for the wave-
number considered is kLRG = 0.2h Mpc~!, instead of
KMS = 0.3h Mpc ™! for the main sample.

As evident from these tables and Fig. 2, the cross-
correlation between different scales is stronger for
the LRG power spectrum case. For example let us
consider for the main sample the coefficient C} ¢ = 0.34
(Table I) corresponding to the wavenumbers 0.126 and
0.63h Mpc~! and compare it to the LRG coefficient
C§ 1, = 0.66 (Table II) corresponding to the wavenumbers
0.123 and 0.60h2 Mpc~!. If LRG galaxies were simply a
linearly biased population compared to the main galaxy
sample (here assumed to be unbiased), then one would
expect exactly the opposite given our choice of bin widths,
that is a smaller value in the LRG case. This is so because
the cross-correlation coefficient is independent of the vol-
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FIG. 2 (color online).
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; between different scales for the main (left) and LRG sample

(right) as measured from the SDSS mock catalogs. Black indicates maximum cross-correlation (rZ = 1), white no cross-correlation
(rf} = 0). The wavenumbers are given in units of Ak =0.0154 Mpc~! for the main sample power spectrum, while Ak =

0.0075h Mpc~! for the LRG power spectrum. Note that bin 27 in the LRG case corresponds to bin 13 in the main sample case:
the lower left region in the main sample plot encloses the scales corresponding to the LRG plot.

ume of the sample (which appears in Eq. (14) only through
k), proportional to the amount of non-Gaussianity (here
given by the averaged trispectrum divided by the power
spectrum squared), and proportional to the bin width Ak.
The reason for this last dependence is that the non-
Gaussian noise term does not get beaten down by bin
averaging, whereas the Gaussian one (which dominates
in the denominator in Eq. (15)) does [45]. Since our bin
size for LRG power is half that of the main sample, and
linear bias does not alter non-Gaussianity (and redshift-
distortions do so very slightly at large scales, and further-
more og is somewhat larger in the main sample), this
would give that LRG power should be cross-corrrelated
about half as much as main sample galaxy power.

The difference in behavior is thus a reflection of non-
linearity in the LRG bias, which creates additional non-
Gaussianity. In fact, this is expected in standard scenarios

TABLE I. Power spectrum cross-correlation coefficients Cf}
between different scales as measured from the main sample
SDSS mock catalogues. The value of the wavenumber k for
the corresponding bin is given in the first column in units of
h Mpc~!. For brevity, only even bins are displayed.

k bin 2 4 6 8§ 10 12 14 16 18 20
0.031 2 1.00 0.13 022 0.2 0.25 021 022 0.2 0.18 0.17
0.063 4 1.00 0.31 0.34 0.37 0.36 0.34 0.34 0.32 0.30
0.094 6 1.00 0.42 0.49 0.48 0.48 0.47 045 043
0.126 8 1.00 0.54 0.55 0.55 0.54 0.53 0.51
0.157 10 1.00 0.61 0.62 0.62 0.61 0.60
0.188 12 1.00 0.69 0.7 0.71 0.70
0.220 14 1.00 0.73 0.74 0.74
0.251 16 1.00 0.78 0.78
0.283 18 1.00 0.82
0314 20 1.00

of galaxies, since Eq. (8) naturally predicts that for galaxies
that populate high-mass halos where b; = 2, b,, b3 should
be at least of order unity. However, we caution that, unlike
the case of linear bias b, (m) [47-51], the expressions for
nonlinear bias parameters for halos b,(m), b;(m) given by
the peak-background split [44,50-52] (also assumed by
PTHalos) have not been tested against current numerical
simulations (see [53] for early work). This is an important
issue since the prediction is that b,, b5 are strong functions
of halo mass for the range relevant for LRG galaxies (see
e.g. Fig. 8 in [44]), and small changes in the HOD parame-
ters that leave the linear bias within observational bounds
can change the nonlinear bias parameters significantly. It is
for this reason that we do not consider the bispectrum of
LRG galaxies in this work, since its prediction has signifi-
cant uncertainties. We are currently working on addressing
these issues.

The nonlinearity in the bias relation for LRG galaxies
implies that the power spectrum can only be reasonably
well approximated by linear bias up to larger scales than in

TABLE II. Same as Table I but for the LRG sample SDSS
mock catalogues. For brevity, only one bin every three is shown.

kK bin 2 5 8§ 11 14 17 20 23 26
0015 2 1.00 0.18 024 026 024 026 024 025 023
0.038 5 1.00 046 0.51 052 051 052 05 05
0.060 8 1.00 0.65 0.66 0.66 0.66 0.64 0.66
0.083 11 1.00 0.77 0.77 0.77 0.76 0.78
0.106 14 1.00 0.83 0.83 0.82 0.83
0.123 17 1.00 0.85 0.84 0.84
0.151 20 1.00 0.86 0.87
0.173 23 1.00 0.87
0.196 26 1.00
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the main sample case. This is why we take k,, = 0.22 Mpc~! for LRG’s, instead of k., = 0.34 Mpc~' for the main
sample. These are reasonable, though somewhat arbitrary values. In practice the allowed values of k,,,, can be empirically
tested by looking at higher-order correlations and looking for scale-dependence in the derived bias parameters [18,19].

B. Bispectrum covariance

In an analogous way to the power spectrum case, we can define the estimator for the bispectrum, [34],

. k3
Bk, ko k) =1 [y [ dax | daidnaim)dy o5, (16)
B Jk ky k3
with
Vg Ef d36]1] d36]2[ d*q38p(q123) = 87k ko k3 AR, (17)
ky ka k3

then the covariance between two triangle configurations (where i and j represents the triangles while (i, i,, i3) and
(j1, Ja» J3) are the corresponding k-vectors triplets) is,

C} =(8B;5B))
3

..5Hip,pp. + cyc +5.‘_kf3c dq dq &#p
BRI () TR Sy, @veG) Je, o T kT T T

J2

=0;:0

i

Xf d*p38p(q123)8p(q; + pr3)B(qy, P2 P3)B(qy, 42, q3) + cyc.

J3
3
ks

+8,  —
W V(O)VE() Jk

d341---/k d3613ﬁ d3P2]k & p38p(q123)8p (P23 — 41)P(q1)T (A2 q3, P2, P3)
i i3 J2 i3

k3
+ cyc. +7f[ d*q, f d3q3f &p, f d&*p38p(A123)8p(P123)T6(q1. 42, 43, P1. P2 P3). (18)
Ve()Ve(j) Jx, kiy k;, .

73

with Tg(Kky, ..., K¢) representing the 6-point connected R i3
correlation function in Fourier space. At large scales, the AB*(ky, ky, k3) = sp V—fP (k))P(ky)P(k3),  (19)
main contribution to the variance of the bispectrum is B
Gaussian and therefore with sz = 6, 2, 1 for equilateral, isosceles and general

triangles, respectively.

O D R 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
1221225332233 34444 1919 19 19 19 19 20 20 20 20 20 20 20 20 20 20 20 20 20 20
11 1211212312123123H4 415161718191 2 3 4 5 6 7 8 9 10111213 14
444 202020
443 202019
442 2020.18
441 202017
133 202016
432 202015
131 — . 202014
122 122 .13 202013
o 1oy 202012 [ [{ 202012
e i, 202011 202011
202010 202010
332 332 20209 20209
33,1 331 20208 20208
322 ¢l | 322 p0207 20207
321 1 | 321 20206 20206
311 3L1 20205 20205
222 222 20204 20204
221 221 20203 20203
211 201 20202 20202
L ] L1 20201 2020.1
B 20 20 2
1222333335 444 1910 19 19 19 19 20 20 20 20 20 20 20 20 20 20 30 20 20 20
P22 12233322333 4444 1415161718191 2 3 4 5 6 7 8 9 10111213 14
11211 2123121231234
B

FIG. 3. Bispectrum cross-correlation coefficients r;; among the first 19 triangles at large scales (left), and among two sets of the 20
triangles at the smallest scales we consider (right). The triplets indicate the wavenumbers of the triangles sides in units of the k-bin
width, Ak =~ 0.015h Mpc ™.
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TABLE III. Bispectrum cross-correlation coefficients for tri-
angles at the largest scales. Each triangular configuration is given
in terms of the three vectors ki, k,, k5 in units of the k-bin width,
Ak = 0.015h Mpc™ .

triangle 1 2 2 2 3 3 3 3 3 3
1 1 2 2 1 2 2 3 3 3
1 1 1 2 1 1 2 1 2 3

1,1,1 1.00 0.51 033 0.06 0.07 0.28 0.06 0.35 0.06 0.00

2,1,1 1.00 0.58 0.11 0.28 0.39 0.14 0.35 0.09 0.00
22,1 1.00 032 0.15 052 027 04 0.19 003
222 1.00 0.04 0.17 041 0.04 022 0.03
3,11 1.00 0.37 0.11 0.09 0.07 0.04
32,1 1.00 041 0.54 023 0.07
322 1.00 0.15 044 0.12
3,3,1 1.00 0.26 0.09
3,3,2 1.00 0.34
333 1.00

From the expression for C we see that the largest non-
Gaussian contribution to the extra-dlagonal elements of the
bispectrum covariance matrix should arise in triangular
configurations sharing two sides, with an extra factor
when these are equal sides of isosceles triangles. Such
large terms can be easily identified in Fig. 3 where we
show the bispectrum cross-correlation coefficients. The
value of the cross-correlation coefficients at the largest
scales is given in Table III. Note that, even at small scales,
the bispectrum cross-correlation coefficients remain small,
with values usually lower than 0.3, typically quite smaller
than in the power spectrum case.

C. Mixed covariance: Beat coupling

Given the estimators for the power spectrum and bispec-
trum defined in Egs. (11) and (16), the mixed terms in the

1222333333 4444444445
11221 2233322333 44442
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FIG. 4. Mixed cross-correlation coefficients rf’ g
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general covariance matrix are
PB —
CiP =(8P;5B))
3

2k
Zaljl V ()P(k )B(k]]) ]2,-

Y va0) )vBm J, qu‘f Cpr-

Xﬁ &Ep30p(P123)Ts(qr, —qp, pr, P2 P3), (20)
J3

j3) + cyc.

where Ts5(ky,...,Kks) stands for the 5-point connected
correlation function in Fourier space. At large scales, the
first term in Eq. (20) dominates, and moreover, this is
expected to be an important contribution. To see this,
compare its magnitude to the expected signal

PB,  Vpli) 2m\k)’

which is comparable to the same ratio for the diagonal
covariance of the power spectrum,

2 2 1 sk
AL Ly 22)
P? Ve(i) 2w\ k

Figure 4 shows the cross-correlation coefficients between
the first 20 (left) and last 21 (right) bispectrum configura-
tions and all power spectrum bins. The terms just discussed
correspond to the diagonal in the right panel, and a few of
the elements in the bottom part of the left panel, where the
power is calculated at one of the sides of the triangle. The
value of the mixed cross-correlation coefficients at the
largest scales is given in Table I'V.

However, it is evident that there are significant correla-
tions beyond these, for triangles which include the smallest

20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
19 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
91 23 45 6 7 8 9 10111213 141516 17 18 19 20

20 20
19 19
18 18
17 17
16 16
15 15
14 14
13 13

11 11
10 10

— e e oo w o
— e ow e oo o

20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

19 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
191 23 45 6 7 8 9 10111213 141516 17 18 19 20

B between main sample power spectrum and bispectrum. We show the 20 largest scale

triangles (left) and the 21 smallest scale triangles (right) against all power spectrum bins. All numbers indicate wavenumbers in units
of the k-bin width, Ak = 0.0154 Mpc~!. The vertical bands are due to beat-coupling.
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TABLE IV. Mixed cross-correlation coefficients between
SDSS main sample bispectrum and power spectrum at the largest
scales. Each triangular configuration is given in terms of the
three vectors k;, k,, k3 in units of the k-bin width, Ak =
0.015h Mpc™!.

1 2 3 4 5 6 7 8 9 10

1,1,1 024 0.13 0.12 0.14 0.18 021 022 023 023 0.25
2,1,1 040 022 0.13 0.15 0.16 0.21 021 021 023 024
22,1 034 035 0.18 0.16 0.20 0.24 0.26 023 027 027
2,22 006 029 0.07 0.03 0.03 0.06 0.08 0.05 0.06 0.06
3,1,1 024 011 0.06 0.00 0.01 0.03 0.02 0.02 0.02 0.03
3,2,1 045 038 030 0.17 0.20 025 0.25 0.25 0.28 0.29
322 014 047 024 0.09 0.08 0.13 0.13 0.10 0.11 0.12
3,3,1 038 020 035 024 025 0.29 031 031 034 035
3,32 010 030 034 0.10 0.07 0.11 0.11 0.09 0.11 0.10
3,3,3 003 005 025 0.04 0.01 0.03 0.04 0.02 0.02 0.03

value of k as a side with every bin of the power spectrum.
Indeed, Eq. (20) ignores important contributions that domi-
nate the mixed covariance matrix. The reason is that so far
we have ignored the effects of the window of the survey.

In a finite survey of size =~ L, the uncertainty principle
implies one cannot measure Fourier modes to a better
accuracy than 8k = 7/L, since two waves of frequency &
and k = 6k differ only by half an oscillation from one end
to the other of the survey, i.e. there is not enough room
inside the survey to tell them apart. This implies that in
reality the power spectrum estimator in Eq. (11) written in
terms of the observed Fourier modes will necessarily con-
tain, due to the survey window, cross-terms in the under-
lying Fourier modes, written schematically as

Byd_qre (23)

where € < Ok, apart from “‘true power” contributions
8q0_q = |5q|2. Although such terms do not contribute to
the expectation value of the power, they do correlate very
well with appropriate bispectrum configurations. Indeed,
due to quadratic nonlinearities, two nearby Fourier modes
couple to the beat mode between them,

5q5*q+5 -~ 5qF2(_‘L 6)57q55r (24)

which means that these terms dominate the fluctuation in
power at high wavenumbers where g >> €, giving the non-
intuitive result that the errors of the power spectrum in the
nonlinear regime are dominated by the large-scale power
[54,55]. From Eq. (24) it follows that such terms cross-
correlate very well with the bispectrum of isosceles tri-
angles with one small side of the order of the survey
window = €,

<8k6—k+eap6—p65> ~ P(k)P(P)P(f) (25)

Therefore, for all k we expect power spectra to cross-
correlate with bispectra of “‘narrow” isosceles triangles.
These are the vertical features seen in Fig. 4.
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Beat coupling implies that the whole power spectrum
and the bispectrum of narrow isosceles triangles fluctuate
together depending on the large-scale power. As we shall
see in Sec. VC this has interesting implications for the
likelihood analysis.

IV. THE LIKELIHOOD FUNCTIONS

We now consider a hypothetical joint analysis of large-
scale structure (LSS) and cosmic microwave background
(CMB) anisotropies. In order to be specific and illustrate
the amount of information that we expect to extract in the
very near future, we consider the first year WMAP data, the
power spectrum and bispectrum of the SDSS main sample
of galaxies, and also include the SDSS power spectrum of
the luminous red galaxies (LRG). The SDSS “data” is
obtained from the mock catalogs described in Sec. II and
corresponds to the survey in its expected final form. In this
section we describe the LSS and CMB likelihood functions
that we use to derived the constraints discussed in the next
sections.

A. The LSS likelihood

For simplicity we assume that the power spectrum and
bispectrum estimators are Gaussian distributed. This is
certainly a good approximation near the maximum wave-
number we include, but becomes worse at large scales,
where only a few modes (for the power spectrum) or
triangles (for the bispectrum) contribute. The deviations
from Gaussian likelihood can be included by calculating
the likelihood from the Monte Carlo pool of mock catalogs
[32]. Ignoring the non-Gaussianity of the likelihood can
lead to a biased estimation of parameters [32,56]. Since
here we are only trying to understand the improvement
brought by adding the bispectrum to the standard joint
analysis of CMB and LSS, and most of the information
added by the bispectrum is coming from scales small
compared to the survey, our assumption should be safe.
The combined power spectrum and bispectrum likelihood
function is then

1n£ = 1n£P + 1n£B + lnﬁpB, (26)
where
1 N N
InLp,=— 3 > > épclop, 27
i=1j=1
1 N Nr
IHLB = — = 8BZC;1631, (28)
2 i=1j=1
and
Ny Ny
InLpp = — Z Z 8P.C;;'6B; (29)

i=1j=1
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takes into account the mixed elements of the inverse co-
variance matrix C~!. In Egs. (27)—(29), the indices i and j
run over the bins in k-space for the power spectra, Ny in all,
as well as over the N; configurations included in the
bispectrum analysis. Also, 6P = P, — P; and 6B = B, —
B}, where P, = P,(p; k) and B, = B,(p; k,, ky, k3) are the
redshift-space galaxy power spectrum and bispectrum as a
function of the parameters p while P; = P (p*; k) and
Bi = B,(p*; ky, ky, k3) are the redshift-space galaxy power
spectrum and bispectrum of the fiducial model (with pa-
rameters p*).
In the most general case we consider

p = (T Ay, 0y @y, Qp, 1, w), (30)

defined as the reionization optical depth, 7, the primordial
amplitude of scalar fluctuations, A, the physical dark
matter density, w,; = Q) h?, the physical baryon density,
w, = O, h?, the dark energy density, () ., the scalar spec-
tral index, n, and the dark energy equation of state pa-
rameter, w = p,/px. The bias parameters include the
main sample linear and quadratic bias, b, and b,, and the
LRG linear bias bLRG,

The covariance matrices are calculated at maximum
likelihood from our mock catalogs, that is, we do not
include a possible dependence on parameters to be esti-
mated. A simple, approximate, check of such dependence
on the bias parameters did not yield appreciable differ-
ences in the final results we present in Sec. V.

When we study below results from the power spectrum
or bispectrum individually the inverse matrix C~! in
Eq. (27) or (28) will be replaced by the inverse of the
individual matrix Cf; = (6P;6P;) or C; = (8B;5B;). We
will study as well the case of combining the two statistics
without taking into account their mixed covariance, in
which case also only C* and C® will be needed.

The likelihood function for the LRG power spectrum is
equivalent to Eq. (27) and the corresponding covariance
matrix is independently determined from the LRG mock
catalogues. Since the mean redshift of the LRG sample is
z=0.35 compared to z = 0.1 for the main sample, with
little overlap, we assume the two samples are independent.

1. Power spectrum

Deviations from the fiducial redshift-space power spec-
trum monopole P}, as a function of the parameters p, are
modeled in the following way

Py(p; k) = b1 fE(p)f(p: k)P (k), @31

where P is the power spectrum measured from our mocks
catalogs in redshift space and where

Y i
(32)

F(p: ) EAi[
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T(p; k) being the transfer function, D, (p) the growth
factor and kp = 0.05 Mpc ™! the pivot point corresponding
to the scale whose power is unaffected by varying the
spectral index, and

¥ ) = aO(B') (33)
@ ao(BY)
is the redshift-space correction where
2 1
Clo=1+§ﬁ+§ﬁ2, (34)

with B = an/ 9/b1, corresponds to the power spectrum
monopole [57]. Note that we use Eq. (34) only to model
deviations from our fiducial cosmology assumed in the
mock catalogs that include nonlinear effects from the
redshift-space mapping. We assume a fiducial model that
is unbiased, b; = 1 and b, = 0. The likelihood function
for the LRG power spectrum is computed in the same way,
except for the fiducial value of the LRG linear bias pa-
rameter H1RG = 2.17.

Note that, since redshift distortions break the statistical
isotropy expected in real-space, the redshift-space power
spectrum is a function of the direction as well as the
magnitude of the wavevector k. In this work we include
only the monopole of the redshift-space power spectrum,
i.e. the average over the angle formed by k and the line of
sight. In principle one can take advantage of the angle-
dependence by measuring the quadrupole term in the
Legendre polynomial expansion and obtain a better deter-
mination of the B parameter, further strengthening the
constraints presented in Sec. V below.

We calculate the transfer functions from CMBFAST
[58], computing the value of T(p; k) for every value on a
limited grid in parameter space, then interpolating over the
final parameter grid for each value of the wavenumber k
involved in the analysis.

For the growth factor D({},,, w) we take advantage of
the fitting formula provided in [59]. This is given by

D(a) = aexp{ ﬁ) “dIna[Q,,(a)” — 1]}, (35)

with y = 0.55 + 0.05(1 + w) and where a is the cosmo-
logical scale factor.

2. Bispectrum

We describe the deviations of the bispectrum from the
fiducial model of the mock catalogs by means of Eulerian
perturbation theory. Since we are averaging the redshift-
space bispectrum over triangles with all possible orienta-
tions, similarly to the power spectrum case, we only need
the monopole term in a Legendre expansion. We will
consider the following approximation, see Eqgs. (20—28)
in [60]
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BO = aB(B) = Fy(ky, ko) P, (k)P (k
s = ao(ﬁ)b—l 2(kp, ko) g( ) g( 2)
b
+ ag(ﬁ)b—éPg(kl)Pg(kz) + cye., (36)
where P, (k) = biP(k) is the galaxy power spectrum, and

2 1
03(3)51+§,3+632, (37)

describes the bispectrum monopole redshift-space correc-
tion, obtained from Eq. (24) and (28) in [60] by averaging
over the angle between k; and k, and dropping the de-
pendence on the second-order velocity kernel and velocity
dispersion which should partially cancel at large scales, to
approximate the configuration dependence found in simu-
lations for the redshift-space bispectrum in [60].

To compute the dependence of the bispectrum on cos-
mological parameters we will therefore use

B;
B*
where B} is the redshift-space bispectrum measured from
the mock catalogs and

B = 2F,(ky, ky)Pi(ky) f1Pi(ky)f> + cyc., (39)

B,(p) = fE(p. )b} B + fE(p)b,biS,  (38)

S = Pi(k))f1Pi(ky)f> + cyc., (40)
while
(P, p) 2B 41)

with 8" as fiducial B8 and f; = f(p; k;) as defined above.

3. Inverting the covariance matrix

The values of the entries of the complete covariance
matrix C;; = (X;X;) with X; = P;, B; span several orders
of magnitude and thus a direct computation of its inverse is
susceptible to numerical instabilities. We therefore ‘‘nor-
malize’’ the covariance matrix by factoring out in the X =
P, B vector the power spectrum and bispectrum predicted
by linear theory and Eulerian PT, respectively. The result-
ant entries for this ‘“normalized” covariance matrix are
therefore all of order unity. Still, by performing a singular
value decomposition (SVD) one can notice a poor deter-
mination of a few singular values, about 17 out of 1035 in
the complete, kM5 = 0.3h Mpc™! case, indicating that
6000 mock catalogs is enough to determine most of the
elements except for a small fraction. In the final analysis
we compute the inverse by means of its SVD inverse by
dropping these few singular values, assuming this might be
a sign of a not optimal determination of the matrix C;;. By
doing this we make a conservative choice since the opera-
tion amounts to discard some of the potential information
contained in the covariance matrix. Therefore our final
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error bars increase slightly. In computing the inverse of
the individual power spectrum and bispectrum covariance
matrices no such limitation is needed.

B. The CMB likelihood

To combine the results of the LSS likelihood analysis
with CMB data as measured by WMAP 1-year, we need to
compute the CMB anisotropies power spectrum and its
corresponding likelihood for each model in our grid. This
procedure is computationally expensive: version 4.5.1 of
the CMBFAST code [58] takes about 30 seconds per
model, and the WMAP likelihood code for the first year
data release [61] takes 2—4 seconds.

A possible approach to reduce the computing time is
investigated in [62], where a polynomial approximation to
the multidimensional log-likelihood is computed, allowing
for an evaluation of the likelihood of each model in tenths
of a second. However, their available code, CMBFIT 1.0,
does not include the dark energy equation of state parame-
ter, w. Although calculating such a polynomial fit still
requires sampling the likelihood surface, it has to be
done only once, thus reducing enormously the computa-
tional time needed for any ulterior likelihood analysis.

Motivated by that idea, we compute a polynomial fit to
the CMB likelihood function based on the 7 parameters in
Eq. (30). We use uniform priors in the following ranges:
0=7=03,0018=w, =0.028, 2=w=02,05=
A;=14, 04=0,=09, 008 =w,; =022 08=
n, = 1.1.

We compute the likelihood on a homogeneous grid with
15 points per dimension for the parameters (wg, @, 14,
n,, w), and 30 points for (7, A;). To speed up the calcula-
tion, we divided the problem in two steps: firstly, we
computed the likelihood on the grid approximating the
dependence of the power spectrum on 7 with the multi-
plicative factor e 27. Out of these 7 X 10® approximate
likelihood values we selected a connected subset of
263 022 models containing the maximum and defined by
a threshold chosen to be 10 orders of magnitude smaller
than the maximum. We then recomputed the likelihood for
the reduced subset with the correct 7 dependence.

We fitted a 4th order polynomial to the log-likelihood
surface spanned by our reduced dataset using a weighted
least squares method. We weighted the fitting error of each
model with its likelihood to counterbalance the fact that
our grid was relatively coarse and there were many more
low likelihood models than high likelihood ones. The
covariance matrix of our 7-dimensional reduced set of
models is given by C;; = (p;p;) — (p:Xp;), with (p;) =
> p:L(p). In order to improve the numerical behavior of
the fitting algorithm we first changed from p-space to the
variables z with zero mean and unit covariance defined as

z =E(p —(p)), (42)

where the rows of E were defined as the eigenvectors of the
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covariance matrix C divided by the square root of their
corresponding eigenvalues, i.e. such that ECE’ = I, and
thus (zz’) = 1, [62]. The 4th order polynomial, containing
M = 330 terms, can be written in terms of the new varia-
bles as

y=InL

7 7 7
=q+ ) Zil{qll] + > z,{q’z"z > z,-g(qé"z”

=1 i is=i,
+ Z q212l3l4zi4>}}- (43)
ir=is

In order to make this expression compact we arranged all
possible products of z;’s (up to the 4th power) into an
M-dimensional array x,

x ={l,z1,...,27, 2121, 2122, - - -, T3}, (44)
and the corresponding coefficients ¢ into,
q ={q0. 9} ...al. a3 ... 4]}, 45)
so that Eq. (43) can be cast as
y=x-q. (46)

Next, we arranged our N = 263 022 data points, written in
the x format, into an (N X M) matrix X and their corre-
sponding likelihoods into an N-dimensional vector y.
Therefore, the weighted error of the polynomial fit was
given by,

1 M M 271/2
€= [M Zwi<y[ - ZXUQ/) } 47)
i=1 =1
where w; = L(p;). The coefficients g; were then chosen
such as to minimize e,

q = (X’X)"'Xly, (48)

where we defined X; i = wiXij.

In order to avoid unphysical likelihood values due to
polynomial artifacts in low confidence regions that were
poorly sampled, we replaced the polynomial fit by a simple
Gaussian for z = |z| outside the 2-sigma level, given that
the likelihood distribution has a spherically symmetric tail
for z > 2.5, well approximated by L o e /2,

To test our weighted fit we compared it, for w = —1,
against CMBFIT for a 6-parameter ACDM model
(1, A, wg, wp, Qp, ny), finding very good agreement.
Another estimator of the goodness of the fit was the rms
fitting error (A In L). We found that (A InL) = 0.29 for our
fitting dataset of 263, 022 models. Furthermore, we made a
Monte Carlo Markov chain test of 3000 models, which
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FIG. 5 (color online). WMAP TT + TE marginalized likeli-
hoods for the 7 cosmological parameters in our wCDM model.
Dots correspond to the marginalization over the reduced dataset
in the grid (263 022 points) while the solid line was obtained
using the weighted polynomial fit.

yielded (A InL) = 0.32. These errors are similar to those
reported in [62] for the 7-parameter models of CMBFIT.
Figure 5 shows the first year WMAP TT + TE margi-
nalized likelihoods for the case of the 7-parameter wCDM
models, Eq. (30), obtained by a grid marginalization over
the reduced dataset (dots) versus the ones using the
weighted polynomial fit (solid line). This shows the pro-
cedure described above is robust enough for our purposes.

V. RESULTS

In this section we present the results of the likelihood
analysis in two classes of flat cosmological models. The
first, Sec. VA, corresponds to ACDM models depending
on six cosmological plus three bias parameters: the density
parameters w,, wp, ), the spectral index ng, the fluctua-
tions amplitude A, the reionization optical depth 7 plus the
linear and quadratic galaxy bias coefficients b, and b, for
the main sample and the linear bias for the LRG sample,
HYRG. In the second class, denoted as wCDM models,
Sec. VE, we allow for a dark energy equation of state
parametrized by the ratio of pressure to energy density w,
assumed to be constant.

We include the temperature and polarization WMAP 1-
year likelihood by means of the interpolation fit described
in Sec. IVB (for an update to the 3-year data, see the
Appendix). We introduce here a flat prior on 7 by limiting
its values from zero to 0.3. The difference with the case of 7
taking values up to 0.8 is negligible (tested for w = —1)
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TABLE V. Fiducial values for the cosmological and bias pa-
rameters assumed.

Fiducial
Parameter value
wy physical dark matter density 0.1222
Wy physical baryon density 0.0232
O\ dark energy density 0.699
ng scalar spectral index 0.977
Ay scalar fluctuation amplitude 0.81
w dark energy equation of state -1
T reionization optical depth 0.124
by main sample linear galaxy bias 1
b, main sample quadratic galaxy bias 0
DiRG LRG linear galaxy bias 2.17
Derived Fiducial
parameters value
gy galaxy fluctuation amplitude 0917
Q,, matter density 0.301
Q, baryon density 0.048
h Hubble parameter 0.695
TABLE VL

PHYSICAL REVIEW D 74, 023522 (2006)

and, most importantly, such a prior is more than justified by
the three-year WMAP data which favors values of 7 close
to 0.1 [3,63].

The fiducial values chosen for the present analysis are
given in Table V. Note that they do not coincide with the
maximum likelihood values obtained from the WMAP
data alone, rather they correspond to those obtained for
the WMAP + SDSS power spectrum 6 parameters case in
[1]. These values are only relevant in the sense that they
determine the point in parameter space about which we
compute the errors. As long as this point is realistic, the
results we present should be insensitive to their precise
values.

A. ACDM models

We present now the expected errors on cosmological
parameters from an analysis that considers different com-
binations of the main sample power spectrum and bispec-
trum and the power spectrum of the LRG sample with
WMAP CMB data. We restrict here to the case of
ACDM models, i.e. w = —1. The results for the 1-o

ACDM models: expected marginalized errors (68% CL) for WMAPI (temperature and polarization, W) combined with

the SDSS main sample power spectrum (P) and bispectrum (B) and with the LRG power spectrum (P, ). The percentage in parenthesis
indicates the improvement over the analysis including the main sample power spectrum alone (W + P), numbers in bold indicate errors
down by at least 1.5. In brackets we quote the W + P + B errors obtained by ignoring the mixed power spectrum—bispectrum

covariance.

W+P W+B W+P+B

W + P+ B (no mix. cov.) W+P+B+P,

W+P+P, W+ P,

KMS = 0.2h Mpc™!

KRG = 0.2h Mpc™!

Aw, 0.0035 0.0041 (—15%) 0.0031 (13%) [0.0030 (17%)] 0.0025 (40%) 0.0026 (35%) 0.0029 (21%)

Aw, 0.00093 0.00098 (—5%) 0.00078 (19%) [0.00082 (13%)] 0.00074 (26%) 0.00081 (15%) 0.00087 (7%)

AQ, 00133 0.0113 (18%) 0.0085 (56%) [0.0085 (56%)] 0.0063 (111%) 0.0078 (70%) 0.0091 (46%)

An, 0022 0024 (—8%) 00158 (39%) [0.0176 (25%)] 0.0140 (57%) 00171 (28%) 0.020 (10%)

AA; 0.091 0.094 (—3%) 0.064 (42%) [0.074 (23%)] 0.062 (47%) 0.078 (17%) 0.085 (7%)

AT 0.052 0.053 (—2%) 0.039 (33%) [0.044 (18%)] 0.038 (37%) 0.047 (11%) 0.049 (6%)

Ab, 0086  0.113 (—24%) 0.060 (43%) [0.074 (16%)] 0.054 (59%) 0.070 (23%) e

Ab, s 0.069 0.054 [0.062] 0.051 R R

Ab]l“RG s s s s 0.099 0.125 0.137

Agg 0068 0074 (—8%)  0.047 (45%) [0.054 (26%)] 0.043 (58%) 0.054 (26%) 0.061 (11%)

Ah 0.0152  0.0140 (9%) 0.0101 (50%) [0.0108 (41%)] 0.0087 (75%) 0.0106 (43%) 0.0127 (19%)

AQ, 000151 0.00141 (7%) 0.00124 (22%) [0.00124 (22%)] 0.00111 (36%) 0.00117 (29%) 0.00127 (19%)
KMS = 0.3h Mpc™! KRG — 0.27 Mpc™!

Aw, 0.0033  0.0031 (6%) 0.0029 (14%) [0.0026 (27%)] 0.0024 (37%) 0.0026 (27%)

Aw, 0.00090 0.00083 (8%) 0.00073 (23%) [0.00072 (25%)] 0.00070 (28%) 0.00080 (12%)

AQ, 00112  0.0065 (72%) 0.0063 (78%) [0.0057 (96%)] 0.0052 (115%) 0.0073 (53%)

Ang 0.021 0.018 (17%) 0.014 (50%) [0.013 (61%)] 0.012 (75%) 0.016 (31%)

AA; 0.087 0.081 (7%) 0.053 (64%) [0.063 (38%)] 0.052 (67%) 0.077 (13%)

AT 0.050 0.047 (6%) 0.033 (52%) [0.039 (28%)] 0.033 (52%) 0.046 (9%)

Ab, 0.081 0.094 (—14%) 0.051 (59%) [0.060 (35%)] 0.046 (76%) 0.068 (19%)

Ab, s 0.045 0.041 [0.044] 0.040 R

AbII‘RG PN PN “e “e 0.084 0123

Aoy 0.064 0.059 (8%) 0.037 (73%) [0.041 (56%)] 0.034 (88%) 0.053 21%)

Ah 0.0132  0.0095 (39%) 0.0082 (61%) [0.0080 (65%)] 0.0082 (61%) 0.0101 31%)

AQ, 000138 0.00112 (23%) 0.00111 (24%) [0.00106 (30%)] 0.00104 (33%) 0.00115 (20%)
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marginalized uncertainties are given in Table VI where we
show, for clarity, the average between upper and lower
limits.

To see more clearly the benefits brought by using differ-
ent statistics, in parenthesis we indicate the fractional
improvement over the WMAP plus main sample power
spectrum case (W + P), defined as

Awip

improvement factor = 1, (49)
so a 50% (100%) improvement corresponds to reducing the
errors by a factor of 1.5 (2).

The first two columns in Table VI show that analyzing
the power spectrum and bispectrum separately can provide
similar constraints (with the bispectrum determining an
extra parameter, b,). This can provide important consis-
tency checks, as the Gaussian and non-Gaussian properties
of galaxy clustering must yield consistent results.

As expected, the effectiveness of the bispectrum in
constraining cosmology depends significantly on the
smallest scale considered due to the fast rise in the number
of triangles available. One can notice how, already at

PHYSICAL REVIEW D 74, 023522 (2006)

KMS = 0.2h Mpc™! when combined with the power spec-
trum, it can improve errors by a 13 to 56%. At kM
0.3h Mpc~! when considered alone with CMB informa-
tion the bispectrum can actually improve over the power
spectrum by 6% to more than 70% for () ,, although at the
expense of a poorer determination of the linear bias. We
should keep in mind that the bispectrum analysis introdu-
ces an extra parameter, the quadratic bias, and that one can
expect a better constrain on the linear bias when combined
with the power spectrum.

A quick glance at Table VI shows that most of the
improvement (numbers in bold) brought by the bispectrum
are in parameters related to the overall amplitude of fluc-
tuations and the effective spectral index. This is expected
as the bispectrum breaks the degeneracy between bias and
dark matter amplitude fluctuations [5,17], and its configu-
ration dependence is sensitive to the spectral index because
of the anisotropy of tidal gravitational fields and velocity
flows [64].

In Fig. 6 we compare the CMB power spectrum like-
lihoods to the combined power spectrum, bispectrum and
LRG power spectrum likelihoods. From this and Table VI
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FIG. 6 (color online).

Marginalized likelihood functions for the ACDM models assuming

MS _—
kmax -

0.3h Mpc ™. For the LRG linear

bias parameter b%RG only, the dashed line denotes the likelihood obtained from WMAPI plus LRG power spectrum instead of main

sample power spectrum.
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one sees that most of improvement over CMB alone is
coming from pairs of statistics that involve the bispectrum
(i.e. either P + B or P; + B, not shown for clarity). This is
so because the most significant improvements arise due to
breaking of degeneracies present in the LSS or CMB [65].
This manifests itself in the entries in Table VI (kMS, =
0.2h Mpc~ ') in several ways : 1) W + P, improves mildly
over W + P, but W + P + P; improves significantly over
W + P (consistent with Table 2 in [66]) 2) W + P + B is
better than W + P + P; in most parameters (except those
related to ,,: wy, {1, and (1 ,, since a better detection of
the acoustic scale in the LRG sample gives a high quality
constraint [66]). This holds even though the signal to noise
in B (for kMS = 0.2h Mpc™!) is not as large as in P, (e.g.
compare W + B vs W + P; ), because B is more comple-
mentary than P; to W + P, i.e. using non-Gaussian infor-
mation provides a substantially different direction in
parameter space. When using information up to kM5 =
0.32 Mpc™!, W + P + B constrains all parameters better
than W + P + P; except for w,. In this case, adding P; to
W + P + B still helps in improving parameters slightly
(see Fig. 6), particularly for (), (or ,, =1 — Q,).

It is interesting to compare the results on bias parameters
to those in a fixed cosmology, as assumed in past work
[16,18—20]. Performing an analysis of the bispectrum
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alone with fixed cosmology, one finds for linear and qua-
dratic bias the errors (KNS = 0.32 Mpc™1)

Ab, = 0.015,  Ab, = 0.045. (50)

Comparing this to the corresponding entry (W + B) in
Table VI we see that when cosmology is allowed to vary,
the determination of b, suffers from the degeneracy with
A, and, when combined with CMB data, with the optical
depth 7, while the result for b, is essentially unaffected. On
the other hand, this is the price one pays for constraining
cosmological parameters more accurately.

Figure 7 shows the marginalized 95% CL contour plots
of pairs of parameters. The role played by the bispectrum
in lifting the degeneracy between the galaxy bias parame-
ter b; and the parameter A; determining the amplitude of
dark matter fluctuations is particularly evident. It is clear,
in particular, from the b,-A; contours, that the combination
of power spectrum and bispectrum, by narrowing the un-
certainty on these two parameters, affects the determina-
tions of all the others. The question then arises, are the
improvements on cosmological parameters brought by us-
ing the bispectrum just a result of having constrained
galaxy bias?
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COSMOLOGY AND THE BISPECTRUM
B. Not just galaxy bias

In order to answer this question, we present in Table VII
a couple of tests that compare W + P with W + P + B for
kMS = 0.3h Mpc ™. The first two columns repeat the con-
straints shown before in Table VI, whereas the third col-
umn shows the W + P results when a prior on b, is added
to mimic the W + P + B constraint on bias. Since the
marginalized likelihood of b; is approximately Gaussian
(see Fig. 6) we can add a Gaussian prior with width o given
by

1 =

1
ot o}

D

1
—,
op

where o is the error on b; from the W + P + B analysis
and op is that from W + P. We see from Table VII that this
reproduces the W + P + B bias constraint closely enough.
By comparing the rest of the entries in W + P + B against
W + P + b, prior it follows that the improvement on cos-
mological parameter determination from the bispectrum is
not only due to constraining galaxy bias.

The right side of Table VII presents another test, where
the bias parameters are fixed (b; = 1, b, = 0). Comparing
these last two columns we see a significant improvement
from adding bispectrum information.

The fourth column in Table VII shows the analysis of the
W + P case with a prior on linear bias, Ab; = 0.036 [27],
corresponding to the case where the bispectrum is analyzed
through the hierarchical amplitude Q [see Eq. (6)] for a
fixed cosmology. We see that in this case some of the
constraints agree, but the error on bias is significantly
underestimated, whereas the errors on ), and / are sig-
nificantly overestimated. Interestingly, the uncertainty in
og is robust to this analysis (which is incorrect due to
neglecting cross-correlations between Q and P and bias
with cosmology).

TABLE VII.

PHYSICAL REVIEW D 74, 023522 (2006)
C. The effects of beat coupling

It is interesting to see what happens with the constraints
on parameters if the mixed covariance between power
spectrum and bispectrum is ignored, this is given in brack-
ets in the fourth column of Table VI for the W + P + B
case. Naively, one would expect that excluding the mixed
covariance should lead to better constraints, but as shown
in Table VI this is incorrect for most parameters: this is due
to the effects of beat coupling.

As discussed in Sec. III C, beat coupling means that the
structure of the mixed covariance matrix is dominated by
up and down correlated fluctuations of the whole power
spectrum and bispectrum of narrow isosceles triangles
depending on the power of the largest mode in the survey,
as shown in Eq. (25). Not allowing for such effect in the
covariance matrix means that these fluctuations will be
mistaken as a signature of larger errors in the parameters
that characterize the amplitude of galaxy fluctuations since
these are the parameters that can mimic such behavior.
Indeed, as seen by comparing the third and fourth columns
in Table VI, including the mixed covariance (thus allowing
for beat coupling) reduces the errors mostly on Ay, 7, by, b,
and thus og.

In Fig. 8 we illustrate this point further by showing the
marginalized 95% contour plots for the linear bias parame-
ter b, and the quadratic bias parameter b, in the W + P +
B case with kM5 = 0.3 Mpc™ . In the top panel we show
the full analysis, whereas the bottom panel drops the bin
with the lowest value of k in the power spectrum. The top
panel shows a significant difference between including the
mixed terms (5P;5B j) in the complete covariance matrix
(solid) and dropping them (dashed). We see that including
the mixed covariance gives clearly a tighter constraint on
the two parameters together with a slight degeneracy.

In the lower panel the same contours are plotted but now
the analysis excludes the power spectrum bin correspond-
ing to the smallest k-value, thus suppressing the effects of

Comparison between W + P and W + P + B with and without galaxy bias assumptions. Includes W + P with a prior

on b, to reproduce the error from W + P + B (left) and a case where the bias parameters are fixed (right). The percentage in
parenthesis indicate the improvement over the respective W + P result. Assumes a ACDM cosmology and kS = 0.32 Mpc™'.

W+ P+ b W+ P+ b W+P W-+P+B

W +P W+P+B prior prior (Q) fixed bias fixed bias
Aw, 0.0033 0.0029 (14%) 0.0032 (3%) 0.0031 (6%) 0.0031 0.0026 (19%)
Aw, 0.00090 0.00073 (23%) 0.00078 (15%) 0.00073 (23%) 0.00068 0.00065 (5%)
AQ 0.0112 0.0063 (78%) 0.0109 (3%) 0.0107 (5%) 0.0106 0.0062 (71%)
Ang 0.021 0.014 (50%) 0.016 (31%) 0.014 (50%) 0.0112 0.0096 (17%)
AA; 0.087 0.053 (64%) 0.061 (43%) 0.049 (77%) 0.033 0.029 (14%)
At 0.050 0.033 (51%) 0.038 (32%) 0.032 (56%) 0.026 0.024 (8%)
Ab, 0.081 0.051 (59%) 0.051 (59%) 0.036 (125%) cee s
Ab, 0.041
Aoy 0.064 0.036 (78%) 0.043 (49%) 0.032 (100%) 0.016 0.011 (45%)
Ah 0.0139 0.0088 (58%) 0.0116 (20%) 0.0110 (26%) 0.0103 0.0074 (39%)
AQ, 0.00139 0.00111 (25%) 0.00134 (4%) 0.00134 (4%) 0.00134 0.00104 (29%)
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FIG. 8 (color online). Marginalized 95% contour plots for the
linear bias parameter b, and the quadratic bias parameter b, in
the W + P + B case with k&M, = 0.3h Mpc~!. The top panel
shows the full analysis with (blue, continuous line) and without
(red, dashed line) the mixed covariance matrix, whereas in the
bottom panel the two analyses are repeated excluding the lowest
power spectrum bin, thus suppressing beat coupling.

beat coupling. We see that in this case there is not much
difference between including or not the mixed covariance,
in fact the mild degeneracy induced by including the mixed
covariance leads to slightly larger errors for b, and b,. The
same behavior is seen with all other parameters when the
first k-bin is excluded, except for A, and 7 which still show
a minor improvement when the mixed covariance is in-
cluded. This is likely due to residual beat coupling, e.g. a
careful look at the left panel in Fig. 4 shows that vertical
features also exist for modes with k& = 2Ak, although at a
much lower amplitude.

D. Baryon acoustic oscillations

The same baryon acoustic oscillation features induced in
the dark matter power spectrum [67,68] and recently seen
in galaxy surveys [66,69] are expected to be present in the
bispectrum [70] and can also be used to help in determin-
ing cosmological parameters. Figure 9 shows the ratio of
the bispectrum to a featureless (no acoustic oscillation)
bispectrum obtained from the BBKS fitting formula [71]
by setting the shape parameter I' = 0.175. Because the
bispectrum scales as the square of the power spectrum,
the 15% modulation in power leads to a 30% modulation in
the bispectrum. At k = 0.12 Mpc ™! the signal-to-noise in
the bispectrum is about twice smaller than for the power
spectrum [27], so this scale roughly presents the limit after
which the bispectrum gives a better constraint on acoustic

PHYSICAL REVIEW D 74, 023522 (2006)
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FIG. 9 (color online). Baryon acoustic oscillations imprinted
in the bispectrum as a function of k; and k, for fixed angle given
by Igl . 122 = —1/2. The diagonal k; = k, corresponds to equi-
lateral triangles. As the angle between the two vectors is varied
the pattern of peaks moves accordingly.

oscillations than the power spectrum. Unfortunately, at z =
0 the acoustic oscillations are washed out by nonlinearities
for k = 0.1h Mpc ™! [41,72-74].

A fair assessment of the improvement on the detection
of acoustic oscillations by using the bispectrum is beyond
the scope of this paper and will be presented elsewhere.
Here we note that our mock catalogs, although not exact in
their nonlinear properties, do include the suppression of
acoustic features, that is, we do not assume Eulerian
second-order perturbation theory as done in Fig. 9 for
illustrative purposes.

In order to assess the impact of acoustic features in our
study we compute marginalized likelihoods using instead
the BBKS fitting formula for the transfer function, the
results are shown in Fig. 10 where we reproduce the
same marginalized 95% CL contour plots given in Fig. 7.
Since this transfer function depends exclusively on the
shape parameter I = Q,hexp[—Q,(1 + +2h/Q,,)]
[75], we generically expect an enhanced degeneracy be-
tween (), (or, equivalently here, {),) and the Hubble
parameter 4. One can immediately notice in general a
stronger degeneracy in all contour plots and, in particular,
a more similar behavior of the bispectrum and power
spectrum contours, especially for those involving ) ,.
This is the degeneracy that gets broken by acoustic fea-
tures, as it is well known in the power spectrum case [65].

Focusing for instance on the €}, vs. h case in Figs. 7 and
10, we can see that the bispectrum, by virtue of its several
different triangular configurations, is remarkably sensitive
to features in the dark matter linear power spectrum such as
the baryonic acoustic oscillations. The marginalized errors
on individual parameters are, overall, larger when the
BBKS transfer function is used. We notice, however, that
the improvement provided by adding the bispectrum im-
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1.1

FIG. 10 (color online).
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W+P

W+ B

W+P+B

W + P + B (no mix. cov.)

W+P+B+P,

W+P+P,

W+ P,

KMS = 0.2h Mpc ™!

KRG — 0.2 Mpc ™!

max

0.0070
0.00109
0.0141
0.032
0.131
0.107
0.077
0.099

0.076
0.0183
0.0028

0.0073 (—4%)
0.00113 (—4%)
0.0121 (17%)
0.032 (0%)
0.129 (2%)
0.103 (4%)
0.075 (3%)
0.132 (—25%)
0.072

0.085 (—11%)
0.0164 (12%)
0.0025 (12%)

0.0061 (15%)
0.00094 (16%)
0.0102 (38%)
0.026 (23%)
0.107 (22%)
0.098 (9%)
0.067 (15%)
0.064 (55%)
0.055

0.049 (55%)
0.0115 (59%)
0.0022 (27%)

[0.0058 (21%)]
[0.00097 (12%)]
[0.0098 (44%)]
[0.027 (19%)]
0.112 (17%)]
0.096 (11%)]
0.068 (13%)]
0.079 (25%)]
[0.063]

[
[
[
[

[0.057 (33%)]
[0.0123 (49%)]
[0.0022 (27%)]

0.0047 (49%)
0.00084 (30%)
0.0076 (86%)
0.022 (45%)
0.092 (42%)
0.084 (27%)
0.058 (33%)
0.055 (80%)
0.051

0.101

0.042 (81%)
0.0096 (91%)
0.0017 (65%)

0.0050 (40%)
0.00094 (16%)
0.0089 (58%)
0.025 (28%)
0.109 (20%)
0.089 (20%)
0.066 (17%)
0.073 (36%)

0.129

0.056 (36%)
0.0119 (54%)
0.0019 (47%)

0.0056 (25%)
0.00102 (7%)
0.0101 (40%)
0.029 (10%)
0.119 (10%)
0.095 (13%)
0.071 (8%)

0.14

0.066 (15%)
0.014 (31%)
0.0022 (27%)

KMS = 0.3h Mpc ™!

KRG — 0,27 Mpc ™!

max

Awy
Awh
AQ,
Ang
AA;
Aw
AT
Ab,
Ab%RG
A(Tg

AQ,

0.0068
0.00107
0.0120
0.031
0.129
0.105
0.076
0.091

0.070
0.0160
0.0025

0.0056 (21%)
0.00094 (14%)
0.0083 (45%)
0.026 (19%)
0.110 (17%)
0.090 (17%)
0.066 (15%)
0.100 (—9%)
0.046

0.062 (13%)
0.0108 (48%)
0.0018 (39%)

0.0054 (26%)
0.00087 (23%)
0.0082 (46%)
0.024 (29%)
0.096 (34%)
0.091 (15%)
0.061 (25%)
0.052 (75%)
0.042

0.038 (34%)
0.0091 (76%)
0.0018 (39%)

[0.0053 (28%)]
[0.00083 (29%)]
[0.0074 (62%)]
[0.022 (41%)]
[0.094 (37%)]
[0.085 (23%)]
[0.059 (29%)]
[0.062 (47%)]
[0.045]

[0.042 (67%)]
[0.0089 (80%)]
[0.0017 (47%)]

0.0044 (54%)
0.00080 (34%)
0.0066 (82%)
0.021 (48%)
0.084 (54%)
0.080 (31%)
0.053 (43%)
0.047 (94%)
0.040

0.085

0.035 (100%)
0.0083 (93%)
0.0016 (56%)

0.0050 (36%)
0.00092 (16%)
0.0084 (43%)
0.025 (24%)
0.108 (19%)
0.088 (19%)
0.065 (17%)
0.071 (28%)

0.126
0.055 (27%)

0.0114 (40%)
0.0019 (32%)
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proves for parameters such as A, 7, b; and the spectral
index n, (about a factor of 2 better than the power spectrum
alone) while it reduces for (4.

E. Dark energy: wCDM models

We now extend the analysis performed above to include
the determination of the dark energy equation of state
parameter w under the assumption of an homogeneous
dark energy component. We assume w to be constant.
Introducing w, on which the growth function depends,
leads to an increased degeneracy with the other parameters
controlling the amplitude of the galaxy fluctuations such as
A, and by, which can be ameliorated by including bispec-
trum information.

Table VIII presents the expected errors on the various
parameters for the two cases of AM> = 0.2h Mpc™! and
0.32 Mpc™!. We find that for kMS = 0.2h Mpc™! the
determination of the w parameter improves, over the W +
P case, by 10% when the bispectrum is included, while by
comparison a 20% if the LRG power spectrum is added
instead. For kM3 = 0.3h Mpc™' adding the bispectrum
improves the determination of w by 15%. These are mild

PHYSICAL REVIEW D 74, 023522 (2006)

improvements, but note that there are basically three differ-
ent ways of getting below 10% errors on w by using the
power spectrum of main and LRG samples, and the non-
Gaussian information in the bispectrum and thus important
consistency checks. Of course, the addition of extra infor-
mation such as type IA supernovae or weak gravitational
lensing (apart from the latest CMB data) will tighten the
constraints.

In Fig. 11 we plot the marginalized likelihood functions
for the case where the maximum wavenumber is AN,
0.3h Mpc™!. Note that unlike the ACDM models previ-
ously considered, some of the maximum likelihood values
of the first year WMAP data differ substantially from the
chosen fiducial values for the LSS likelihood function. For
instance, WMAP gives a marginalized probability distri-
bution for w with a maximum close to —0.72, rather far
from our fiducial value w = —1. This implies that part of
the constraing power of the LSS statistics is spent in
shifting the maximum to the w = —1.

Finally, in Fig. 12 we show the contour plots for some
selection of parameters. Comparing these results to the
previous on ACDM models we see that the improvement
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wCDM models: marginalized likelihood functions for the six + four cosmological parameters assuming
0.3h Mpc™'. For the b}RC parameter, the dotted line denotes the WMAP plus LRG power spectrum likelihood.

023522-18



COSMOLOGY AND THE BISPECTRUM

FrorprrorporoT

1.05
a 1
0.95

LA RARRE RN
[FRETE FRRTE AT

TTTT
11

-0.6
-0.8

AN LARRN RARRN AR

N

-1.2

w

|

—_
ILERNRARERERD
b b e |

PHYSICAL REVIEW D 74, 023522 (2006)

T T T T,

Y

T NN NETE
081 12
b

TTT.

vl

b
T

vl

1

TTTTTT

1.2

S
v

s 1
0.8

ILERNRARE|

T T T T

—_ W+P+B

|

K,ax=0-3 h/Mpc

TTTT

1.2

Og
_
‘TTT‘TTT‘
N\

" it

T[T T[T

T
[N |

SR RRERI RRER AN = S S A - SER FENE AEE AENE N El SR SR ui A

L LR e L L L= O B B = = L R R == RN RN R =

0.8 F . - -+ ]
E B S I O S U I BN SO I I
|y T [ [T e T [ T [ [ i T g
0.75 E = =+ + =
o7 E = = F F I E
= 07E () FC_ OF DT O T -
0.65 3 = + + -
0.06 EF-HHHHHHEEH R H e
o (O) 17 OO 1O
0.04 £ 3 + + + + =
Evava b Loyl bbb b b B e v bedm e b b PRy b e 14 A
0.68B0.72 0951105 -12-1-080608 1 1.2 08 1 1.2 0650.70.75
0 n, w b Og h

A

FIG. 12 (color online).
KMS = 0.3h Mpc™!.

brought by the bispectrum is increased in the case of b; and
0y, and in fact the final error bars on these parameters (and
b,) are almost insensitive to including a more generic dark
energy. This is good news as oy is one of the least known
parameters and subject to tension between different data
sets [4,76-79].

On the other hand, the constraints on ,, A,, 7 and
particularly w, and ng are significantly worse than in the
cosmological constant case. Regarding the behavior of the
mixed covariance matrix, we see the same impact of beat
coupling that we discussed before, the parameters respon-
sible for the amplitude of galaxy fluctuations Ay, 7, g and
bias parameters improve by the inclusion of the mixed
covariance, though the behavior of the rest of the parame-
ters is somewhat more complicated. Performing the same
test as in Fig. 8, in this case we see that excluding the first
k-bin completely erases the effects due to bea coupling.

VI. CONCLUSIONS

We have provided a first detailed study on the informa-
tion about cosmological parameters contained in the bis-
pectrum of the galaxy distribution at large scales, paying
particular attention to the joint analysis with the power

1

wCDM models: marginalized 95% contour plots for a selection of the cosmological parameters assuming

spectrum and their combination with CMB data. We have
shown that the bispectrum has significant information on
cosmological parameters and when combined with the
power spectrum it is more complementary than combining
power spectra of different samples of galaxies, since non-
Gaussianity provides a somewhat different direction in
parameter space. Moreover, replacing the power spectrum
with the bispectrum gives similar constraints on cosmo-
logical parameters and can therefore serve as a consistency
check.

In order to properly combine bispectrum with power
spectrum information, we worked out their covariance
properties. Because of the effects of beat coupling [54],
the mixed terms in the covariance matrix are enhanced. We
demonstrated that including this effect into the likelihood
analysis provides a slight improvement on the error bars of
cosmological parameters related to the amplitude of galaxy
fluctuations.

In the framework of flat cosmological models we
showed that most of the improvement of adding bispec-
trum information corresponds to parameters related to the
amplitude and effective spectral index of perturbations, in
particular Q,, (or Q, =1—Q,,) and g, which can be
improved by factors of 1.5 to 2 and, interestingly, are
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presently among the least well known. In particular, we
showed that the uncertainties on og are robust to relaxing
the equation of state parameter w beyond a cosmological
constant. This is good news as oy is subject to tension
between different data sets [4,76—79]. We also showed that
the improvements are not directly a consequence of just
constraining galaxy bias but of genuine information on
cosmological parameters.

As far as future theoretical work is concerned, the single
most pressing issue is that of systematic errors in the
predictions, which were addressed in [32] for a previous
generation of galaxy surveys. Those methods, based on
second-order Lagrangian perturbation theory (which we
have used here), are likely not enough given the expected
statistical errors we derived in this work. Fortunately,
powerful methods based on first principles have recently
become available [80], and together with numerical simu-
lations they should provide a sound theoretical basis. Work
on this is in progress and will be reported soon.
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APPENDIX: WMAP 3-YEAR UPDATE

Shortly after the completion of the present work, the 3-
year WMAP satellite observations, [4], became publicly
available. For the reasons described below, the recent data
is not simply an incremental improvement on the results
presented in the main sections of the paper, and it is
instructive to see the differences in the constraining power
of the bispectrum. For this reason, and in order not to
introduce substantial changes to preprint version of the
paper, we add this appendix updating the results of
Sec. V to include the CMB likelihood corresponding to
the new data.

The improved analysis of the CMB polarization on the
3-year data is responsible for significant differences with
respect to the 1-year results in the errors on cosmological
parameters as well as in their best values. Particularly
significant to the present work is the much improved
determination of the optical depth parameter 7 leading to

PHYSICAL REVIEW D 74, 023522 (2006)

a better constraints on the amplitude of primordial fluctua-
tions A, and on the spectral index n;.

We can generically expect that the smaller errors from
the CMB analysis alone would make, for certain parame-
ters, the effect of adding other data sets less noticeable. In
particular we can expect a reduced relative impact of
including the bispectrum in the large-scale structure data
analysis with respect to the parameters responsible for the
amplitude of galaxy fluctuations.

However, as we will show, the constraining power of the
power spectrum and bispectrum joint analysis turns to
other relevant parameters, particularly in the case of the
wCDM models, where the uncertainty on the dark energy
equation of state introduces substantial degeneracies while
the large-scale structure statistics are particularly sensitive
to the late-time expansion via the growth factor D(p; a).

Another reason to expect the improvement due to the
bispectrum likelihood to be somehow smaller is related to
the lower value of the amplitude parameter A; and, con-
sequently, of og. From Egs. (2) and (18) one can derive the
signal-to-noise for a given triangular configuration, as-
sumed here equilateral for simplicity, so that, at large
scales, we have

B(k, k, k)

<%ym5—————~Jﬁ5~J11

AB k&) (AD)

The best value for the parameter A, decreased from the 1-
year to 3-year WMAP analysis by almost 15%. On the
other hand a lower value for amplitude of primordial
fluctuations results as well in a lower value for the non-
linear scale thereby making more robust our approxima-
tions based on perturbation theory.

The definitions of the power spectrum and bispectrum
likelihood functions, including their covariance properties,
are the same as the ones described in the previous sections.
The sole exception that we will consider for this appendix

TABLE IX. Fiducial values for the cosmological and bias
parameters assumed for the LSS + WMAP 3-year likelihood
analysis.

Parameter ACDM models wCDM models
Wy 0.104 0.105
w), 0.0223 0.0221
O, 0.765 0.715
ng 0.95 0.944
A, 0.687 0.715
w -1 -0.84

T 0.09 0.09
b, 1 1

b, 0 0
biRG 2.17 2.17
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regards the fiducial values assumed for the large-scale
structure observables. To make the comparison between
power spectrum analysis and joint analysis as clear as
possible, we take them to coincide with the maximum
values of the WMAP 3-year likelihood. They are therefore
different for ACDM and wCDM models and are reported
in Table IX. We make use of polynomial fits to the CMB
likelihood functions determined in the same fashion as
explained in Sec. IV B but, this time, making use of the
Monte Carlo Markov chains publicly available instead of
evaluating the likelihood function directly.

1. ACDM models

We present in Table X the expected marginalized errors
(1-0) from the power spectrum and bispectrum likelihood
analysis combined with the WMAP 3-year data. As in
Sec. V, numbers in bold correspond to improvements larger
than 50%, with the improvement factor defined in Eq. (49).

PHYSICAL REVIEW D 74, 023522 (2006)

General considerations such as the dependence on the
smallest scale (largest wavenumber k,,) included are
substantially unchanged. One can notice how in the k., =
0.2h Mpc~! case the improvement due to the bispectrum
ranges from 7% for w,, to 44% for (), while in the k,, =
0.3h Mpc™! case we have 9% to 63%. These results are
just slightly lower than those obtained with the 1-year
WMAP data. Instead, the improvements on the parameters
responsible for the overall amplitude of galaxy fluctuations
and the spectral index are significantly reduced with re-
spect to the analysis with WMAP 1-year data, this being a
consequence, as mentioned above, of the much better
determination of the parameters 7 and A; from the CMB
data alone, whose error bars shrinked by a factor of 2 or
more. This results, however, in much smaller expected
errors on the bias parameters, with the linear bias b,
determined to better than 4%. We can still conclude, that
the combination of CMB observations with the main sam-
ple power spectrum and bispectrum obtains better con-

TABLE X. ACDM models: expected marginalized errors (68% CL) for WMAP3 (temperature and polarization, W) combined with
the SDSS main sample power spectrum (P) and bispectrum (B) and with the LRG power spectrum (P ). The percentage in parenthesis
indicates the improvement over the analysis including the main sample power spectrum alone (W + P), numbers in bold indicate errors
down by at least 1.5. In brackets we quote the W + P + B errors obtained by ignoring the mixed power spectrum—bispectrum

covariance. Compare with Table VI for WMAPI.

W+P W+B W+P+B

W + P + B (no mix. cov.) W+ P+ B + P,

W+P+P, W+P,

KMS = 0.2h Mpc™!

KSRG — 0,2 Mpc™!

[0.0020 (20%)]
[0.00059 (5%)]
[0.0060 (47%)]
[0.0123 (7%)]
[0.036 (6%)]
[0.024 (4%)]
[0.046 (2%)]

[0.028 (7%)]
[0.0087 (29%)]
[0.00079 (29%)]

0.0017 (41%)
0.00056 (11%)
0.0045 (96%)
0.0108 (22%)
0.034 (12%)
0.023 (8%)
0.038 (24%)
0.044

0.074

0.024 (25%)
0.0073 (53%)
0.00068 (50%)

0.0018 (33%)
0.00058 (7%)
0.0052 (69%)
0.0116 (14%)
0.037 (3%)
0.025 (0%)
0.043 (9%)

0.081

0.027 (11%)
0.0082 (37%)
0.00074 (38%)

0.0020 (20%)
0.00060 (3%)
0.0062 (42%)
0.0123 (7%)
0.037 (3%)
0.049 (6%)

0.137

0.029 3%)
0.0089 (26%)
0.00082 (24%)

kLRG = 0.2 Mpc™!

[0.0018 (28%)]
[0.00055 (11%)]
[0.0043 (86%)]
[0.0105 (22%)]
[0.034 (12%)]
[0.024 (4%)]
[0.042 (9%)]

[0.024 (21%)]
[0.0080 (65%)]

Awy 0.0024  0.0025 (—4%) 0.0020 (20%)
Aw, 0.00062 0.00063 ( —2%) 0.00058 (7%)
AQ, 0.0088 0.0077 (14%) 0.0061 (44%)
Ang 0.0132  0.0135 (—2%) 0.0120 (10%)
AA; 0.038 0.039 (— 3%) 0.034 (12%)
AT 0.025 0.025 (0%) 0.023 (8%)
Ab, 0.047 0.059 (—20%) 0.041 (15%)
Ab, s 0.067 0.000 [0.060]
ABLRG ... e
Aoy 0.030 0.031 ( — 3%) 0.026 (15%)
Ah 0.0112  0.0098 (14%) 0.0086 (30%)
AQ, 0.00102 0.00095 (7%) 0.00080 (27%)
KMS = 0.3h Mpc ™!
Aw; 0.0023 0.0020 (15%) 0.0019 (21%)
Aw, 0.00061 0.00059 (3%) 0.00056 (9%)
AQ, 0.0080 0.0049 (63%) 0.0049 (63%)
Ang 0.0128 0.0121 (6%) 0.0111 (15%)
AA; 0.038 0.037 (3%) 0.031 (22%)
At 0.025 0.025 (0%) 0.022 (14%)
Ab, 0.046 0.056 (— 18%) 0.038 (21%)
Ab, s 0.045 0.036 [0.044]
A beRG . . c .
Aoy 0.029 0.029 (0%) 0.023 (26%)
Ah 0.0103  0.0076 (35%) 0.0071 (45%)
AQ, 0.00096 0.00073 (31%) 0.00073 (31%)

[0.00068 (41%)]

0.0017 (35%)
0.00054 (13%)
0.0039 (105%)
0.0102 (25%)
0.031 (22%)
0.022 (14%)
0.036 (28%)
0.035

0.068

0.022 (32%)
0.0065 (58%)
0.00067 (43%)

0.0018 (22%)
0.00057 (7%)
0.0051 (57%)
0.0113 (13%)
0.036 (6%)
0.025 (0%)
0.042 (9%)

0.080

0.027 (7%)
0.0079 (30%)
0.00074 (30%)
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straints than the combination with power spectra from the
two different samples considered in this work.

Such considerations are reflected in the marginalized
95% CL contour plots shown in Fig. 13, where we can still
observe the different directions of several degeneracies of
the power spectrum likelihood function with respect to the
bispectrum one.

We have checked that the conclusions derived from
Table VII and discussed in Sec. VB hold as well for the
WMAP 3-year data. In both tests, we can still observe
better results in the W + P + B analysis, particularly for
certain cosmological parameters such as (2, again show-
ing that the information provided by the bispectrum is not
limited to the galaxy bias determination.

2. Dark energy: wCDM models

Finally, in Table XI we present the expected marginal-
ized errors (1-0) on the cosmological parameters for mod-
els which allow for a homogeneous dark energy
component with an equation of state parametrized by the
constant w.

TABLE XI.

PHYSICAL REVIEW D 74, 023522 (2006)

As already mentioned, for these models the improve-
ment due to the new CMB data set to the constraints on the
parameters responsible for the amplitude of galaxy fluctu-
ations is now less dramatic because of the degeneracy with
w. In this case, therefore, we can expect a more relevant
contribution of the bispectrum to the combined analysis
because of the dependence of large-scale structure statis-
tics on the growth function D(p, a).

We see indeed that, for k,,,, = 0.32 Mpc™!, including
the bispectrum, the error on w improves by 46%, a sig-
nificantly larger improvement compared to the previous
analysis using WMAPI (15%), or compared to the results
obtained by adding the LRG power spectrum to the main
sample one and WMAP3 (24%). We also find that in the
most general case of W + P + B + P; the same error gets
better by a 54%. Similar observations hold as well for other
parameters such as w,; and (), while we notice less
impressive results for A; and n,. The corresponding two-
parameter marginalized contour plots for the wCDM mod-
els updated to WMAP3 is shown in Fig. 14, where the
difference in the improvements can be seen in more detail
(compare to Fig. 12).

Same as Table X but for wCDM models. Compare with Table VIII for WMAP1.

W+P W+B W+P+B

W+ P+ B (no mix. covy W+P+B+P, W+P+P,

W+ P,

KMS = (0.2h Mpc™!

KRS = 0.2h Mpc™!

Aw,; 00044 0.0047 (—6%) 0.0035 (26%)

[0.0036 (22%)]

0.0028 (57%) 0.0032 (37%) 0.0036 (22%)

Aw,  0.00060 0.00061 (—2%) 0.00058 (3%)

AQ, 00104 0.0092 (13%)
An, 00130  0.0132 (— 1%)
AA, 0037  0.038 (—3%)
Aw 0060  0.058 (3%)

Ar 0025  0.025(0%)
Ab, 0082  0.101 (— 19%)
Ab, S 0,068

ABLRG ... e

Aog 0048  0.050 (— 4%)
Ah 00141 00123 (15%)

AQ, 0.00194 0.00168 (15%)

0.0073 (42%)
0.0126 (3%)
0.035 (6%)
0.045 (33%)
0.025 (0%)
0.058 (41%)
0.051

0.034 (41%)
0.0089 (58%)
0.00134 (45%)

[0.00059 (2%)]
[0.0072 (44%)]
[0.0126 (3%)]
[0.036 (3%)]
[0.048 (25%)]
[0.025 (0%)]
[0.069 (19%)]
[0.061]

[0.038 (26%)]
[0.0096 (47%)]
[0.00140 (39%)]

0.00057 (5%)
0.0054 (93%)
0.0121 (7%)

0.00058 (34%)
0.0062 (68%)
0.0124 (5%)

0.035 (6%) 0.036 (3%)
0.040 (50%)  0.046 (30%)
0.025 (0%) 0.025 (0%)
0.050 (64%)  0.062 (32%)
0.047 ces
0.091 0.110

0.029 (66%)
0.0074 (91%)
0.00116 (67%)

0.036 (33%)
0.0093 (52%)
0.00134 (45%)

0.00059 (2%)
0.0072 (44%)
0.0128 (2%)
0.037 (0%)
0.051 (18%)
0.025 (0%)

0.121

0.041 (17%)
0.0107 (32%)
0.00150 (29%)

KMS = (0.3h Mpc™!

KLRG = (0.2h Mpc™!

Aw,; 0.0042 0.0038 (11%)
Aw, 0.00059 0.00058 2%)

AQ,  0.0090 0.0061 (48%)
Ang 0.0128 0.0125 2%)
AA; 0.037 0.037 (0%)
Aw 0.057 0.048 (19%)
AT 0.025 0.025 (0%)
Ab, 0.077 0.085 ( — 9%)
Ab, s 0.045

A beRG ce .

Aoy 0.046 0.040 (15%)
Ah 0.0124  0.0084 (48%)

AQ, 0.00173 0.00122 (42%)

0.0030 (40%)
0.00058 (2%)
0.0059 (53%)
0.0124 3%)
0.034 (9%)
0.039 (46%)
0.025 (0%)
0.049 (57%)
0.039

0.027 (70%)
0.0070 (77%)
0.00114 (52%)

[0.0029 (45%)]
[0.00056 (5%)]
[0.0052 (73%)]
[0.0120 (7%)]
[0.035 (6%)]
[0.041 (39%)]
[0.025 (0%)]
[0.057 (35%)]
[0.044]

[0.029 (59%)]
[0.0069 (80%)]
[0.00113 (53%)]

0.0025 (68%)
0.00056 (5%)
0.0048 (88%)
0.0120 (7%)

0.0032 (31%)
0.00057 (4%)
0.0059 (53%)
0.0123 (41%)

0.033 (12%) 0.036 (3%)
0.037 (54%) 0.046 (24%)
0.025 (0%) 0.025 (0%)
0.043 (79%) 0.060 (28%)
0.037 s
0.079 0.108

0.024 (92%)
0.0063 (97%)
0.00106 (63%)

0.035 (31%)
0.0089 (39%)
0.00130 (33%)

023522-22



COSMOLOGY AND THE BISPECTRUM

FIG. 14 (color online).
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