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We study constraints on time variation of the fine structure constant � from cosmic microwave
background (CMB) taking into account simultaneous change in � and the electron mass me which might
be implied in unification theories. We obtain the constraints �0:097<��=� < 0:034 at 95% C.L. using
WMAP data only, and �0:042<��=� < 0:026 combining with the constraint on the Hubble parameter
by the HST Hubble Key Project. These are improved by 15% compared with constraints assuming only �
varies. We discuss other relations between variations in � and me but we do not find evidence for varying
�.
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I. INTRODUCTION

One of fundamental questions in physics is whether or
not the physical constants are literally constant. In fact, the
physical constants may change in spacetime within the
context of some unification theories such as superstring
theory and investigating their constancy is an important
probe of those theories. In addition to the theoretical
possibility, some observations suggest the time variation of
the fine structure constant (the coupling constant of elec-
tromagnetic interaction) �. Recent constraints including
such non-null results are briefly summarized as follows.

Terrestrial limits on � come from atomic clocks [1–7],
the Oklo natural fission reactor in Gabon [8] and meteor-
ites. Reference [5] derived the limit on the temporal de-
rivative of � at present as ��0:3� 2:0� � 10�15 yr�1.
Measurements of Sm isotopes in the Oklo provide two
bounds on the variation of � as ��=� � ��0:8� 1:0� �
10�8 and ��=� � �0:88� 0:07� � 10�7 [8]. The former
result is null, however, the latter is a strong detection that �
was larger at z� 0:1. The meteorite bound obtained by
measuring 187Re decay rate is now controversial although
varying � is not suggested anyway. Ref. [9] obtained
��=� � ��8� 8� � 10�7, whereas Refs. [10,11] argued
that the constraint should be much weaker due to uncer-
tainties in the decay rate modeling.

On the other hand, there are three kinds of celestial
probes. One is to use big bang nucleosynthesis (BBN)
[12–15] which provides constraints at very high redshifts
(z� 109–1010), for example, �5:0� 10�2 < ��=� <
1:0� 10�2 (95% C.L.) [13] or j��=�j< 6� 10�2 [16].
The second is from the spectra of high-redshift quasars
(z� 1–3) [17–23], where there are conflicting results.
Refs. [17,18] suggested that � was smaller at z * 1,
��=� � ��0:543� 0:116� � 10�5 [18]. This result,
however, is not supported by other observations [19–23].
For example, Ref. [19] obtained the constraint as ��=� �
��0:6� 0:6� � 10�6 and the others too found no evidence

for varying �. Finally, we can use Cosmic Microwave
Background (CMB) to measure � at z� 1100 [24–27].
Analyses using pre-WMAP data are found in Refs. [26–
28]. References [29,30] derive a constraint using the
WMAP first-year data, �0:05< ��=� < 0:02 or
�0:06<��=�< 0:01 (95% C.L.), respectively, with or
without marginalizing over the running of the spectral
index [30].1

Recently, there have been many studies on constraining
the time variation in � which accompanies the variation of
the other coupling constants, as would occur rather natu-
rally in unified theories. Under such a framework, BBN has
been studied in Refs. [13,35–42], quasar absorption sys-
tems in Ref. [43], meteorites in Ref. [9], the Oklo reactor in
Ref. [40], and atomic clock experiments in Refs. [43,44].
For example, BBN constraint improves by up to about
2 orders (� 6:0� 10�4 <��=�< 1:5� 10�4 [13])
although the factor may vary depending on how they are
correlated to �. Hence, it is important to consider the
variation of other coupling constants along with �.

In this paper, we investigate constraint on the time
variation of � from CMB using the WMAP first-year
data. In particular, we consider me to vary dependently to
the variation in � because, as mentioned above, such might
be the case in some unified theory. Since such theories are
now under development, how their variations are related to
each other can not be predicted. Therefore, we work in a
phenomenological way guided by a low energy effective

1Note that two results suggesting varying �, one of the Oklo
results [8] and the quasar observation of Ref. [18] have different
signs of ��. These results, if correct, can not be explained by
homogeneous and monotonically time-varying �. They may
indicate that � is not a monotonically varying function of time
or as investigated in Refs. [31–33], may suggest a spatial
variation of �. In passing, we refer to Ref. [34] for the effects
of spatial varying � on CMB.
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theory of a string theory and adopt to vary me as a power
law of �.2

In the next section, we briefly review the recombination
process in the early universe and make clear how it de-
pends on � andme. In Sec. III, we illustrate their effects on
the epoch of recombination and the shape of CMB power
spectrum. In Sec. IV, we describe the relations between the
variations in � and me which we adopt in our analysis. In
Sec. V, we present our constraint and we conclude in
Sec. VI.

II. � AND me DEPENDENCE OF THE
RECOMBINATION PROCESS

Nonstandard values of � and me modify the CMB
angular power spectrum mainly by changing the epoch of
recombination. Thus, let us visit briefly the recombination
process in the universe and see where those constants
appear. We follow the treatment of Ref. [47], which is
implemented in the RECFAST code. They have shown
that the recombination process is well approximated by
the evolutions of three variables: the proton fraction xp, the
singly ionized helium fraction xHeII, and the matter tem-
perature TM. Their equations are given below. We denote
the Boltzmann constant k, the Planck constant h and the
speed of light c. In addition to the variables above, xp �
np=nH and xHeII � nHeII=nH, we use the electron fraction
xe � ne=nH � xp � xHeII as an auxiliary variable (note
that nX stands for the number density of species X but nH

is defined as the total hydrogen number density, including
both protons and hydrogen atoms). The redshift is denoted
by z and the expansion rate by H.

Adopting the three level approximation, the time evolu-
tion of the proton fraction of xp is described by

 

dxp
dz
�

CH

H�z��1� z�
	xexpnHRH � �H�1� xp�e�h�H=kTM 
;

(1)

where �H � c=�121:5682 nm� is the Ly� frequency and
RH is the case B recombination coefficient for H which is
well fitted by

 RH � 10�19F
atb

1� ctd
m3 s�1 (2)

with t � TM=�104 K�, a � 4:309, b � �0:6166, c �
0:6703, d � 0:5300 [48], and the fudge factor F � 1:14
introduced to reproduce the more precise multilevel calcu-
lation [47]. �H is the photoionization coefficient

 �H � RH

�
2�mekTM

h2

�
3=2

exp
�
�
BH2s

kTM

�
; (3)

and CH is the so-called Peebles reduction factor [49]

 CH �
	1� KH�HnH�1� xp�


	1� KH��H � �H�nH�1� xp�

; (4)

where the binding energy in the 2s energy level is BH2s �
3:4 eV, the two-photon decay rate is �H � 8:22458 s�1

and KH � c3=�8��3
HH�.

Here, comments on what Eq. (1) means may be in order.
The first term in the square brackets in Eq. (1) represents
the recombinations to excited states of the atom, ignoring
recombination direct to the ground state. The second term
represents the rate of ionization from excited states of the
atom. The difference of those two terms is the net rate of
production of hydrogen atoms when one could ignore the
Ly� resonance photons. These photons reduce the rate by
the factor CH, which can be written as the ratio of the net
decay rate to the sum of the decay and ionization rates from
the n � 2 level,

 CH �
�R ��H

�R ��H � �H
: (5)

We have rewritten Eq. (4) to derive this expression using
the decay rate �R � �KHn1s�

�1 allowed by redshifting of
Ly� photons out of the line, and using n1s � nH � np
which is justified by the far greater occupation number of
the hydrogen atom ground state than that of the excited
states altogether.

The evolution of the singly ionized helium fraction of
xHeII is similarly described by
 

dxHeII

dz
�

CHe

H�z��1� z�
	xHeIIxenHRHeI

� �HeI�fHe � xHeII�e
�h�HeI=kTM 
; (6)

where fHe is the total number fraction of helium to hydro-
gen (using primordial helium mass fraction Yp, fHe �

Yp=f4�1� Yp�g where we take Yp to be 0.24), �HeI �

c=�60:1404 nm� is the frequency corresponding to energy
between ground state and 2s1 state, and RHeI is the case B
HeI recombination coefficient for singlets [50]

 RHeI � q
� �������
TM
T2

s �
1�

TM
T2

�
1�p

�
1�

TM
T1

�
1�p

�
�1

m3 s�1;

(7)

with q � 10�16:744, p � 0:711, T1 � 105:114K and T2 fixed
arbitrary 3K. �HeI is the photoionization coefficient

 �HeI � RHeI

�
2�mekTM

h2

�
3=2

exp
�
�
BHeI2s

kTM

�
; (8)

2References [45,46] studied CMB constraints on the variation
of Higgs expectation value whose effect is assumed to appear
only in the change in me so there is some overlap between their
analysis and ours. However, they did not consider � variation at
the same time.
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 CHeII �
	1� KHeI�HenH�fHe � xHeII� exp��E=kTM�


	1� KHeI��He � �HeI�nH�fHe � xHeII� exp��E=kTM�

; (9)

where the binding energy in the 2s energy level is BHeI2s �
3:97 eV and the two-photon decay rate is �He � 51:3 s�1,
KHeI � c3=�8��3

HeIH� and �E is the energy separation
between 2s1 and 2p1, �E=h � c=�58:4334 nm� � �HeI.
Note that, contrary to the case with H, the energy separa-
tion �E between 2s1 and 2p1 is so large that we can not
neglect it [51].

The matter temperature TM is evolved as

 

dTM
dz
�

8�TaRT4
R

3H�z��1� z�me

xe
1� fHe � xe

�TM � TR�

�
2TM
�1� z�

; (10)

where TR is the radiation temperature, �T �
2�2h2=�3�m2

ec
2� is the Thomson cross section, and aR �

k4=�120�c3h3� is the black-body constant. The Compton
scattering makes TR and TM identical at high redshifts.
However, the adiabatic cooling becomes dominant at low
redshifts, which leads to the significant difference between
TM and TR.

Now, we explain how quantities which appear in these
equations depend on � and me. Two-photon decay rates
scale as �8me [52,53]. Since binding energies scale as
�2me, so do �H and �HeI, and KH and KHeI scale as
��6m�3

e . The remaining task is to investigate how the
recombination coefficient R depends on � and me. To do
this, we follow the treatment of Ref. [25]. The recombina-
tion coefficient can be expressed as

 R �
X�
n;l

	8��2l� 1�

�
kTM

2�me

�
3=2

exp
�
Bn
kTM

�

�
Z 1
Bn=kTM

�nly
2dy

exp�y� � 1
; (11)

where Bn is the binding energy for n-th excited state and
�nl is the ionization cross section for (n; l) excited state.
The asterisk in the upper bound of summation indicates
that the sum needs to be regulated, but since this regulari-
zation depends only weakly on � and me, it can be ne-
glected [54]. The cross section �nl scales as ��1m�2

e [53].
Altogether,

 

@R�TM�
@�

�
2

�

�
R�TM� � TM

@R�TM�
@TM

�
; (12)

 

@R�TM�
@me

� �
1

me

�
2R�TM� � TM

@R�TM�
@TM

�
: (13)

Combining with the fitting formulas (2) and (7), we obtain
how RH and RHeI depend on � and me.

III. EFFECTS ON THE EPOCH OF
RECOMBINATION AND CMB ANGULAR POWER

SPECTRUM

We have investigated the equations which describe the
process of recombination and how they depend on the
coupling constants in the previous section. We incorporate
the dependence on � and me into the RECFAST code [47]
and solve the equations for the ionization fraction xe as a
function of redshift with several different values of � and
me. The results are shown in Figs. 1 and 2. We have
assumed a flat universe and used cosmological parameters
�!b;!m; h� � �0:024; 0:14; 0:72�, where !b � �bh

2 is
the baryon density, !m � �mh

2 is the matter density, h
is the Hubble parameter, and � denotes the energy density
in unit of the critical density. The most important feature is
the shift of the epoch of recombination to higher z as � or
me increases. We can also see this by the rightward shift of
the peak of the visibility function shown in Figs. 3 and 4.
This is easy to understand because the binding energy Bn
scales as �2me and photons should have higher energy to
ionize hydrogens.

In Figs. 5 and 6 we show the power spectrum of the
CMB temperature anisotropy for several different values of
� and me as calculated by the CMBFAST code [55] with
the modified RECFAST. We consider a flat �CDM uni-
verse with a power-law adiabatic primordial fluctuation.
The adopted cosmological parameter values are
�!b;!m; h; ns; �� � �0:024; 0:14; 0:72; 0:99; 0:166� where
� is the reionization optical depth and ns is the scalar
spectral index. We fix the value of the amplitude of pri-
mordial power spectrum. We can see two effects of varying
� andme in Figs. 5 and 6. Increasing � orme shift the peak

FIG. 1 (color online). The ionization fraction xe as a function
of redshift z for no change of � (solid curve), an increase of � by
5% (dashed curve), a decrease of � by 5% (dotted curve).
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positions to higher values of l and amplify the peak
heights.

The peak position shift is understood as follows. Using
lp to denote the position of a peak, r��z� for the angular
diameter distance and rs�z� for the sound horizon, one can
write

 lp �
r��zls�
rs�zls�

; (14)

where zls is the redshift of the last scattering surface.
Increasing � or me increases the redshift of the last scat-
tering surface due to the larger binding energy, as in Figs. 3
and 4. The higher zls in turn corresponds to a smaller sound
horizon and a larger angular diameter distance, which lead
to a higher value of lp.

The changes in the peak heights are caused by modifi-
cations to the early ISW effect and the diffusion damping.
The larger zls leads to the larger early ISW effect making
the first peak higher. To consider the effect beyond the first
peak, we focus our attention on the visibility function. The
peak of the visibility function moves to a larger redshift
since the recombination occurs at higher redshift, when the
expansion rate is faster. Hence, the temperature and xe
decreases more rapidly, making the peak width of the
visibility function narrower (see Figs. 3 and 4). Since the
width of the visibility function corresponds to the damping
scale, an increase in � or me decreases the effect of damp-
ing. This is the reason why the amplitude at larger l
increases with increasing � and me. Moreover, as seen in
Figs. 3 and 4, � changes the visibility function width more
than me does (quantitatively, an increase of � or me by 5%

FIG. 4 (color online). The visibility function as a function of
conformal time for no change of me (solid curve), an increase of
me by 5% (dashed curve), a decrease ofme by 5% (dotted curve).

 0
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 0.35

FIG. 5 (color online). The spectrum of CMB fluctuations for
no change of � (solid curve), an increase of � by 5% (dashed
curve), a decrease of � by 5% (dotted curve).

FIG. 3 (color online). The visibility function as a function of
conformal time for no change of � (solid curve), an increase of �
by 5% (dashed curve), a decrease of � by 5% (dotted curve).

FIG. 2 (color online). The ionization fraction xe as a function
of redshift z for no change of me (solid curve), an increase of me
by 5% (dashed curve), a decrease of me by 5% (dotted curve).
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makes the full width at half maximum of the visibility
function narrower by 10% or 2%, respectively) because
the binding energy which scales as �2me. Thus the damp-
ing scale is more sensitive to the change of � than me, as
appears in Figs. 5 and 6.

Now we discuss the effects of varying � and me some-
what more quantitatively using the following four quanti-
ties which characterize a shape of CMB power spectrum
[56]: the position of the first peak l1, the height of the first
peak relative to the large angular-scale amplitude evaluated
at l � 10,

 H1 �

�
�Tl1
�T10

�
2

(15)

the ratio of the second peak (l2) height to the first

 H2 �

�
�Tl2
�Tl1

�
2

(16)

the ratio of the third peak (l3) height to the first

 H3 �

�
�Tl3
�Tl1

�
2

(17)

where ��Tl�2 � l�l� 1�Cl=2�. Note that these four quan-
tities do not depend on overall amplitude. We calculate the
response of these four quantities when we vary the parame-
ters !b, !m, h, �, ns, � and me. When we vary one
parameter, the other parameters are fixed and flatness is
always assumed (especially, increasing hmeans increasing
�� because �� � 1�!m=h2).
 

�l1 � 16
�!b

!b
� 25

�!m

!m
� 47

�h
h
� 36

�ns
ns

� 290
��
�
� 150

�me

me
; (18)

 �H1 � 3:0
�!b

!b
� 3:0

�!m

!m
� 2:2

�h
h
� 1:7

��
�

� 18
�ns
ns
� 3:9

��
�
� 1:4

�me

me
; (19)

 

�H2 � �0:30
�!b

!b
� 0:015

�!m

!m
� 0:41

�ns
ns

� 0:91
��
�
� 0:30

�me

me
; (20)

 

�H3 � �0:19
�!b

!b
� 0:21

�!m

!m
� 0:56

�ns
ns

� 0:57
��
�
� 0:019

�me

me
; (21)

and values at the fiducial parameter values are l1 � 220,
H1 � 6:65, H2 � 0:442 and H3 � 0:449. Derivatives of l1
andH1 with respect to � andme are positive as is expected
from the considerations above. Furthermore, �l1=�� and
�l1=�me are much larger than the other derivatives of l1
while �H1=�� and �H1=�me have relatively similar
values to the other derivatives of H1. Since such changes
are most effectively mimicked by the change in h, it is
considered to be the most degenerate parameter with � and
me. We have seen above that when � or me increases, the
first peak is enhanced by larger ISW effect and the second
or higher peaks are enhanced by smaller diffusion damp-
ing. The derivatives of H2 and H3 tell us which effect is
important. Since �H2=�� and �H3=�� are positive and
larger than the derivatives with respect to me, we see that
the effect on the diffusion damping is more significant than
that on the early ISW for varying �. They seem to some-
what cancel each other for varying me especially regarding
H3. Such behavior is consistent with the consideration at
the end of the previous paragraph, that the diffusion damp-
ing is more sensitive to the change in � than me.

IV. RELATION BETWEEN VARIATIONS OF �AND
me

We expect a unified theory can predict the values of the
coupling constants, how they are related to each other and
how much they vary over a cosmological time scale. In
string theory, a candidate for unified theory, there is a
dilaton field whose expectation value determines the values
of coupling constants. However, since it is not fully for-
mulated at present, we have to assume how � and me are
related to vary and constrain their variations. To be con-
crete, following Ref. [35], let us start from considering the
low energy action derived from heterotic string theory in
the Einstein frame. The action is written as

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

FIG. 6 (color online). The spectrum of CMB fluctuations for
no change of me (solid curve), an increase of me by 5% (dashed
curve), a decrease of me by 5% (dotted curve).
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S �
Z
d4x

�������
�g
p

�
1

2�2 R�
1

2
@	�@	��

1

2
D	
D	


���2V�
� � � �	D	 ���1m 
�  

�
�0

16�2 �2F	�F	�
�
; (22)

where � is the dilaton field, 
 is an arbitrary scalar field,
and  is an arbitrary fermion. D	 is the gauge covariant
derivative corresponding to gauge fields with field strength
F	�, �2 � 8�G and � � e���=

��
2
p

is the conformal factor
which is used to move from string frame. More concretely,

 is the Higgs field and V�
� is its potential. The overall
factor � before the scalar potential means that the Higgs
vacuum expectation value hHi is independent of the dilaton
so it is taken to be constant. F	� is the gauge field
with gauge group including SU�3� � SU�2� � U�1�. We
define its Lagrangian density for the gauge field as
��1=4g2�F	�F	� where g is the unified coupling constant.
Compared with equation Eq. (22),

 

1

g�Mp�
2 �

�0e�
��
2
p
��

4�2 ; (23)

where Mp is the Planck scale. We can calculate the gauge
coupling constants at low energy using renormalization
group equations. � almost does not run, and hence the �
at low energy

 � ’ ��Mp� �
g�Mp�

2

4�
�
�2e

��
2
p
��

��0
: (24)

As for the other gauge coupling constants, variation of the
strong coupling constant may affect CMB since its low
energy value determines the QCD scale �QCD which in
turn determines nucleon masses. However, how the varia-
tion of �QCD is related to that of � at low energy can not
uniquely be determined from Eq. (22) and especially de-
pends on the details of unification scheme [57]. Therefore,
for simplicity, we just assume �QCD does not vary. The  ’s
are the ordinary standard model leptons and quarks. As we
take hHi � const, the Yukawa couplings depend on the
dilaton as e��=

��
2
p

. Therefore the relation between varia-
tions of � and me is given by

 

me � �me

me
�

�
�� ��

�

�
1=2
: (25)

In this paper, we also consider other possibilities phe-
nomenologically by adopting a power-law relation as

 

me ��me

me
�

�
����

�

�
p
; (26)

and compute constraints for several values of p. In addition

to the case with changing only � (p � 0) and the model
described above (p � 1=2), we consider cases with p � 2
and 4.

V. CONSTRAINTS ON VARYING � AND me

We constrain the variation of � in the models described
in the previous section using the WMAP first-year data.
CMB power spectra are calculated by CMBFAST [55] with
RECFAST [47] modified as in Sec. II. The �2 is computed
for TT and TE data set by the likelihood code supplied by
the WMAP team [58–60]. As defined in Sec. III, we
consider six cosmological parameters !b, !m, h, �, ns
and overall amplitude A in the �CDM model assuming
the flatness of the universe. We report A in terms of l�l�
1�Cl=2� at l � 2 in unit of 	K2. In this paper we do not
consider gravity waves, running of the spectral index and
isocurvature modes. We calculate the minimum �2 as a
function of � and derive constraints on �. The minimiza-
tion over six other parameters are performed by iterative
applications of the Brent method [61] of the successive
parabolic interpolation. More detailed description of this
minimization method is found in Ref. [62]. We search for
minimum in the region � < 0:3, which is a prior adopted in
Refs. [29,30]. We derive constraints with or without the
constraint on the hubble parameter h. When we combine it,
we use the Hubble Space Telescope (HST) Hubble Key
Project value h � 0:72� 0:08 [63] whose error is regarded
as gaussian 1�.

Figure 7 shows our results of �2 minimization. It com-
pares varying � only and varying � and me with the
relation of Eq. (25), respectively, with or without the
HST prior. Without the HST prior, we find at 95% C.L.
that �0:107<��=�< 0:043 with changing � only and
�0:097< ��=�< 0:034 with the model described in the

FIG. 7 (color online). �2 function for variation in � only (solid
curves) and � and me simultaneously with the relation of
Eq. (25) (dashed curves). The HST prior is imposed for the
thinner curves.
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previous section. Although the best fit � is 4% less than the
present value, we find that �� � 0 is consistent with the
WMAP observation and evidence for varying � is not
obtained. The effect of varyingme simultaneously is found
to make the constraint more stringent by 13%. This rather
small effect is reasonable since, as is discussed in Sec. III,
the effect of me on CMB power spectrum is slightly
smaller than �, and the relation of Eq. (25) we adopt
here does not change me much relative to �.

We find that minimum �2 is given at ��=� � �0:04
with �!b;!m; h; ns; �; A� � �0:021; 0:132; 0:523; 0:979;
0:146; 942� for the case of changing � only, and ��=� �
�0:04 with �!b;!m; h; ns; �; A� � �0:020; 0:131; 0:485;
0:979; 0:140; 907� for the case of changing � and me
together. Both cases have notably small values of h.
Since h is considered to be the most degenerate parameter
with � or me as discussed in the end of Sec. III, it is
instructive to investigate how constraints tighten when h
is limited to higher values such as the HST measurement.
From Fig. 7, we obtain, with the HST prior, that�0:048<
��=�< 0:032 with changing � only, and �0:042<
��=�< 0:026 with the model described in the previous
section. Compared with no HST prior constraints, they are
stringent by about factor of 2 for both cases. Moreover,
since low values of h which give good fit with ��=� 
�0:04 are ruled out by the HST prior, the center of allowed
region has shifted to larger ��.

Here, we comment on the constraint previously obtained
by Refs. [29,30] from the WMAP data. As mentioned in
Sec. I, they reported the constraint on � to be �0:06<
��=�< 0:01 (95% C.L.). They fixed me when varying �
and values quoted here is the case with no running for the
primordial power spectrum. This constraint seems to have
been obtained with marginalization on grid with 0<
�� < 0:95 [29] so it should be compared with our con-

straint without the HST prior, �0:107<��=�< 0:043,
which is much weaker than theirs. The difference might be
traced to the different analysis method but we could not
reproduce their results by our method.

Finally, we investigate the cases in whichme varies more
than �. We consider the models with p � 2 and 4 in
Eq. (26). We calculate constraints with the HST prior and
results are summarized in Fig. 8 and Table I along with
p � 0 and 1=2 cases. Compared with p � 0 (only varying
�) case, the constraints become smaller by 40% (p � 2)
and 60% (p � 4). Although those constraints are much
smaller than the case with p � 1=2, they are still consistent
with �� � 0.

VI. CONCLUSION

In summary, we have studied a CMB constraint on the
time-varying fine structure constant � taking into account
simultaneous change of electron mass me which might be
implied in superstring theories. We have searched suffi-
ciently wide ranges of the cosmological parameters and
obtained the WMAP only constraint at 95% C.L. as
�0:097< ��=�< 0:034. Combining with the measure-
ment of h by the HST Hubble Key Project, we have
obtained more stringent constraint as �0:042< ��=� <
0:026, which improvement is explained by the strong
degeneracy between � or me and h. These constraints,
obtained by adopting the model with Eq. (25) are only
slightly tighter than those assuming only � variation:
�0:107< ��=�< 0:043 and �0:048<��=�< 0:032,
without and with the HST prior, respectively. This is
reasonable since the effect of me on CMB power spectrum
is similar to that of � (Sec. III) and we adopted to vary me
milder than � (Eq. (25)).

We have also considered other possibilities for the rela-
tion between �� and �me as in the form of Eq. (26) with
p � 2 and 4. In these cases, the constraints become tighter
by roughly a factor of 2. This may not look as drastic as the
BBN bounds but CMB bounds are promising and have the
advantage that there will be future experiments with higher
sensitivities to � as investigated in Refs. [29,30]. In this
paper, we do not find evidence of varying � in the CMB
data of WMAP. We will wait and see whether future
experiments give us more stringent bounds on � or evi-
dence for varying �.

FIG. 8 (color online). �2 function for variation in � and me
with several values of p defined in Eq. (26). The curves are for,
from outside to inside, p � 0; 1=2; 2 and 4. The HST prior is
imposed.

TABLE I. The constraints on � with me varies according to
various power-law relation Eq. (26) of the index p. The HST
prior is imposed.

Power-law index Constraint (95% C.L.)

p � 0 �0:048< ��=� < 0:032
p � 1=2 �0:042< ��=� < 0:026
p � 2 �0:031< ��=� < 0:017
p � 4 �0:023< ��=� < 0:011
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