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We carry out numerical investigations of the dynamics and perturbations in the Nflation model of
Dimopoulos et al. (2005). This model features large numbers of scalar fields with different masses, which
can cooperate to drive inflation according to the assisted inflation mechanism. We extend previous work to
include random initial conditions for the scalar fields, and explore the predictions for density perturbations
and the tensor-to-scalar ratio. The tensor-to-scalar ratio depends only on the number of e-foldings and is
independent of the number of fields, their masses, and their initial conditions. It therefore always has the
same value as for a single massive field. By contrast, the scalar spectral index has significant dependence
on model parameters. While normally multifield inflation models make predictions for observable
quantities which depend also on the unknown field initial conditions, we find evidence of a ‘‘thermody-
namic‘‘ regime whereby the predicted spectral index becomes independent of initial conditions if there are
enough fields. Only in parts of parameter space where the mass spectrum of the fields is extremely densely
packed is the model capable of satisfying the tight observational constraints from WMAP3 observations.
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I. INTRODUCTION

Dimopoulos et al. [1] have recently described an inter-
esting addition to the collection of known inflationary
models with motivation from particle theory. They con-
sider the many axion fields predicted by string vacuum
solutions, and show that these fields can work coopera-
tively to drive a period of inflation, via the assisted inflation
mechanism [2], without any of those fields needing to take
on values in excess of the Planck scale. This ensures that
the theory can be considered in the regime of radiative
stability.

The prediction is that there will be large numbers of
fields, all with different masses. Such a set up was first
considered by Kanti and Olive [3] and further explored by
Kaloper and Liddle [4], in the context of Kaluza-Klein
models where there would be a tower of mass eigenstates.
In the axion proposal there is also a spectrum of masses
states, the main difference being that these may be very
closely packed. Related ideas are discussed in Ref. [5]

Dimopoulos et al. made only a rudimentary study of the
dynamics, assuming that all fields would begin with the
Planck value and that all fields would slow-roll together.
This leads to a prediction for density perturbations that
matches that of a single massive field. Subsequently, an
interesting generalization was made by Easther and
McAllister [6], who used results from random matrix
theory to predict the likely distribution of field masses.
Their main investigation was still restricted, however, to
quite specific choices of initial conditions for the fields.

Our main aim in this paper is to consider more realistic
initial conditions, where each field starts in a random
location within the sub-Planckian regime. We will show
that this typically reduces the amount of inflation achieved,
necessitating a greater number of fields. The most interest-
ing consequence, however, concerns the perturbations that

arise. Ordinarily multifield inflation predictions depend on
the initial conditions chosen (something we will verify
explicitly in the two-field case) and so the models cannot
be said to make definite predictions for observations, un-
like the single-field case. However, focussing on the adia-
batic perturbations, we find once the fields become
sufficiently densely packed, the predictions once more
become independent of the field initial conditions. This is
essentially analogous to gas thermodynamics; once there
are enough fields they probe the space of possible initial
conditions well enough that the ensemble of fields can be
described in a collective fashion. Even more strikingly, we
find a completely model-independent prediction for the
tensor-to-scalar ratio, confirming a result of Alabidi and
Lyth [7].

II. MULTI-FIELD DYNAMICS AND NFLATION

Phenomenologically, the basic set-up of Nflation is
straightforward—a set of massive uncoupled scalar fields
with a particular mass spectrum. While any one of those
fields is able separately to drive inflation provided it is
displaced sufficiently from its minimum, if one imposes
the restriction that the field value does not exceed the
reduced Planck mass MPl then single-field inflation is no
longer possible in such potentials. Dimopoulos et al. [1]
noted that this situation can be saved provided there are
enough fields, through the assisted inflation phenomenon
[2].

Assisted inflation is simply the realization that in multi-
field systems, each field feels the downward force from its
own potential, but the collective frictional force from all
the fields, and hence slow-roll is more easily achieved. In
the original work of Liddle et al. [2] exponential potentials
were studied, in which the assisted behavior was reinforced
by the presence of a late-time attractor where all fields
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contribute to the evolution. In the case of massive fields
there is no such attractor solution, but the generic phe-
nomenon of enhanced friction remains. With enough fields,
it becomes possible to drive sufficient inflation without any
field exceeding the reduced Planck mass.

For a set of uncoupled fields, the equation for the num-
ber of e-foldings is

 N ’ �
1

M2
Pl

X
j

Z �end
j

�j

Vj
V0j
d�j; (1)

 ’

P
j
�2
j

4M2
Pl
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Here Vj is the potential of the j-th field�j, V0j � dVj=d�j,
and throughout there are no summations unless indicated
explicitly. The last line specializes to the Nflation case of
massive uncoupled fields. In this case the lower limits of
the integrals, corresponding to the end of inflation, can be
neglected and have been.

A. The equal-mass case

In the very simplest case where all fields have the same
mass, there is a different type of attractor corresponding to
radial motion in field space. Dimopoulos et al. assumed the
fields all started with the same initial condition, hence
automatically placing them on this radial trajectory. With
initial condition�j � �MPl they found the total number of
e-foldings was Ntotal � �2Nf=4 where Nf is the total num-
ber of fields, as indeed follows immediately from Eq. (2).

We instead use random initial conditions, with the field
initial conditions chosen uniformly in the range �0;MPl�
[which is equivalent by symmetry to ��MPl;MPl�]. When
the fields all have the same mass they quickly adopt a radial
trajectory; they all then exit the slow-roll regime simulta-
neously and oscillate in phase—see Fig. 1. We find that the
total number of e-foldings achieved can be well approxi-
mated by

 Ntotal ’
Nf

12
: (3)

This indeed follows from Eq. (2) since for our initial
conditions h�2

j i � M2
Pl=3. This indicates that they over-

estimated the number of e-foldings achieved by a factor of
about three through not using random initial conditions. At
least 600 fields are required to give the minimum accept-
able amount of inflation if none of them exceeds the
reduced Planck mass.

Dimopoulos et al. were also able to show that the
adiabatic perturbations on this radial trajectory have the
same spectral index as in the single-field case. This was
subsequently confirmed in a more detailed analysis by
Byrnes and Wands [8], who also noted the additional
possibility of a large number of scale-invariant isocurva-

ture perturbations from the tangential directions, which
might or might not become important depending on the
subsequent evolution.

B. A mass spectrum

For definiteness, throughout we will consider the mass
spectrum suggest by Dimopoulos et al., where the fields
are distributed exponentially in mass. We write the hier-
archy slightly differently, normalizing to the lightest mass
m, writing

 m2
j � m2 exp�j=�� j � 0; � � � ; Nf � 1: (4)

Here � gives the density of fields per logarithmic mass
interval. If one were to decide that the heaviest field should
have the reduced Planck mass, as in Ref. [1], then that
would impose a relation amongst m, � and Nf .

Easther and McAllister [6] have argued that random
matrix theory predicts a somewhat different form for the
mass spectrum, known as the Marc̆enko-Pastur law.
Investigation of this more complicated form is beyond
the scope of our present paper, and we do not expect it to
lead to significant qualitative differences, but a detailed
investigation would nevertheless be interesting.

For collections of fields with different masses, within the
slow-roll regime the fields obey the condition [3]

 

�j

�j;0
�

�
�i

�i;0

�
m2
j =m

2
i
: (5)

where i is some particular index, j runs over all the fields,
and the subscript ‘‘0‘‘ indicates initial value. This indicates
that they retain a memory of their initial conditions—there
is no global attractor. Further, different fields will exit

FIG. 1 (color online). The evolution of 11 of the fields in a
1000 field simulation, where the field initial conditions are
randomly chosen. The simulation started at N � 0.
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slow-roll at different times; typically the high-mass fields
will reach their minima first, except by chance effects of
initial conditions. This has the important consequence that
the dynamics of the final stages of inflation is usually
determined by some number of the lightest fields in the
ensemble, with the effects of any heavier fields vanishing
before our observable Universe exits the horizon. Figure 2
shows a particular example.

Dimopoulos et al. did not make any detailed exploration
of the dynamics in the unequal mass case, but some inves-
tigation was made by Easther and McAllister [6]. They
considered two choices of initial condition, by which they
mean the configuration at 60 e-foldings before the end of
inflation. The first was to take the fields to have initially the
same field value, and the second to take them as having the
same energy density. In either case, this ‘‘initial‘‘ property
is swiftly destroyed by the dynamical evolution.

We instead choose random initial conditions for the
fields as described above, and compute the total number
of e-foldings as a function of the parameters � and Nf . We
find that for � * Nf=10, the amount of inflation becomes
independent of � and is well approximated by Eq. (3)
above. This confirms that of order 1000 fields are needed
if all sub-Planckian. For smaller �=Nf the fields become
spread across several orders of magnitude in mass and
numerical simulation becomes difficult, the expectation
however being that the more massive fields fall rapidly to
their minimum and play no further role before the lighter
fields move significantly.

III. PERTURBATIONS

We evaluate the perturbation spectrum using the formal-
ism of Sasaki and Stewart [9], who showed that the per-
turbation spectrum of the curvature perturbation R at the
end of inflation is given by

 P R �

�
H
2�

�
2 dN
d�i

dN
d�j

�ij; (6)

where we follow the notation of Ref. [10], N again being
the number of e-foldings.

In general, evaluation of this expression is quite tricky,
as one should compute the change in the number of
e-foldings by tracing the trajectory past the end of inflation
and through reheating until a fixed density during the
radiation era. However provided the multifield inflation
adopts a straight trajectory in field space before inflation
ends, the curvature perturbation will already become con-
stant at that time. This would happen in Nflation provided
the last few e-foldings are driven by only one field, which
is likely but not inevitable.

We will approximate the formula using the slow-roll
approximation, according to which it can be written [6,11]
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where V �
P
kVk is the total potential, and the second line

specializes to the Nflation case. An interesting observation
is that for Nflation the power spectrum is proportional to
H2N, regardless of initial conditions. In principle the sum-
mation should be only over those fields which are slowly-
rolling, though we find in practice that the contribution
from non-slow-rolling fields is negligible. The above ex-
pressions depend only on quantities at horizon crossing but
nevertheless should offer a good approximation, as we
discuss in detail below for the two-field case.

The spectral index is then given by [9]
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where again the last line specializes to Nflation.
The other main inflationary observable is the tensor-to-

scalar ratio r. The tensor spectrum is given by the usual
formula, as it depends only on the expansion rate history
H�a�,

FIG. 2 (color online). The evolution of 11 fields from a
1000 field simulation with different masses, with � � 100 and
Nf � 1000. The fields shown are j � 0; 100; � � � ; 900 and 999.
The more massive fields exit slow-roll first.
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Thus the tensor-to-scalar ratio is given by
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with the last line holding only for the Nflation case of
massive coupled fields and which uses Eq. (2).

This last formula immediately gives a striking result,
first noted by Alabidi and Lyth [7]: in Nflation the tensor-
to-scalar ratio is independent (within the slow-roll approxi-
mation) of the number of fields present, their masses, and
their initial conditions. It is given simply by the number of
e-foldings at which the expression is evaluated. This result
is confirmed by our numerical code, with variation only in
the third significant figure due to slow-roll corrections.
Nflation therefore gives a definitive prediction for the
tensor-to-scalar ratio, and moreover one that is readily
accessible to upcoming experiments.

We will throughout assume that the observable scales
crossed outside the horizon 50 e-foldings before the end of
inflation. For comparison with later results, the observables
obtained for a single massive field are given by

 nS � 1 � �0:04 ��0:0404� (14)

 r � 0:16 �0:162� (15)

where the first number uses the slow-roll approximation
both for the spectrum and for computing the 50 e-foldings
point, and the number in brackets shows how this is cor-
rected if the 50 e-foldings point is computed numerically
(as is the case for the multifield results we will display).
The observed normalization of the spectrum can be taken
as P 1=2

R � 5	 10�5 [10], leading to a normalization of

 

m
MPl

� 7:8	 10�6; (16)

in the single-field case.

A. The two-field case

As a test of our code, we first study the case of two
massive fields. This was previously studied in the slow-roll
approximation by Lyth and Riotto [11], and more recently
using full trajectory integration by Vernizzi and Wands
[12].

Starting with the Lyth-Riotto result, they used the slow-
roll approximation for both fields and found that the spec-
tral index was given by

 

nS � 1 ’ �
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where f � �2
2=�

2
1 and R � m2=m1. This is indeed the

two-field version of Eq. (10), using Eq. (2). The prediction
depends explicitly on f, which is the ratio of the values of
the two fields at 50 e-foldings, showing clearly that this
model makes no unique prediction for the spectral index.

This expression has various symmetries. For instance,
the spectral index is independent of f in the equal-mass
case and takes on the single-field value. It is of course
invariant under simultaneous interchange R! 1=R and
f ! 1=f, corresponding to swapping the labels on the
fields. The general form of the correction to the single-
field result is however quite complex, with it becoming
large in some parts of the R-f plane.

A more sophisticated treatment of the two-field model
was recently given by Vernizzi and Wands [12], who
provide a formalism able to track the evolution of the
spectral amplitude and index during inflation up until its
final value. Their expression for the spectral index mostly
features terms evaluated at horizon crossing, plus one
additional term denoted Zc. This term accounts for the
contribution to the change in e-foldings at the final
uniform-density hypersurface, and evolves during inflation
driving evolution of nS. If Zc is set to zero, our formula
Eq. (10) is recovered. We have reproduced their calcula-
tion, and find that while Zc is substantial at horizon cross-
ing, it becomes negligible by the end of inflation.
Accordingly, our expression is an excellent approximation
to the desired answer, being the one at the end of inflation,
even though it is entirely evaluated at horizon crossing.

This convergence relies on all but one of the fields
becoming dynamically unimportant before inflation ends,
which may be true of typical trajectories but cannot be
absolutely generic. In principle one should then solve the
problem numerically, but unfortunately this is not tractable
for the large number of fields that we are considering (as
one has to solve a trajectory for a separate perturbation in
each field direction1), and so we adopt the slow-roll
formula.

There is also the question of whether further perturba-
tions might be generated after inflation, for instance by a
curvatonlike mechanism (see e.g. the discussion in
Ref. [12]). Such effects would be absent if the late stages
of inflation are driven by a single field, but otherwise would
depend on the routes by which the scalar fields decay into

1Recently Yokoyama et al. [13] developed a Wronskian-based
approach which may improve the efficiency of such multifield
calculations by identifying the perturbation component contrib-
uting to the curvature perturbations, but in Nflation there is no
guarantee of a condition they require on convergence of the
trajectories.
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conventional and dark matter. We assume such effects are
absent.

B. Nflation perturbations: Amplitude

We first investigate the normalization of the mass spec-
trum enforced by the perturbation amplitude. This is shown
in Fig. 3 for a set of values of �. The single-field normal-
ization is attained in the limit NF 
 �, in which the field
packing becomes very close and the equal-mass case is
attained, though only the highest line shown here comes
close to that case.

For a given value of�, each curve flattens onceNf � �.
This indicates that the most massive fields are no longer
playing a role during the last 50 e-foldings of inflation,
having fallen to their minima before observable scales
leave the horizon. This flattening is a generic property of
all observables.

C. Nflation perturbations: Spectral index

The most important observable is the spectral index,
which we calculate as described above and show in
Fig. 4. Each point is the average value obtained over ten
simulations with different random initial conditions. As
with all observables, the single-field value is attained in
the limit Nf 
 �, in which we reproduce the result of
Byrnes and Wands [8] that the perturbations match the
single-field form. But otherwise significant differences
are seen, which in some cases is enough to put the model
outside the region permitted by the WMAP3 data [14].

Again we see the flattening of the curves for sufficiently
large Nf , indicating that the most massive fields play no
dynamical role in the last 50 e-foldings.

The results shown in Fig. 4 are the mean values over
realizations of the initial conditions. However we also find
that the spread in nS values is quite small; the standard
deviation of nS is never more than a few percent of its
displacement from unity for all the values shown in that
graph. The scatter in the mass normalization shown in
Fig. 3 is also at the few percent level at most. We conclude
that with such large numbers of fields, the observational
predictions are to a good approximation independent of the
field initial conditions. The mass spectrum is sufficiently
dense that the space of initial conditions is well explored in
each realization, and a well-defined prediction for nS

emerges in a manner analogous to the emergence of macro-
scopic thermodynamic quantities.

We are now in a position to discuss what is permitted by
observations, using WMAP3 constraints in the inflationary
nS-r plane [14]. We use limits obtained from WMAP3 data
alone.2 All models predict r ’ 0:16, for which value the
95% range on nS is 0:93 � nS � 1:02, only the lower limit
interesting us.

We see in Fig. 4 that this is a significant constraint which
is failed in large parts of parameter space. Provided �
exceeds about 280, the spectral index is always large
enough regardless of the number of fields, provided that
the lower limit Nf * 600 to obtain sufficient inflation is
exceeded. As � reduces, an upper limit is then placed on
the number of fields. This limit rapidly comes into contra-
diction with the sufficient e-foldings condition, so that by

FIG. 3 (color online). The mass m of the lightest field, deter-
mined from the normalization of the power spectrum. This is
shown as a function of the number of fields Nf for a range of
values of � (from bottom to top, � � 100, 150, 200, 300, 500,
1000 and 2000).

FIG. 4 (color online). The predicted average value of the
spectral index as a function of the number of fields Nf , shown
for a range of values of � (from bottom to top, � � 100, 150,
200, 300, 500, 1000 and 2000). The left-hand edge of the graph
roughly corresponds to the minimum number of fields needed to
achieve sufficient inflation, and the dotted line shows the obser-
vational lower limit on nS from WMAP3.

2The constraint plot in the existing (v1) WMAP3 paper is
known to be incorrect; we instead use limits quoted by Hiranya
Peiris in subsequent talks. See also Ref. [15].
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� � 150 there are almost no viable models at all (this
result presumes that no field value exceeds the Planck
mass). We conclude that Nflation is observationally viable
only if the fields are both numerous and very densely
packed.

IV. CONCLUSIONS

We have carried out a detailed investigation of the infla-
tionary dynamics and perturbations in Nflation models.
The tensor-to-scalar ratio is completely independent of
the model parameters, i.e. the number of fields and their
mass spectrum, and also independent of the field initial
conditions. Nflation therefore makes the definitive predic-
tion that r � 8=N [7], where N is the number of e-foldings
corresponding to when the comoving wavenumber at our
present Hubble radius equalled the Hubble radius during
inflation (typically N ’ 50). That there is a unique predic-
tion is a feature only of the case of uncoupled fields with
polynomial potentials [16]. This prediction is readily test-
able by upcoming experiments.

The spectral index, by contrast, is dependent on both the
number of fields, Nf , and the density of fields in the mass
spectrum, �. Provided � is large enough, it is however
independent of the initial conditions as they are statistically

explored sufficiently well by the densely-packed fields.
This is analogous to the emergence of macroscopic quan-
tities in thermodynamics. For any given �, results also
become independent of the number of fields once it is large
enough, as the most massive ones fall into their minima
before observable scales cross outside the horizon.

In terms of observations, if the density of fields is large
enough, � * 280, then a satisfactory spectral index is
always achieved regardless of the number of fields, pro-
vided this number exceeds the minimum of around 600
needed to give sufficient inflation. For smaller �, compati-
bility with observations imposes an upper limit on the
number of fields, which rapidly becomes incompatible
with the condition for sufficient inflation, giving a mini-
mum � of 150 to have a successful scenario. Observations
therefore require the Nflation model both to have a large
number of fields and for these fields to have a very densely-
packed mass spectrum.
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