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This is a sequel to a previous detailed study of quantum corrections to cosmological correlations. It was
found there that except in special cases these corrections depend on the whole history of inflation, not just
on the behavior of fields at horizon exit. It is shown here that at least in perturbation theory these
corrections can nevertheless not be proportional to positive powers of the Robertson-Walker scale factor,
but only at most to powers of its logarithm, and are therefore never large.
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I. INTRODUCTION

Calculations of non-Gaussian corrections to cosmologi-
cal correlations in the classical approximation have shown
that these higher-order corrections are generally sup-
pressed by powers of GH2, where G is Newton’s constant
and H is the cosmological expansion rate at the time of
horizon exit [1]. From the magnitude of the observed
Gaussian correlations of fluctuations in the cosmic micro-
wave background, it is known that GH2 � 10�12 for the
fluctuation wavelengths studied in the microwave back-
ground, which makes the expected non-Gaussian correc-
tions quite small. Quantum effects involve additional
powers of G, and are therefore usually supposed to be
too small to be detected. But a recent paper [2] has shown
that it in many theories these quantum corrections depend
on the whole history of inflation, not just on the behavior of
fields at horizon exit, raising the possibility that they may
be much larger than usually thought. In particular, if quan-
tum corrections were to involve positive powers of the
Robertson-Walker scale factor a�t� at the end of inflation,
then they might be large enough to be detected. In this
paper we will extend the results of reference [2] to a very
large class of theories, and show that (at least in perturba-
tion theory) this never happens; quantum corrections de-
pend at most on powers of lna�t�, and therefore (without
� 1012 e-foldings after horizon exit) never become large.

II. SCALARS AND GRAVITATION

We will first consider a theory of multiple scalar fields
’n�x� and gravitation, slightly more general than that
considered in Refs. [2]. The scalar Lagrangian is assumed
to consist of a conventional minimal kinematic term, plus a
term with arbitrary potential V�’�. In the Arnowitt-Deser-
Misner formalism [3], the components of the metric are

 gij � a2e2� �exp��ij; �ii � 0; (1)

 g00 � �N
2 � gijN

iNj; gi0 � gijN
j; (2)

where a�t� is the Robertson-Walker scale factor, �ij�x; t� is

a gravitational wave amplitude, ��x; t� is a scalar, and N
and Ni are auxiliary fields, whose time derivatives do not
appear in the action. The Lagrangian density (with 8�G 	
1) is
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where

 Eij 	
1
2� _gij �riNj �rjNi�;

Eij � a�2e�2� �exp�����ikEkj;

Ni � a�2e�2� �exp�����ikNk;

(4)

where ri is the three-dimensional covariant derivative
calculated with the three-metric e2��ij; and R�3�ij is the
curvature tensor calculated with this three-metric. The
auxiliary fields N and Ni are to be found by requiring
that the action is stationary in these variables. This gives
the constraint equations:
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For our present purposes, all we need to know about R�3�ij ,
Eij, and the solutions for N and Ni is that none of them
contain terms with positive powers of a. We can impose
gauge conditions, for instance by setting any one of the
scalar fields equal to its unperturbed value and requiring
that @i�ij � 0.*Electronic address: weinberg@physics.utexas.edu
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The possibility of positive powers of a�t� in correlation
functions of the ’n and/or � arises from the explicit factors
a3 and a in the terms in Eq. (3). But these factors can be
compensated by negative powers of a�t� in various field
time derivatives and in various commutators, which arise
from the structure of the perturbative expansion for corre-
lation functions. The expectation value of any product Q�t�
of field operators at various space points (but all at the
same time t) is [2]
 

hQ�t�i �
X1
N�0

iN
Z t

�1
dtN

Z tN

�1
dtN�1 
 
 


Z t2

�1
dt1h�HI�t1�;

�HI�t2�; 
 
 
 �HI�tN�; Q
I�t�� 
 
 
��i; (7)

(with the N � 0 term understood to be just hQI�t�i). Here
QI is the product Q in the interaction picture (with time-
dependence generated by the part of the Hamiltonian that is
quadratic in fluctuations); and HI is the interaction part of
the Hamiltonian (the part that is of third or higher order in
fluctuations) in the interaction picture. The fields in the
interaction picture are

 ��x; t� �
Z
d3q�eiq
x��q��q�t� � e�iq
x���q���q�t��; (8)

 �ij�x; t� �
Z
d3q

X
�

�eiq
xeij�q̂; ����q; ���q�t�

� e�iq
xe�ij�q̂; ���
��q; ����q�t��; (9)

 ’n�x; t� �
Z
d3q�eiq
x��q; n�’q�t�

� e�iq
x���q; n�’�q�t��; (10)

where � � �2 is a helicity index and eij�q̂; �� is a polar-
ization tensor, while ��q�,��q; ��, and ��q; n� are conven-
tionally normalized annihilation operators, satisfying the
usual commutation relations

 ���q�; ���q0�� � �3�q� q0�; ���q�; ��q0�� � 0:

(11)

 ���q; ��; ���q0; �0�� � ���0�
3�q� q0�;

���q; ��; ��q0; �0�� � 0;
(12)

and

 ���q; n�; ���q0; n0�� � �nn0�3�q� q0�;

���q; n�; ��q0; n0�� � 0;
(13)

The expectation value in Eq. (7) is assumed to be taken in a
‘‘Bunch-Davies’’ vacuum annihilated by these annihilation
operators. Also, �q�t�, �q�t�, and ’q�t� are suitably nor-
malized positive-frequency solutions of the wave equations
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� 3H
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dt
� �q=a�2’q � 0; (16)

where H 	 _a=a and � 	 � _H=H2.
The functions �q�t�, �q�t�, and ’q�t� approach time-

independent limits �oq , �oq, and ’oq at late times during
inflation, when the perturbations are far outside the hori-
zon, with the remainders �q�t� � �

o
q , �q�t� � �oq, and

’q�t� � ’
o
q all vanishing essentially (apart from slowly

varying quantities like H and �) as a�2�t�. In consequence,
_�q�t�, _�q�t�, and _’q�t� all vanish at late times like a�2�t�.

Also, as shown in Ref. [2], the commutator of any two
interaction-picture fields at times t1, t2 during inflation but
long after horizon exit goes essentially as a�3�t�, with t
either t1 or t2 or some weighted average of the times
between t1 and t2. The same is true for the commutator
of a field and a field time derivative, while the commutator
of two field time derivatives goes as a�5�t�.1

This asymptotic properties of the commutators can be
seen by noting that

 ���x; t�; ��y; t0�� �
Z
d3qeiq
�x�y�Im��q�t��

�
q�t
0��; (17)

 ���x; t�; ��y; t0�� �
Z
d3qeiq
�x�y�Im��q�t���q�t0��; (18)

 �’�x; t�; ’�y; t0�� �
Z
d3qeiq
�x�y�Im�’q�t�’

�
q�t
0��: (19)

The general solutions of Eqs. (14)–(16) are each linear
combinations with complex coefficients of two indepen-
dent real solutions, one of which goes at late times as a
constant plus terms of order a�2, while the other goes as
a�3, so the imaginary parts in Eqs. (17)–(19) arise only
from the interference of the two independent real solutions,
which goes as a�3. Likewise the derivatives of these
imaginary parts with respect to either t or t0 also goes

1In this counting of powers of a�t�, we are tacitly assuming
that the time dependence can be evaluated before integrating
over momenta, and will not be altered when the momentum
integrals are done. This is based on the expectation that the
counterterms introduced to eliminate ultraviolet divergences in
flat space will suppress the contributions of large internal mo-
menta even in an inflating spacetime. As discussed in Ref. [2],
this expectation is not fulfilled for arbitrary choices of the
operators whose correlation functions are to be calculated. It is
necessary to consider only correlation functions of ‘‘renormal-
ized’’ operators, for which large internal momenta em are sup-
pressed. More work needs to be done to see how to construct
appropriate renormalized operators.
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essentially as a�3, because the derivative may act on the
solution that already goes as a�3, but the derivative with
respect to both t and t0 goes as a�5, because both of the
independent real solutions are differentiated.

We are interested in the behavior of the correlation
function (7) at late times t, when the perturbations are far
outside the horizon. Inspection of the Lagrangian density
(3) shows that no term has more than 3 factors of a�t�.
According to Eq. (7), there are just as many commutators
as interactions, and each commutator provides at least 3
factors of 1=a�t� at late times, so the total number of factors
of a�t� at late times in the integrals over time or in any
subintegration is at most zero. With zero factors of a�t� the
integrand can still grow like a power of t, which is more or
less the same as a power of lna�t� [4], but it cannot grow
like a power of a�t�, and therefore (without � 1012

e-foldings) it cannot become large at late times.
Indeed, since time derivatives of fields go like a�3�t�,

and commutators of time derivatives of fields with each
other go like a�5�t�, the integrand will go like a negative
power of a�t� if any interaction has less than 3 explicit
factors of a�t�, or if the time derivative of a field in any
interaction does not appear in a commutator, or appears in
a commutator with another time derivative. It is therefore
only a very limited set of terms in the perturbation series
that can contribute to a logarithmic growth of the integrand
at late times.

These conclusions would not be altered by the inclusion
of higher-derivative terms in the action. Each pair of space
derivatives is accompanied with a factor gij / a�2, while
field time derivatives of any order vanish at late times at
least as fast as a�2.

It remains to consider the inclusion of other kinds of
fields, but first we must say a word about the effect of scalar
field masses.

III. MASSES

In the foregoing section we have treated the scalar fields
(aside from a single inflaton field whose fluctuations can be
eliminated by a gauge choice) as if they were all massless,
with any possible scalar mass terms in the Lagrangian
implicitly included as just additional possible terms in
the potential V�’�. As we have seen, when treated pertur-
batively such a term can at most introduce powers of lna in
the late-time behavior of the integrand for cosmological
correlation functions. But a mass m cannot be treated as a
perturbation over time intervals t for whichmt 1, and in
this case the powers of lna can add up to effects that
materially change the late-time behavior of the integrand,
requiring a separate treatment of mass effects.

If a scalar massm is sufficiently large compared with the
expansion rate H, then it produces oscillations in the
integrand at late times, which suppresses the contribution
of any times later than 1=m. For m H, the correlation
function is therefore dominated by times in the era of

horizon exit. But for m<H, a more detailed analysis is
required.

We can get a good idea of what happens in these two
cases by considering the simple example of a purely ex-
ponential expansion, a / eHt, with H constant. The wave
equation for any one scalar field of mass m is

 

d2’q
dt2

� 3H
d’q
dt
� �m2 � �q=a�2�’q � 0; (20)

For H constant, the solutions for q=aH� 1 are

 ’q ! Cqa
��

�
1�O

�
q
aH

�
2
�
�Dqa

��

�
1�O

�
q
aH

�
2
�
;

(21)

where

 �� � �
3

2
�

����������������
9

4
�
m2

H2

s
; (22)

and Cq and Dq are complex constants determined by
matching this solution to solutions before horizon exit.
For m> 3H=2 the exponents �� are complex conjugates,
so as mentioned above, the oscillations of the wave func-
tions suppress the contribution of late times.

For m< 3H=2, the �� are real, with

 � 3=2< �� < 0; �3< �� <�3=2:

Each scalar field factor in the Lagrangian thus contributes a
factor of a���t� at late times, and as long as q=aH�

�������
��
p

,
the time derivative of a scalar field will contribute the same
factor. On the other hand, commutators of scalar fields and/
or scalar time derivatives contribute factors a�t������ �
a�3�t�, since the commutators can arise only from an
interference between the two terms in Eq. (21). Once
again, with no more than 3 powers of a�t� in each interac-
tion, and with just as many commutators as there are
interactions, the total number of factors of a�t� in the
integrands for correlation functions cannot be greater
than zero. Furthermore, except for trivial diagrams in
which every vertex has just two lines attached, since each
commutator involves just two fields, there must be fields
that are not in commutators. These contribute additional
factors of a�t��� to the integrand, and since �� < 0, the
integrand will be exponentially damped at late times, and
the correlation functions will depend only on the behavior
of the fields near horizon exit.

IV. VECTOR FIELDS

Next consider a massless vector field, given (in temporal
gauge) in the interaction picture by

 Ai�x; t� �
X
�

Z
d3q�eiq
x�i�q̂; ����q; ��uq�t�

� e�iq
x�i�q̂; ���
��q; ��u�q�t��; (23)
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where here �i�q̂; �� and ��q; �� are the polarization vectors
and annihilation operators for massless particles of helicity
� � �1, and uq�t� is a suitably normalized solution of the
wave equation

 

d
dt

�
a�t�

d
dt
uq�t�

�
�

q2

a�t�
uq�t� � 0: (24)

The commutator of two vector fields at unequal times is
then
 

�Ai�x; t�; Aj�x0; t0�� �
Z
d3q��ij � q̂iq̂j� exp�iq 
 �x� x0��

� �uq�t�u
�
q�t
0� � uq�t

0�u�q�t��: (25)

Now, the general solution of the wave Eq. (24) here takes
the simple form

 uq�t� � Cq cosq��Dq sinq�; (26)

with Cq and Dq complex constants, and as usual

 � 	
Z 1
t

dt0

a�t0�
: (27)

We see that at late times, where �! 0, uq�t� approaches a
constant, while _uq�t� goes essentially as 1=a�t�. Also,

 uq�t�u�q�t0� � uq�t0�u�q�t� � 2i Im�CqD�q� sin�q��� �0��

(28)

so at late times uq�t�u�q�t0� � uq�t0�u�q�t� and uq�t� _u�q�t
0� �

_uq�t
0�u�q�t� go essentially as 1=a, while _uq�t� _u�q�t

0� �

_uq�t
0� _u�q�t� goes to zero even faster, as 1=a3. There are

just as many commutators as there are interaction vertices,
so if a term in the integrand involves a set of interactions
Hs with As explicit factors of a, the integrand will contain
altogether a number of factors of a bounded by

 # �
X
s

�As � 1�: (29)

Because of the vector nature of the field, the maximum
number of explicit factors of a�t� in any interaction is 3�
2 � 1. For instance, in temporal gauge the electromagnetic
interaction of a charged scalar field ’ is

 a3a�2�ieAi�’�@i’� ’@i’�� � e2AiAi’�’�; (30)

with the factor a3 coming from the metric determinant and
the factor a�2 coming from gij. So again the maximum
number of factors of a in the integrand is zero, giving an
integrand that grows at most like a power of lna. Derivative
interactions of the vector field behave even better, because
time derivatives of vector fields give extra factors of 1=a,
while pairs of space-derivatives are accompanied with
factors gij / a�2. For non-Abelian gauge fields A�	, there
are self-interactions

 � a3a�4�C�
�@iA�jA
iA�j �
1
4C�
�C���Ai
Aj�Ai�Aj��;

(31)

where C�
� is a structure constant. The four factors of 1=a
appear here because the interaction involves two contrac-
tions of space indices. Each such interaction contributes a
factor a�2 to the integrand, suppressing the contribution of
late times.

V. DIRAC FIELDS

A Dirac field of mass m in the interaction picture in-
volves a wave function  q�t� that satisfies the wave equa-
tion

 

d
dt
 q �

3H
2
 q � ia�1�0�iqi q � �0m q � 0: (32)

Hence for wave numbers far outside the horizon, the Dirac
wave function has the asymptotic limit

  q�t� / e
��0mta�3=2�t�: (33)

The matrix �0 has eigenvalues �i, so the factor e��0mt

produces an oscillation, which does not affect bilinears like
�  or � �0 , but does produce an oscillation in bilinears

like � �i , which suppresses the late-time contribution of
interactions containing such bilinears. Even apart from this
factor (as for instance for m � 0), every bilinear combina-
tion of  and � is suppressed by a factor a�3 produced by
the factor a�3=2 in Eq. (33). This in itself cancels the a3

factor from the metric determinant, so that no positive
powers of a�t� can be produced by any interaction involv-
ing Dirac fields.

VI. AFTERTHOUGHT

In generic theories the N integrals over time in N-th
order perturbation theory will yield correlation functions at
time t that grow as �lna�t��N . Such a power series in lna�t�
can easily add up to a time dependence that grows like a
power of a�t�, or even more dramatically. As everyone
knows, the series of powers of the logarithm of energy
encountered in various flat-space theories such as quantum
chromodynamics can be summed by the method of the
renormalization group. It will be interesting to see if the
power series in lna�t� encountered in calculating cosmo-
logical correlation functions at time t, though arising here
in a very different way, can be summed by similar methods.
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