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There has been much debate over whether or not one could explain the observed acceleration of the
Universe with inhomogeneous cosmological models, such as the spherically-symmetric Lemaı̂tre-
Tolman-Bondi (LTB) models. It has been claimed that the central observer in these models can observe
a local acceleration, which would contradict general theorems. We resolve the contradiction by noting that
many of the models that have been explored contain a weak singularity at the location of the observer
which makes them unphysical. In the absence of this singularity, we show that LTB models must have a
positive central deceleration parameter q0, in agreement with the general theorems. We also show that it is
possible to achieve a negative apparent deceleration parameter at nonzero redshifts in LTB models that do
not contain this singularity. However, we find other singularities that tend to arise in LTB models when
attempting to match luminosity distance data, and these generally limit the range of redshifts for which
these models can mimic observations of an accelerating Universe. Exceptional models do exist that can
extend to arbitrarily large redshift without encountering these pathologies, and we show how these may be
constructed. These special models exhibit regions with negative effective equation of state parameter,
which may fall below negative one, but we have failed to find any singularity-free models that agree with
observations. Moreover, models based on dust-filled LTB metrics probably fail to reproduce observed
properties of large scale structure.
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I. INTRODUCTION

The Universe appears to be expanding at an accelerating
rate. This has been deduced from luminosity distance
measurements of Type Ia supernovae, which appear
dimmer than one would expect based on general relativity
without a cosmological constant [1,2], and from measure-
ments of the current matter density �M � 0:27, which is
too small to close the Universe as required by cosmic
microwave background radiation (CMBR) observations
[3]. Many explanations for this discrepancy have been
put forward, most entailing a modification of general rela-
tivity on cosmological scales or the addition of a new field
with exotic properties, called ‘‘dark energy’’; for reviews,
see [4,5].

However, there have also been attempts to explain this
seemingly anomalous cosmic acceleration as a conse-
quence of inhomogeneity rather than modified gravity or
dark energy. Many recent papers have claimed that super-
horizon density perturbations, left over from inflation,
could backreact and drive the acceleration of our local
universe [6,7]. Problems with this argument have been
pointed out [8–11], and it does not appear to be a plausible
alternative.

In this paper we will only consider subhorizon perturba-
tions, which have also been considered as a possible way to
obtain an accelerating universe. Kolb et al. use second
order perturbation theory [12,13] to suggest that density
perturbations could backreact to cause accelerated expan-
sion without the need to introduce any form of dark energy,
which is an appealing prospect. Räsänen [14] and Notari

[15] had earlier explored this claim by looking at average
expansion parameters in order to argue that we could
measure acceleration due to this effect. In opposition to
this, Siegel and Fry [16] and Ishibashi and Wald [17] have
argued that our universe is very accurately described with a
Newtonianly perturbed Friedmann-Robertson-Walker
(FRW) metric, and, treated as such, it does not permit
accelerated expansion due to perturbations.

Since it has proven to be quite complicated to analyze
the full three-dimensional backreaction problem analyzed
by Kolb et al., a useful class of models to explore are the
spherically-symmetric, yet inhomogeneous, Lemaı̂tre-
Tolman-Bondi (LTB) [18] cosmological models, contain-
ing only cold dark matter, or ‘‘dust,’’ and wherein it is
often, but not always, assumed that we live at the symmetry
center. In this way, we can confront the simpler and more
general question: Are there any models based on general
relativity and cold dark matter which can match the ob-
servations? We cannot completely address this question
with LTB models, which are unrealistic since they place us
near the center of the Universe, but these models are
nevertheless useful toy models to address this general
question. More specifically, in the LTB models we can
ask if a centrally located observer can mistakenly interpret
astronomical observations of redshifts and luminosity dis-
tances as requiring acceleration of the expansion of the
Universe. We find that the answer is ‘‘yes,’’ and this
implies that the mechanism studied by Kolb et al. is some-
what more plausible and requires more study.

Other papers have used LTB models in analyzing
whether or not subhorizon perturbations could backreact
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and drive accelerated expansion. Nambu et al. take aver-
ages to find effective expansion parameters of specific
illustrative example models [19], Moffat looks at examples
[20], Mansouri constructs a model that consists of a local
LTB patch which is embedded into a background FRW
spacetime [21], and Chuang et al. numerically produce
examples of LTB models with apparent acceleration [22].
Alnes et al. [23] argue against acceleration, but only by
looking at a class of example models.

It has been claimed that it is possible to find LTB
cosmological models that have q0 < 0, where q0 � q�z �
0� is the deceleration parameter measured by the central
observer. However, there are general theorems that prohibit
such behavior [8,10]. In Sec. II, we will first give a general
review of LTB models and then we will discuss this contra-
diction and its resolution: there is a local singularity at the
symmetry center of models with q0 < 0, corresponding to
a nonvanishing radial central density gradient and diver-
gent second derivatives of the density. We will prove that
excluding this singularity will necessarily lead to a positive
value for q0. This singularity is not taken into account in
any of the above papers, and most of them look at models
which are singular at the center [19–22].

We will also show that it is possible to construct models
without a central singularity in which one would measure
negative deceleration parameters q�z�, and therefore would
measure regions of acceleration, at nonzero redshifts z. We
will do this by choosing the LTB model and computing the
resulting luminosity distance and ultimately q�z�; we call
this the ‘‘forward problem.’’ As we discuss in Sec. II below,
LTB models are characterized by two free functions of
radius r, a bang time function t0�r� and an energy function
E�r�. We focus on LTB models with zero energy functions
but nonzero bang time functions, because we do not expect
the former to produce acceleration. This is because, as we
will show, the energy function is associated with the grow-
ing mode of linear theory, whereas the bang time function
is associated with the shrinking mode.

In Sec. III, we will explore the ‘‘inverse problem,’’
where one chooses the luminosity distance as a function
of redshift and then attempts to find a corresponding LTB
model, which may or may not exist. Here, too, we only
consider E�r� � 0. We show that there are numerous pit-
falls to this method, as other singular behaviors arise which
generally limit the range of redshifts for which this class of
models could reproduce the observed supernova data. For a
given luminosity distanceDL�z� � rFRW�z��1� z�, there is
a critical redshift zcrit where d lnrFRW�z�=d ln�1� z� � 1.
For almost all choices of DL�z�, any attempt to find a
corresponding zero energy LTB model will fail at some
redshift smaller than zcrit when a singularity is encoun-
tered. There are exceptions which pass through a ‘‘critical
point’’ at z � zcrit, the simple FRW model being one
obvious example of such a ‘‘transcritical’’ solution. We
show how others may be constructed. These models show

redshift domains with enhanced deceleration as well as
acceleration, but do not appear to be consistent with ob-
servational data on DL�z�.

Several papers have already computed how the depen-
dence of the luminosity distance on redshift is distorted in
LTB models due to purely radial inhomogeneities, and
have claimed that we could be tricked into thinking that
we are in a homogenous accelerating universe when we are
really in a dust-dominated inhomogeneous universe [24–
27]. However, this claim has not until now been correctly
justified, since all previous papers neglected the central
singularity and the critical point.

II. THE FORWARD PROBLEM

A. Lemaı̂tre-Tolman-Bondi models

Using the notation of Célérier [26], the LTB spacetime
[18] has the line element

 ds2 � �dt2 �
R02�r; t�

1� 2E�r�
dr2 � R2�r; t��d�2 � sin2�d�2�

(2.1)

where primes denote derivatives with respect to the radial
coordinate r, and E�r� is a free function, called the ‘‘energy
function.’’ We define the function k�r� by k�r� �
�2E�r�=r2. If k�r� � 0, the Einstein equations admit the
solution

 R�r; t� � �6�G~��1=3r�t� t0�r�	2=3; (2.2)

where t0�r� is another free function, often referred to as the
‘‘bang time’’ function, and ~� is a fixed parameter. If k�r�<
0 for all r, we have the parametric solution

 R �
4�G~�r
�3k�r�

�coshu� 1�

t� t0�r� �
4�G~�

3��k�r�	3=2
�sinhu� u�;

(2.3)

and if k�r�> 0 for all r, we have the solution
 

R �
4�G~�r
3k�r�

�1� cosu�

t� t0�r� �
4�G~�

3�k�r�	3=2
�u� sinu�:

(2.4)

These are Eqs. (18), (19), and (20) of Célérier [26], but
specialized to the choiceM�r� � 4�r3 ~�=3 by choosing the
radius coordinate appropriately, where M�r� is the mass
function used by Célérier, and where ~� is a constant.1 The
energy density of the matter in these models is given by

1Note that the mass function M�r� which appears in Bondi
[18], which we denote by MB�r�, is related to Célérier’s M�r� by
M0B�r� � M0�r�=

���������������������
1� 2E�r�

p
, and so our radial coordinate spe-

cialization in Bondi’s notation is M0B�r� � 4�r2 ~�=
������������������������
1� 2k�r�r2

p
.
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 ��r; t� �
~�r2

R0R2 : (2.5)

We define �0�t� � ��0; t� to be the central density, and
from Eqs. (2.2), (2.3), and (2.4) we find

 �0�t� �
1

6�G�t� t0�0�	
2 : (2.6)

Throughout this paper we will restrict attention to an
observer located at r � 0 and at t � to, where to is the
observation time, not to be confused with the bang time
t0�r�. We also choose units such that ~� � �0�to�, and we
choose the origin of time such that t0�0� � 0. A light ray
directed radially inward follows the null geodesic

 dt � �
R0�r; t�����������������������

1� k�r�r2
p dr (2.7)

and has a redshift given by

 

dz
dr
� �1� z�

_R0�r; t�r�	����������������������
1� k�r�r2

p (2.8)

where overdots denote partial derivatives with respect to
time and where t�r� is evaluated along light rays that are
moving radially inward according to Eq. (2.7).
Equations (2.5) and (2.8) give us two important restrictions
on the derivatives of R�r; t�: (i) in order for the density to
remain finite, we require R0 > 0, which excludes shell-
crossing, and (ii) in order to have a monotonically increas-
ing z�r�, we require _R0 > 0.

The luminosity distance measured by the observer at
r � 0 and at t � to is given by [26]

 DL�z� � �1� z�
2R; (2.9)

where z and R are evaluated along the radially-inward
moving light ray. It is not obvious how to define the
deceleration parameter in an inhomogeneous cosmology,
and Hirata and Seljak [10] explore several definitions. In
this paper, we restrict our attention to the deceleration
parameter that would be obtained from measurements of
luminosity distances and redshifts assuming a spatially flat
FRW cosmology.2 We can deduce the effective Hubble
expansion rate H�z� of the flat FRW model which would
yield the same luminosity distances by inverting the FRW
relation

 DL�z� � �1� z�
Z z

0

dz0

H�z0�
(2.10)

to find

 H�z� �
�
d
dz

�
DL�z�
1� z

��
�1
: (2.11)

We can then calculate the associated deceleration parame-
ter

 q�z� � �1�
�

1� z
H�z�

�
dH�z�
dz

(2.12)

and the effective equation of state parameter

 weff�z� �
2

3

�
q�z� �

1

2

�
�

2�1� z�
3

d
dz

ln
�

H�z�

�1� z�3=2

�
:

(2.13)

If we know t0�r� and E�r�, then we can find R�r; t� very
simply by using the appropriate solution above, chosen
from Eqs. (2.2), (2.3), and (2.4). We then solve the differ-
ential equations (2.7) and (2.8) to find t�z� and r�z�, starting
from the initial conditions r � 0 and t � to. We insert
these t�z� and r�z� into the right-hand side of Eq. (2.9) to
obtain DL�z�, and then use Eqs. (2.11) and (2.12) to find
H�z� and q�z�. We will use this procedure later in this
section with a class of models as an illustrative example.

B. The weak singularity at r � 0

There have been many claims that there exist LTB
cosmological models in which q0 � q�z � 0�< 0 [19–
22,24–27]. For example, Iguchi et al. [27] look at two
different classes of LTB models: (i) models with k�r� � 0
and a pure ‘‘big-bang time inhomogeneity’’ and (ii) models
with t0�r� � 0 and a pure ‘‘curvature inhomogeneity’’. In
either case, they try to reproduce the luminosity distance
function of a flat FRW universe with a matter density
�M � 0:3 and a cosmological constant density �� �
0:7, namely

 DL�z� �
1� z
H0

Z z

0

dz0����������������������������������������
�M�1� z

0�3 ���

p : (2.14)

They appear to be successful up until they find R0 < 0 or
_R0 < 0 at a redshift z
 1 (we will discuss these patholo-

gies in the next section). Thus, they appear to successfully
find models where q0 < 0.

On the other hand, the local expansions of Flanagan [8]
and of Hirata and Seljak [10] show that q0 is constrained to
be positive for arbitrary inhomogeneous dust-dominated
cosmologies that are not necessarily spherically-
symmetric. In particular, Flanagan expands the luminosity
distance as

 DL � A��;��z� B��;��z2 �O�z3�; (2.15)

where � and� are spherical polar coordinates as measured
in the local Lorentz frame of the observer. He then defines
the central deceleration parameter as

 q0 � 1� 2H�2
0 hA

�3Bi; (2.16)

where angle brackets denote averages over � and �, and
H0 � hA�1i. Using local Taylor series expansions and
assuming that the pressure is zero, he finds

2More generally, an observer might fit data on DL�z� to FRW
models with arbitrary spatial curvature, including flat ones.
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 q0 �
4�

3H2
0

��
1

3H2
0

�
7

5
������ �!��!��

�
(2.17)

where��� and!�� are the shear and vorticity tensors. The
first term of this expression is obviously positive, and the
terms in the brackets vanish in LTB models by spherical
symmetry. Thus there is a contradiction: general theorems
prove that q0 is positive in these inhomogeneous models,
whereas the analysis of specific examples appears to show
that it is possible to construct models in which q0 can be
negative. Here we present the resolution of this contra-
diction, that there exists a weak local singularity which is
excluded at the start from the computations of Flanagan
and Hirata and Seljak, but which is present in models
giving q0 < 0. We will show that the exclusion of this
singularity inevitably leads to models with a positive q0.

We expand the density (2.5) to second order in r as

 ��r; t� � �0�t� � �1�t�r� �2�t�r2 �O�r3�: (2.18)

The weak singularity occurs when �1�t� is nonzero, in
which case the gravitational field is singular since �R!
1 as r! 0, where R is the Ricci scalar. In other words,
second derivatives of the density diverge at the origin,
independent of where observers may be located. This is
true both in flat spacetime and in the curved LTB metric
when we have a density profile of the form (2.18). The
singularity is weak according to the classification scheme
of the literature on general relativity [28]. This singularity
is excluded from the start in the analyses of Flanagan [8]
and Hirata and Seljak [10] which assume that the metric is
smooth.

We now determine the conditions for a weak singularity
to occur. We define the variable

 a�r; t� �
R�r; t�
r

; (2.19)

this is analogous to the FRW scale factor a�t�, in the sense
the metric takes the form

 ds2 � �dt2 � a2�r; t�
�
�1� ra0�r; t�=a�r; t�	2

1� k�r�r2 dr2

� r2�d�2 � sin2�d�2�

�
: (2.20)

We expand this function as

 a�r; t� � a0�t� � a1�t�r� a2�t�r
2 �O�r3�: (2.21)

Comparing this to the formula (2.2) for R�r; t�, we find for
the zeroth order expansion coefficient

 a0�t� � �6�G�0�to�	1=3t2=3: (2.22)

We define H0 � _a0�to�=a0�to�, and our choice of units
above imply a0�to� � 1. Using Eqs. (2.19) and (2.21) in
the expression (2.5) for the density gives

 ��r; t� �
�0�to�

a2
0�t�
� 4

�0�to�a1�t�

a3
0�t�

r�O�r2�: (2.23)

Since a0�t� � 0 by Eq. (2.22), we see that having a non-
singular model requires a1�t� � 0, or equivalently R00�r �
0; t� � 0.

It is straightforward to see that if a1 � 0, then q0 � 0,
and that if a1�t� � 0, then q0 may be positive or negative.
Note that the observer’s measurement of q0 from the data
does not depend on the observer’s prior assumptions about
spatial curvature, and so the following analysis of q0 is
sufficiently general and applies for arbitrary k�r�. If
a1�t� � 0, then the angular size distance is R�r; t� �
ra0�t� � r

3a2�t� �O�r4�, where r and t are evaluated
along the path followed by a radially directed light ray.
Evaluating the redshift for such a ray gives to lowest order
z � H0r�O�r2�. Thus, the angular size distance is un-
affected by density gradients up to terms of order z3. In
other words, the standard expansion of the angular size
distance R � DA to order z2,

 H0DA�z� � z� 1
2z

2�3� q0� �O�z3�; (2.24)

is completely determined by the evolution of the uniformly
dense core region of the expanding spherically-symmetric
model, where the density is �0�t� � �0�to�=a

3
0�t� from

Eqs. (2.6) and (2.22), which is the density of dust expand-
ing with scale factor a0�t�. Therefore, the effective values
of q0 for such a model must lie in the same range as are
found for exactly uniform, dust-dominated FRW models:
q0 � 0.

We can gain further physical insight into the behavior of
LTB models near r � 0 by expanding the field equations in
r, assuming [see Eq. (2.21)]

 a�r; t� � a0�t� � an�t�rn � . . . ; (2.25)

and correspondingly

 k�r� � k0 � knrn � . . . ; (2.26)

we show in Appendix A that a1�t� � 0 corresponds to
having k1 � 0 via a direct analysis of the LTB solutions.
Thus, for nonsingular models, n � 2 is the leading order
correction to strict homogeneity near the center. The field
equations are given in Bondi [18], and in our notation his
Eq. (24) is

 

1

2

�
@R�r; t�
@t

�
2
�

4�G�0�to�r
3

3R�r; t�
� �

1

2
k�r�r2: (2.27)

Substituting R�r; t� � ra�r; t� we find

 

�
@a�r; t�
@t

�
2
�

8�G�0�to�
3a�r; t�

� k�r�: (2.28)

Using the expansions (2.25) and (2.26) and equating like
powers of r, we find
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_a2
0 �

8�G�0�to�
3a0

� k0 �
H2

0�0

a0
�H2

0�1��0�

2 _a0 _an ��
8�G�0�to�an

3a2
0

� kn ��
H2

0�0an
a2

0

� kn: (2.29)

The first of Eqs. (2.29) is exactly the same as the
Friedmann equation for the scale factor a0�t� in a universe
with arbitrary spatial curvature, subject to the single physi-
cal requirement �0 � 0. To solve the second equation,
notice that �a0 � �H2

0�0=2a2
0, so rewrite it as

 _a 0 _an � �a0an � _a2
0

d
dt

�
an
_a0

�
� �

kn
2
; (2.30)

which has the solution

 an�t� � C _a0 �
kn _a0

2

Z t

0

dt0

_a2
0�t
0�
; (2.31)

where C is a constant. Let us define �n�t� � an�t�=a0�t�;
then Eq. (2.31) becomes

 �n�t� � CH�t� �
knH�t�

2

Z t

0

dt0

H2�t0�a2
0�t
0�

� CH�t� �
knH�t�

2

Z a0�t�

a0�0�

da0

H3�a0�a
3
0

; (2.32)

where

 H �
_a0

a0
� H0

�����������������������������
�0

a3
0

�
1��0

a2
0

s
: (2.33)

Comparing with results in Peebles [29], we see that the first
term of Eq. (2.32) is just the shrinking mode of linear
theory, and the second is the growing mode. The amplitude
C of the shrinking mode is related to the bang time function
by t0�r� � �Crn � . . . , and the growing mode amplitude
kn is related to the lowest order energy perturbation knrn.
Note that this approximate solution holds for anrn �
a0�t�, i.e. for 0< rn � 1=�n.

We have shown that for n � 2, the central value of q0 is
greater than or equal to zero. We now compare with the
mildly singular case with n � 1. The evolutions of a0�t�
and a1�t� are governed by Eqs. (2.29) and (2.31). For this
case, the low z expansion of DA�z� depends on a1�to� and
k1, and the effective value of q0 near the origin becomes,
from Eqs. (2.19), (2.24), and (2.25),

 q0 �
1

2
�0 �

2a1�t0�
H0

�
_a1�t0�

H2
0

�
1

2
�0 �

a1�t0�
H0

�
2�

�0

2

�
�

k1

2H2
0

: (2.34)

This is no longer constrained to be positive.
In Appendix A, we show directly from the solutions to

the Einstein equations, Eqs. (2.2), (2.3), and (2.4), that we
must have both t00�0� � 0 and k0�0� � 0 in order to have a

nonsingular model, and if this is true then q0 cannot be
negative. In Appendix B we use this to show that the
models of Iguchi et al. have weak central singularities.

C. Achieving a negative apparent deceleration
parameter at nonzero redshifts

Although models that have been previously analyzed
contain central singularities, it is still possible to construct
LTB models without such a singularity for which the
effective deceleration parameter q�z�, as defined in
Eq. (2.12), is negative for some nonzero redshifts. Here
we explore a class of zero energy LTB models with a bang
time function t0�r� that is quadratic near r � 0, and there-
fore nonsingular there.

In a zero energy LTB model, we have

 dt � �R0�r; t�dr (2.35)

and therefore we can get the equation for t�r� along light
rays that we observe from supernovae. Also, z is a function
of r via Eq. (2.8), specialized to k�r� � 0, and we get z as a
function of r only by using our solution for t�r� along the
rays. The bang time function is chosen such that it will
(i) approach a constant for large r, so as to have a uniform
density for large redshifts, and (ii) have no terms linear in r,
so as to avoid a singularity at the center. Thus we integrate
Eqs. (2.8) and (2.35) with the bang time function choice

 t0�r� � �
	rcr2

r2 � r2
cD2 (2.36)

where 	 and D are dimensionless parameters, rc �
�6�G�0�to�	�1=2, and we choose units where rc � 1. We
choose the initial conditions at the center, t�r � 0� � 1 and
z�r � 0� � 0, and we integrate from the center outward.

Figure 1 displays results for the effective q�z� that we
calculate from the above model using Eqs. (2.9), (2.11),
and (2.12) for various values of 	 and D, namely �	;D� �
�0:094; 0:14�, (0.20, 0.29), (0.46, 0.62), (0.75, 0.91), and
(1.0, 1.2). We choose values of 	 and D for which the
minimum value of q�z� that is attained is approximately
�1. As we can see, although all the models are forced to
have q�z � 0� � 1=2, it is nevertheless possible for the
deceleration parameter to become negative at nonzero red-
shifts, as we find a region of q�z�< 0 for z & 1.

In order to reproduce the current luminosity distance
data, we want q�z� to quickly fall to from q�0� � 1=2 to
q�z� � �1 and then stay at that value until a redshift z
 1.
In Fig. 2 we plot several quantities that encapsulate some
of the characteristics of the functions q�z�, which are useful
for assessing the feasibility of reproducing luminosity
distance data. We define �zneg to be the width, in redshift,
of the region where q is negative, and �zq<�1 to be the
width of the region where q is below negative one. We also
found that the large redshift behavior is unstable in these
models: q blows up as we eventually approach the initial
singularity. As an approximate measure of the location of
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this divergence, we define zmax to be the redshift at which
q�z� exceeds 3. Ideally, we want �zneg 
 1, �zq<�1 � 0,
and zmax ! 1. From Fig. 2, it does not appear as though

this model can reproduce the data well, although it is
conceivable that one could construct a model which gives
more realistic results. We see that by increasing D, we also
increase the size of the region with negative q�z�, which
makes the model more phenomenologically viable; how-
ever, by increasingD, we also decrease zmax and thus make
the model less physically reasonable.

III. THE INVERSE PROBLEM

Unfortunately, it is highly unlikely that one could guess
a bang time function t0�r� that would yield the experimen-
tally measured luminosity distance DL�z�. A better ap-
proach would be to solve the inverse problem: given the
appropriate DL�z�, work backwards to try to find the cor-
responding t0�r�, which may or may not exist. This ap-
proach has been taken before, but without avoiding the
central singularity [27], as is shown in Appendix B. Models
based on selected DL�z� generally break down at z
 1
upon encountering some pathology. We explore and clarify
the possible pathologies below.

A. General properties

In the LTB metric, the angular size distance is given by

 DA�r; t� � R�r; t� � rT2�r; t�; (3.1)

where T � �t� t0�r�	1=3. Here we have specialized to units
where 6�G�0�to� � 1. We also define the equivalent FRW
radial coordinate to be

 rFRW�z� � �1� z�DA�z�; (3.2)

in terms of which we have

 rT2�1� z� � rFRW�z� �
DL�z�
1� z

: (3.3)

Suppose we are given rFRW�z�, and therefore DL�z� and
DA�z�, and from this we wish to find the corresponding
zero energy LTB model.

The equations defining our flat LTB model with bang
time function may be written in the form

 

dT
dr
� �

1

3
�
dt0
dr

�
2r

9T3 �
1

3T2

�
(3.4)

and

 

1

�1� z�
dz
dr
�

�
2

3T
�

2r

9T4

dt0
dr

�
: (3.5)

Multiply Eq. (3.4) by 2=T and then add to Eq. (3.5) to find

 

dt0
dz
�

3T
2�1� z��r=T � 1�

d
dz
�T2�1� z�	; (3.6)

we can also combine Eqs. (3.4) and (3.5) such that we
eliminate dt0=dr altogether to find

FIG. 2 (color online). Several measures of the feasibility of
quadratic bang time models, plotted versus D for 	 � 1; 0:751,
0.589, and 0.455. From top to bottom, we have plotted �zneg,
�zq<�1, and zmax, all versus D.

FIG. 1 (color online). The effective deceleration parameter q
versus redshift z for several quadratic bang time models (2.36)
which have a minimum q of approximately negative one. Plotted
here are the data for models with �	;D� � �0:094; 0:14�, (0.20,
0.29), (0.46, 0.62), (0.75, 0.91), and (1.0, 1.2).
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r
T
dT
dz
�

�
r
T
� 1

�
dr
dz
�

1

1� z

�
r�

3T
2

�
: (3.7)

Defining X � T2�1� z�, these equations can recast into
 

1

X
dX
dz
�

�rFRW

������������
1� z
p

=X3=2 � 1�

rFRW�3=2� rFRW

������������
1� z
p

=X3=2�




�
3X3=2

2�1� z�3=2
�
drFRW

dz

�
(3.8)

and

 

dt0
dz
�

3X3=2

2rFRW�1� z�
3=2�3=2� rFRW

������������
1� z
p

=X3=2�




�
3X3=2

2�1� z�3=2
�
drFRW

dz

�
: (3.9)

In the spatially-flat, dust-dominated FRW model, X � 1
and rFRW�z� � 3�1� 1=

������������
1� z
p

	.
Given rFRW�z�, Eq. (3.8) is a first order ordinary differ-

ential equation for X�z�. It becomes singular when

 

rFRW�z�
������������
1� z
p

X3=2
�

3

2
; (3.10)

for a flat, dust-dominated FRW model, this occurs when
z � 5=4. Solutions z � zcrit of Eq. (3.10), if these exist, are
critical points of differential Eq. (3.8). Near the critical
point,

 

1

X

dX
dz
�

1

2�3=2� rFRW

������������
1� z
p

=X3=2�

�
1

1� z
�
d lnrFRW

dz

�
(3.11)

and
 

dt0
dz
�

rFRW�z�

�1� z��3=2� rFRW

������������
1� z
p

=X3=2�




�
1

1� z
�
d lnrFRW

dz

�
: (3.12)

Transcritical solutions, which are nonsingular at the critical
point, are possible provided that �1� z�d lnrFRW=dz � 1
at the critical point. We discuss these solutions in more
detail below. Clearly, the spatially-flat, dust-dominated
FRW model is one special transcritical solution. For a
general choice of rFRW�z�, however, the conditions for
passing smoothly through the critical point will not be
generically satisfied, and both d lnX=dz and dt0=dz will
diverge there. This suggests that a flat LTB model with a
bang time function can only mimic a generic rFRW�z� up to
some limiting redshift below zcrit, where

 KFRW�zcrit� �
1

1� zcrit
�
d lnrFRW

dz

��������z�zcrit

� 0: (3.13)

We shall argue below that only the special class of tran-
scritical solutions can extend to infinite redshift.

For exploring characteristics of the solutions, it proves
useful to define the new variable

 V � 1�
2rFRW

������������
1� z
p

3X3=2
: (3.14)

Substituting Eq. (3.14) into Eq. (3.8) gives, after some
algebra,

 

dV
dz
�
�1� 4V � V2�

2V�1� z�
�
�1� V�2

2V
d lnrFRW

dz

�
�1� V2�

2V

�
1

1� z
�
d lnrFRW

dz

�
�

2

1� z

�
d lnrFRW

dz
: (3.15)

For a flat, dust-dominated FRW model, VFRW �

3� 2
������������
1� z
p

, and substituting this V�z� into the right-
hand side of Eq. (3.15) yields dVFRW=dz � �1=

������������
1� z
p

.
Near z � 0, we have seen that flat LTB models resemble
flat, dust-dominated FRW models, so

 d lnrFRW=dz � z�1

�
1�

1

2
�1� q�0��z� . . .

�
� z�1�1� 3z=4� . . .�; (3.16)

and therefore

 V�z� � 1� z�
z2

4
�
z3

8
� . . . (3.17)

for z� 1. The first term in the small-z expansion of V�z�
that can deviate from Eq. (3.17) is of order z4.

At sufficiently small z, we expect V�z� to decrease.
There are three possible classes of solutions to
Eq. (3.15): (i) solutions that decrease from V�0� � 1 to
some constant V1 < 1 as z! 1, without crossing the
critical point at V � 0; (ii) solutions that decrease until a
redshift z � z0 < zcrit, where they terminate; and
(iii) transcritical solutions that pass through the critical
point smoothly. We examine these three classes in turn.
In our considerations, we keep rFRW�z� general, with the
provisos that the model tends to q � 1=2 at both z! 0 and
z! 1. The former is dictated by the character of LTB
models free of central singularities, whereas the latter must
be true of any phenomenologically viable model. In par-
ticular, then, we assume that H � 2

3 �1=2
FRW�1� z�

3=2 at
large z, where �FRW < 1. Therefore rFRW�z� ! rFRW;1

as z! 1, where rFRW;1 is a constant.
Consider first solutions that decrease toward V1 asymp-

totically. At large values of z, Eq. (3.15) becomes
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dV
dz
�

1� 4V1 � V2
1

2V1�1� z�
�
�1� V1�2

2V1

d lnrFRW

dz

�
1� 4V1 � V2

1

2V1�1� z�
�

3�1� V1�2

4V1�1=2
FRWrFRW;1�1� z�3=2

:

(3.18)

The first term on the right-hand side of Eq. (3.18) is
negative as long as V1 > V0 � 2�

���
3
p
� 0:27, and it

dominates the second term. But V�z� 
 � ln�1� z� in
that case, and this diverges. Thus, we can only have V1 �
V0. In that case, we let V�z� � V0 � u�z� at large z, and
find

 

du
dz
� �

u
���
3
p

�2�
���
3
p
��1� z�

�
3�

���
3
p
� 1�2

4�2�
���
3
p
��1=2

FRWrFRW;1�1� z�3=2
; (3.19)

which has the general solution

 u�z� �
C

�1� z�
��
3
p
=�2�

��
3
p
�

�
3�

���
3
p
� 1�2

2�3
���
3
p
� 2��1=2

FRWrFRW;1

������������
1� z
p ; (3.20)

where C is a constant. Although u�z� ! 0 as z! 1, it
approaches zero from below, not from above, which con-
tradicts our basic assumption. Thus, solutions that simply
decrease toward constant V�z�> 0 asymptotically do not
exist. Conceivably, there can be solutions that decrease to a
minimum and then increase toward V0 asymptotically. For
these, however, V�z� will be double valued. It then follows
that X � T2�1� z� must be double valued, since
rFRW

������������
1� z
p

is monotonically increasing, and such behav-
ior could be pathological. More generally, we shall see
below that solutions that avoid V � 0 must terminate at
z � zcrit in order to avoid other physical pathologies. Thus,
a solution ‘‘on track’’ to a minimum value Vmin > 0, and on
to V0 asymptotically, might end at finite redshift.

Next, consider solutions that reach V � 0 at z � z0 <
zcrit and end there. Near V � 0, Eq. (3.15) is approximately

 

dV
dz
�
KFRW�z0�

2V
; (3.21)

where KFRW�z� � �1� z��1 � d lnrFRW=dz, as in
Eq. (3.13). Note that since z0 < zcrit, KFRW�z0�< 0 as
well. The solution to Eq. (3.21) is V�z� �����������������������������������������
�KFRW�z0��z0 � z�

p
, which terminates at z � z0.

In order to reach the critical point, we must have

 KFRW�z� � 0 (3.22)

all the way up to the critical point, with equality holding at
z � zcrit for the transcritical solution. For a transcritical
solution to exist, we must be able to expand

 KFRW�z� � Q�z�O��z2� (3.23)

near the critical redshift, zcrit, where �z � z� zcrit and
Q> 0. For a flat, dust-filled FRW model, we have zcrit �
5=4 and Q � 8=27. Using this linear approximation, we
find from Eq. (3.15) that V � k�z�O��z2�, where the
slope k < 0 is the solution to

 k2 �
k

1� zcrit
�
Q
2
� 0: (3.24)

That is, we need the negative root

 k � �
1

2�1� zcrit�
�

1

2

��������������������������������������
1

1� zcrit

�
2
� 2Q

s
: (3.25)

For a flat, dust-filled FRW model, we find k � �2=3. This
is clearly a transcritical solution.

We can turn the above analysis into a test of whether a
candidate for rFRW�z� that agrees with observations can be
represented by a transcritical, zero energy LTB model.
First, for the candidate model, it is possible to find zcrit

and Q algebraically; we can find zcrit using Eq. (3.13), by
requiring that KFRW�zcrit� � 0, and we can find Q �
dKFRW=dzjz�zcrit

, cf. Eq. (3.23). Next, find k given Q and
zcrit from Eq. (3.25) and use this value of k to integrate
Eq. (3.15) back toward z � 0. If the solution satisfies
Eq. (3.17) as z! 0, then it is an acceptable transcritical
solution.

There are other disasters that may befall the solution for
general rFRW�z�, and some of these may even afflict tran-
scritical solutions. Equation (3.9) may be rewritten as

 

dt0
dz
�

2rFRW

3�1� z��1� V�

�
1

V

�
1

1� z
�
d lnrFRW

dz

�

�
1

�1� z��1� V�

�
: (3.26)

As we have noted before, dt0=dz diverges at V � 0 for
generic rFRW�z�, but for transcritical solutions,

 

dt0
dz
�

2rFRW�zcrit�

3�1� zcrit�

�
Q
k
�

1

1� zcrit

�
�O��z� (3.27)

near the critical point, which is finite, so this potential
disaster is avoided. In particular, for a flat, dust-filled
FRW model with Q � 8=27 and k � �2=3 at zcrit �
5=4, we see that Q=k� 1=�1� zcrit� � 0, which is consis-
tent with t0�z� � 0 for all redshifts.

We must check for two other possible disasters, for
solutions that are transcritical or not. As mentioned in the
previous section, physical regions in any solution must
have a positive, finite R0 � @R=@r and dr=dz. We find
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@R
@r
� �3�1� V�	1=3

�
2rFRW

1� z

�
2=3




�
�1� z�d lnrFRW=dz� 1

�1� V���1� z�d lnrFRW=dz� 1	 � 2V

�
dr
dz
�

�
2rFRW

3�1� V��1� z�4

�
1=3




��
1� V

2V

��
�1� z�

d lnrFRW

dz
� 1

�
� 1

�
: (3.28)

Note that we have _R0 / �dr=dz��1, and thus a finite, posi-
tive dr=dz implies that _R0 > 0. These equations are eval-
uated along the path of a light ray directed radially inward.
The requirement @R=@r > 0 along the light ray is a neces-
sary but not sufficient condition for an acceptable model.
The more general requirement is that @R=@r > 0 at all
�r; t�, a global condition that is much harder to satisfy;
but in general, from Eq. (2.2), this will be satisfied for
models with t0�r� decreasing monotonically. From the first
of Eqs. (3.28), we note that @R=@r! 0 at z � zcrit for
solutions that are not transcritical. Solutions that terminate
at z0 < zcrit would not encounter this pathology. Solutions
of the first type described above, which decrease from
V�0� � 1 but do not cross V � 0, would end at z � zcrit.
For a transcritical solution,

 

@R
@r
� 31=3

�
2rFRW�zcrit�

1� zcrit

�
2=3
�

Q�1� zcrit�

Q�1� zcrit� � 2k

�
> 0

(3.29)

at the critical point. Transcritical solutions therefore propa-
gate right through the critical point with a positive, finite
@R=@r. From the second of Eqs. (3.28), we see that dr=dz
diverges for solutions that terminate at V � 0 and z � z0.
For transcritical solutions

 

dr
dz
�

�
rFRW�zcrit�

3�1� zcrit�

�
1=3
�
�
Q
k
�

2

1� zcrit

�
> 0 (3.30)

at the critical point. Beyond the critical point, transcritical
solutions have V < 0, and for reasonable rFRW�z� with
decreasing �1� z�d lnrFRW=dz, it seems likely that dr=dz
remains positive.

From these general considerations, we conclude that
zero energy LTB models can only mimic a given, generic
rFRW�z�—arranged, for example, to fit observations of
Type Ia supernovae—for 0 � z � z0 < zcrit, where zcrit is
the solution to Eq. (3.13). There can be exceptional, tran-
scritical models that extend to infinite zwithout any mathe-
matical or physical pathologies. However, transcritical
models are highly constrained mathematically, and may
not exist for choices of rFRW�z� that conform to phenome-
nological requirements. The flat, dust-dominated FRW
model is one transcritical solution, but it is ruled out by
observations.

B. Manufacturing transcritical solutions

To manufacture transcritical solutions, we will specify
V�~r�, where ~r�z� � rFRW�z�

������������
1� z
p

, and find an equation
for ~r�z�. From Eq. (3.15) we find

 

d~r
dz
�

3� 10V � 3V2

2�1� z��2VV 0 � �1� V�2=~r	
(3.31)

where V 0�~r� � dV�~r�=d~r. As long as VV0 ! 0 near V � 0,
Eq. (3.31) satisfies the transcriticality condition KFRW � 0
when V � 0. As an example, suppose we assume that V �
1� k~r. Then we find ~r � �2=k��

������������
1� z
p

� 1� and we must
choose k � 2=3 in order to have the proper behavior at
small z. This solution is simply equivalent to the flat, dust-
filled FRW solution.

Superficially, the prescription is simple: specify a V�~r�,
make sure that VV 0 ! 0 when V � 0, and then find the
corresponding ~r�z� by integrating Eq. (3.31). However, we
know that acceptable solutions must have d~r=dz � 0 and
finite; these conditions are not so easy to guarantee.

Let us assume V�~r� � 1� 2
3 ~rf�~r�; then Eq. (3.31) be-

comes

 

d~r
dz
�

�~rf� 1��~rf� 3�

2�1� z��f�~rf� 1� � �1� 2~rf=3�~rf0	
: (3.32)

The numerator of Eq. (3.32) is zero when ~rf�~r� � 1, or
V � 1=3. If the denominator of Eq. (3.31) is nonzero at this
point, then d~r=dz goes to zero, and changes sign upon
crossing it. Thus, we also want the denominator to vanish
for an acceptable solution. In other words, V � 1=3 must
be a critical point of Eq. (3.31): we have only succeeded in
hiding the critical nature of the problem, rather than elim-
inating it. Equation (3.32) shows that to pass through this
critical point we must require that ~rf0 � 0 when ~rf � 1.
Clearly, the spatially-flat, dust-filled FRW model, for
which f�~r� � 1, is one possibility.

It is also possible that the denominator of Eq. (3.32)
vanishes, so d~r=dz! 1 before ~rf ! 1. This happens
when

 f0 �
f�~rf� 1�

~r�1� 2~rf=3�
: (3.33)

If f0 < 0 at small values of ~r, it is possible that infinite
d~r=dz occurs before ~rf ! 1. Since we also want f�0� � 1
for nonsingular models, and f�1� � constant for models
that approximate a flat FRW model with �M < 1 at suffi-
ciently large redshift, we have several requirements on f�~r�
that must be met simultaneously for a model that is accept-
able mathematically. Moreover, physically acceptable
models must also have @R=@r > 0 and _R0 > 0. Only a
subset of such models—if any—will also be acceptable
phenomenologically.

To examine the phenomenological properties of a can-
didate transcritical solution, first define the effective
Hubble parameter Heff�z� via
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drFRW

dz
�

1

Heff�z�
: (3.34)

It is straightforward to show that, normalizing so that Heff�0� � 1,

 h�z� �
Heff�z�

�1� z�3=2
�

3

2

�
�1� z�

d~r
dz
�

~r
2

�
�1
�

3�f�~rf� 1� � �1� 2~rf=3�~rf0	

3�~rf� 1� � �1� 2~rf=3�~r2f0
: (3.35)

We can also calculate the effective value of the equation of state parameter

 

weff �
2�1� z�

3

d lnh
dz

�
�~rf� 3��~rf� 1�

3�f�~rf� 1� � �1� 2
3 ~rf�~rf0	2�3�~rf� 1� � �1� 2

3 ~rf�~r2f0	

�
f0
�

4�~rf�3

3
� 2�~rf�2 � 8~rf� 6

�

� �~rf0�2
�
�

2�~rf�2

9
�

2~rf
3
� 1

�
� ~rf00�~rf� 1��~rf� 3�

�
1�

2~rf
3

��
: (3.36)

Heff�z� is the Hubble parameter that would be measured by
an observer who assumes her observations are described by
a spatially flat FRW model, and weff�z� is the associated
equation of state parameter. (A less dogmatic observer
would allow for the possibility of spatial curvature.) Note
that Eq. (3.35) implies that for f0 � 0, Heff=�1� z�

3=2 �
f � constant. If we are interested in using LTB models to
mimic a spatially flat FRW model with a mixture of dust
plus cosmological constant, we shall want f !

��������
�M

p
������������������

1��V

p
at large redshift, where �M and �V are the

present density parameters in nonrelativistic matter and
cosmological constant, respectively. Moreover, f ! 1 as
z! 0; thus f must decrease from 1 to

�����������������
1��V

p
as redshift

increases to mimic observations in a FRW model of this
sort.

For any choice of f�~r� tailored to pass smoothly through
both V � 0 and ~rf�~r� � 1, we can integrate Eq. (3.32) to
find a transcritical solution. However, such a solution still
must pass the tests outlined in the previous section to
extend to arbitrarily large redshifts. In terms of ~r and f�~r�,

 

dt0
dz
�

3�h� f�

2�1� z�5=2f2h~r�1� 2~rf=3�

�1� z�
@R
@r
�

f1=3�3� 2h~r�
f� 2h� 2fh~r

3 _R0

2�1� z�1=2
�

3f1=3�1� 2~rf=3�

2� f=h� 2~rf
:

(3.37)

We reject any transcritical solution for which dt0=dz is
ever positive, or @R=@r or _R0 change sign.3 Moreover, even
if a transcritical solution is found that possesses none of the
pathologies discussed above, it may not conform to obser-

vational constraints. Thus, if there are any nonsingular,
nonpathological LTB solutions that can also mimic the
observations, they must be very exceptional indeed.

Designing nonsingular, nonpathological transcritical so-
lutions is a formidable challenge. Suppose that at small
values of ~r, we expand f�~r� � 1� fn~rn � . . . . Then we
find that h � 1� fn�1� n�~r

n � . . . and weff � fnn�n�
1�~rn�1 � . . . near the origin, where ~r � 3

2 z. Also
 

dt0
dz
�

3�h� f�
2~r

�
3

2
fnn~rn�1

�1� z�
@R
@r
� 1�

2�h� 1�

3

3 _R0

2�1� z�1=2
� 1�

1

3
�h� 1�:

(3.38)

We wish to tailor f�~r� to maintain positive values of both
@R=@r and _R0, but already near the origin @R=@r and _R0

deviate from their flat, dust-filled FRW relationships in
opposite senses. Notice that to avoid the weak singularity
near the origin, we need to have n � 2. Moreover, we want
to make sure that t0�z� is monotonically decreasing to
avoid shell crossing. Near the origin, decreasing t0�z�
implies fn < 0.

To illustrate how difficult it is to manufacture nonpatho-
logical transcritical solutions from Eq. (3.32), we have
considered

 f�~r� �
1

~r1

�
1� K

�
~rn1 � ~rn

~rn2 � ~rn

�
p
�
: (3.39)

The model has four parameters: K, ~r1, n, and p; the
remaining parameter ~r2 will be determined in terms of
these four. To be sure that h and weff are finite near ~rf �
1, we want either p � 2 or p � 3. Expanding near the
origin, we find

 f�~r� �
1� K�~r1=~r2�

n

~r1
�
Kp
~r1

�
~r1

~r2

�
np
�

1

~rn2
�

1

~rn1

�
~rn � . . . ;

(3.40)

3For LTB with bang time perturbations only, �@R=@r�t � �t�
t0�r�	

�1=3�t� t0�r� �
2
3 rdt0=dr	, which is only zero for a shell at

coordinate radius r when t� t0�r� �
2
3 rdt0�r�=dr. If

dt0�r�=dr < 0, this occurs before t0�r� and is therefore irrelevant.
As long as dt0�z�=dz < 0 and _R0 > 0 along the light ray path,
dt0�r�=dr < 0 and �@R=@r�t is never zero.
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requiring f�0� � 1 implies

 ~r n2 � ~rn1

�
K

~r1 � 1

�
1=p
; (3.41)

and so we can rewrite the expansion in the form f�~r� �
1� fn~rn � . . . with

 fn � �
Kp
~r1

�
~r1

~r2

�
np
�

1

~rn2
�

1

~rn1

�

� �
p�~r1 � 1�

~rn�1
1

�
1�

�
~r1 � 1

K

�
1=p
�
: (3.42)

Thus, we want ~r1 � 1> 0 and therefore K > 0 for fn < 0
and real ~r2. At large values of ~r, f�~r� ! ~r�1

1 �1� ��1�pK	.
Thus, we expect models that can mimic decelerating FRW
models successfully to have ~r�1

1 �1� ��1�pK	< 1, sug-
gesting either large ~r1 or odd p, or both. Empirically, we
have been unable to find any nonpathological models based
on Eq. (3.39) with these properties.

Figure 3 shows an example of a transcritical solution
with K � 1, ~r1 � 1:05, n � 3, and p � 2. Although the
figure only displays z < 1000, we have integrated this
model out to z � 106 to verify that it asymptotes smoothly
to a high redshift FRW model, with constant t0. The left
panel shows rFRW�z�=r

�0�
FRW�z� (dotted line), where r�0�FRW�z�

is computed for a flat �CDM FRW reference cosmology
with �M � 0:27 and �� � 0:73, h�z� (short dashed line),
and weff�z� (solid line). Since h! 2=1:05 � 1:905 at high

z for this model, inevitably there must be regions with
weff > 0; this is in the range 0:75 & z & 3:9, with a peak
value weff � 2:13. There are two regions of negative weff :
(i) one at 0< z & 0:75, with minimum value weff �
�0:98; and (ii) an extensive region at z * 3:9, with a
minimum value weff � �0:292. The right panel verifies
the transcritical nature of the solution: it shows V (short
dashed line), 1� d lnrFRW=d ln�1� z� (dotted line), and t0
(solid line), and the long dashed line is at 0. The first two
cross zero simultaneously, as they must for a transcritical
solution, and at large redshifts, V is approximately propor-
tional to

������������
1� z
p

while 1� d lnrFRW=d ln�1� z� tends to-
ward one. For this model, t0�z� � 0 at all z, and we have
also verified that it decreases monotonically. In addition,
we can verify that the model behaves as predicted at small
redshifts: t0�z� � �0:34z3 and weff � �2:7z2.

Figure 4 compares the relative distance moduli

 �m � 5:0log10�rFRW�z�=r
�0�
FRW�z�	 (3.43)

for models with K � 1 and �n; p� � �3; 2� (solid line),
�n; p� � �3; 4� (dotted line), �n; p� � �2; 2� (dashed line),
and �n; p� � �2; 4� (dash-dot line), with ~r1 � 1:05 in the
lower set of curves and ~r1 � 1:5 in the upper set; there is no
solid line in the upper set for �n; p� � �3; 2� because the
model is pathological. For the lower set, luminous objects
would appear systematically brighter than they would in
the standard �CDM model. As ~r1 is increased, a period of
substantial acceleration is seen in the models below z
 1,

FIG. 3. Results for a transcritical model based on Eq. (3.39)
with K � 1, p � 2, n � 3, and ~r1 � 1:05, out to z � 1000. The
left panel shows rFRW�z�=r

�0�
FRW�z� (dotted), h�z� �

H�z�=�H0�1� z�
3=2	 (short dashed), and weff�z� (solid). The

reference model corresponding to r�0�FRW�z� is the spatially flat
�CDM model with �M � 0:27. The right panel shows V (short
dashed), 1� d lnrFRW=d ln�1� z� (dotted), and t0 (solid).

FIG. 4. Distance moduli relative to spatially flat �CDM with
�M � 0:27 for models with K � 1 and �n; p� � �3; 2� (solid),
�n; p� � �3; 4� (dotted), �n; p� � �2; 2� (dashed), and �n; p� �
�2; 4� (dash-dot), with ~r1 � 1:05 for the lower set of curves,
and ~r1 � 1:5 for the upper set.
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leading to the systematic brightening relative to �CDM as
seen in the upper set of curves. In either case, the luminos-
ity differences would be easy to discern observationally.

These few models illustrate several important qualitative
points. First, it is possible to construct nonpathological
transcritical solutions that also avoid any central weak
singularities. Second, the model has a complicated ‘‘effec-
tive equation of state,’’ including regions where weff < 0,
but also regions where weff > 0. In this case, we found a
range of values �1 & weff & 2. Finally, although it is
possible to construct models that are well-behaved mathe-
matically, these models do not generally conform to ob-
servational constraints. We have not, however, excluded
the possibility that transcritical models in agreement with
observations may exist.

IV. CONCLUSIONS

Observations of Type Ia supernovae imply that we live in
an accelerating universe, if interpreted within the frame-
work of a homogeneous and isotropic cosmological model
[1–3]. Some have tried to use the spherically symmetric
LTB cosmological models to explain this seemingly
anomalous data, as introducing a large degree of inhomo-
geneity can significantly distort the dependence of lumi-
nosity distance on redshift. We have shown that one must
take care in using these models, as they will contain a weak
singularity at the symmetry center unless certain very
restrictive conditions are met. Realistic LTB solutions
require that the first derivative of the bang time function
vanish at the center, t00�0� � 0, and also that k0�0� � 0,
where 2E�r� � �k�r�r2. Otherwise there are physical pa-
rameters, such as the density and Ricci scalar, which are
not differentiable at the origin.

We have also shown that any LTB models without a
central singularity will necessarily have a positive central
deceleration parameter q0, and thus all previously consid-
ered LTB models with q0 < 0 are singular at the origin.
However, it is still possible to obtain a negative effective
deceleration parameter for nonzero redshifts, which we
have shown using as an example the model with zero
energy and with the bang time function (2.36), that is
quadratic at small r. These models have regions of appar-
ent acceleration, where q�z� is negative. If our goal is to
reproduce luminosity distance data with a nonsingular LTB
model, we can try to smooth out the center appropriately
and tailor the model to fit the data at modest redshifts, say
z � 0:01. This is not an easy task because there are other
singular behaviors that generally occur when trying to
represent a given luminosity distance function DL�z� with
a zero energy LTB model.

Our detailed examination of the ‘‘inverse problem’’
elucidates how difficult it is to match zero energy LTB
models to observed luminosity distance data. We have
shown that the underlying differential equations generi-
cally become singular at a critical point. We have also

shown that some exceptional choices of rFRW �
DL�z�=�1� z� admit transcritical solutions which are
smooth at the critical point z � zcrit, and may extend to
arbitrarily high redshift, given that they do not encounter
other pathologies along the way. All other solutions termi-
nate at some redshift z0 < zcrit. We have shown how tran-
scritical solutions can be constructed via a simple
procedure. Although these solutions show both enhanced
deceleration, seen as regions with weff�z�> 0, and accel-
eration, seen as regions withweff�z�< 0, none that we have
constructed explicitly conform to observations. Here we
have only studied the effects of a bang time function, and
did not consider the case of a nonzero energy function
E�r�. We expect generic solutions with E�r� � 0 to share
the basic characteristics of the models studied here,
namely, the critical points and other singularities that we
have discussed. However, we cannot say for sure that there
are no transcritical and nonsingular solutions with nonzero
t0�r� and E�r� that agree with observational data on
rFRW�z�, although it does not appear to be likely, as is
evident from previous unsuccessful attempts to find such
solutions [27].

Even if it were possible to reproduce determinations of
DL�z� from supernova data in a LTB model without dark
energy, we would still be left with the task of matching all
of the other cosmological data with such a model. First, the
Wilkinson Microwave Anisotropy Probe is one of our most
important sources of information about the Universe, via
CMBR data; Alnes et al. [30] try to reproduce the first peak
of the angular power spectrum with LTB models, and
Schneider and Célérier [31] claim to be able to account
for the apparent anisotropy in the dipole and quadrupole
moments with an off center observer. There are further
constraints on inhomogeneous models from the kinetic
Sunyaev-Zel’dovich effect, which constrains radial veloc-
ities relative to the CMB [32]. However, observations of
large scale structure formation may be the most difficult to
reconcile. These data strongly disfavor a currently dust-
dominated universe, as density perturbations would have
grown too much without dark energy present to speed up
the cosmic expansion rate and consequently retard the
growth of fluctuations.
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APPENDIX A: PROOF OF q0 � 0 DIRECTLY FROM
LTB SOLUTIONS

In this appendix we show directly from the solutions
(2.2), (2.3), and (2.4) of the Einstein equations that LTB
models without central singularities must have positive q0.
The zero energy solution k�r� � 0 has

 a1�t�/R
00�r�0;t���4

3�6�G�0�to�	
1=3t00�0�t

�1=3: (A1)
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Thus, we see that the zero energy solution requires t00�0� �
0 in order to have no central singularity. More generally,
for the k�r�> 0 solutions, we find
 

R00�0; t� � k0�0�
�

3F0�x0������
k0

p t�
8�G�0�to�F�x0�

3k2
0

�
� t00�0��2

�����
k0

p
F0�x0�	 (A2)

where k0 � k�r � 0� and we have defined the function
F�x� by

 1� cosu � F�u� sinu�: (A3)

Here x0�t� � u0 � sinu0 is the value of x at the center r �
0 at time t:

 x0�t� �
3k3=2

0

4�G�0�to�
t: (A4)

Similarly, for the k�r�< 0 solutions we find
 

R00�0; t� � �k0�0�
�

3G0�x0����������
�k0

p t�
8�G�0�to�G�x0�

3k2
0

�
� t00�0��2

���������
�k0

p
G0�x0�	 (A5)

where we define the function G�x� by

 coshu� 1 � G�sinhu� u�: (A6)

Since the bracketed expressions in Eqs. (A2) and (A5) are
functions of time, R00�r � 0; t� will vanish at arbitrary t
only if t00�0� � 0 and k0�0� � 0, and only then can one
avoid having a singularity at the symmetry center.

These conditions, t00�0� � 0 and k0�0� � 0, lead to the
restriction that q0 must be positive. Célérier [26] expands
the luminosity distance for small redshift and finds the
second order coefficient to be

 D�2�L �
1

2

�
d2DL

dz2

�
r�0

�
1

2

�
R0

_R0

�
1�

R0 �R0

_R02
�

R00

R0 _R0
�

_R00

_R02

��
r�0
; (A7)

where overdots again denote partial derivatives with re-
spect to time. The deceleration parameter at r � 0 is there-
fore

 q0 � 1� 2H0D
�2�
L �

�
�
R0 �R0

_R02
�

R00

R0 _R0
�

_R00

_R02

�
r�0
: (A8)

If R00�0; t� � 0 to avoid a singularity, we find that the last
two terms in the above expression are also zero, and we
obtain

 q0 �

�
�
R0 �R0

_R02

�
r�0
: (A9)

Since R0�r; t�> 0 to prevent shell crossing, and _R2 is
obviously positive, we would need to have

 

�R 0�0; t� � �a0�t�> 0 (A10)

in order to have a negative q0. For the k�r� � 0 solution,

 

�R 0�0; t� � �
2

3

�
2�G�0�to�

9

�
1=3
t�4=3 < 0; (A11)

moreover, the k�r�> 0 solution has

 

�R 0�0; t� � �
4�G�0�to�

3k0

�
du0

dt

�
2
< 0; (A12)

and the k�r�< 0 solution has

 

�R 0�0; t� �
4�G�0�to�

3k0

�
du0

dt

�
2
< 0: (A13)

Therefore we can conclude that, in the absence of weak
central singularities, all LTB solutions have positive q0

since �R0�0; t� is always negative.

APPENDIX B: MODELS OF IGUCHI, NAKAMURA
AND NAKAO

In this appendix we verify explicitly that the models
with q0 < 0 studied by Iguchi et al. [27] contain weak
singularities. For the first case in Iguchi et al., the pure
bang time inhomogeneity, there will be no singularity if
t00�0� � 0, as shown from Eq. (A1). If we expand DL�z� for
this FRW model in a power series around z � 0, we can
compare this term by term to the expansion of the lumi-
nosity distance for a zero energy LTB model to find [26]

 �M � 1� 5
t00�0�

��2 �
29

4

t020 �0�

�2�4 �
5

2

t000 �0�

�2�
(B1)

and

 �� � �
1

2

t00�0�

��2 �
29

8

t020 �0�

�2�4 �
5

4

t000 �0�

�2�
; (B2)

where � � �6�G�0�to�	1=3 and � � t1=3. Using the fact
that �M ��� � 1, we combine Eqs. (B1) and (B2) to
find

 t00�0� � �
1
2��

2��: (B3)

A nonzero �� requires that t00�0� is also nonzero, and
hence there will be a singularity in such models.

Iguchi et al. also look at models with t0�r� � 0 and
positive E�r�. By combining and rearranging Eqs. (6) and
(39) from [26], we find that

 

3�� � 1

2
�
R0 �R0

_R02
�

R00

R0 _R0
�

_R00

_R02
: (B4)

Plugging into this the negative k solution for R�r; t� and
then setting r � 0, we can find an equation for k0�0�. Iguchi
et al. make some simplifying definitions, wherein they set
H0 � G � 1 and then write everything else as a function
of a parameter �0, which they vary between 0.1 and 1.
They set k0 � �0 � 1, �0�to� � 3�0=8�,
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 u0 � ln
�

2��0

�0
�

���������������������������������
2��0

�0

�
2
� 1

s �
; (B5)

and

 t�r � 0� �
�0

2

�sinhu0 � u0�

�1��0�
3=2

; (B6)

where t�r� is evaluated along radially-inward moving light rays. Plugging these in and then solving for k0�0� yields

 k0�0� �
�1��0�

3=2

6

�
�3�� � 1�sinh2u0�coshu0 � 1� � 2�coshu0 � 1�2

3 sinhu0 � u0�coshu0 � 2�

�
; (B7)

where it is assumed that �� � 0:7. This shows that k0�0� is only zero if �0 � 1; we can see from their Fig. 4 that this
corresponds to the uninteresting FRW dust solution k�r� � 0 for all r. All of the other choices for �0 will correspond to
models with k0�0� � 0 and a central singularity. Therefore, all of the nontrivial models computed in Ref. [27] have weak
singularities at r � 0.
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