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We introduce a statistical measure of the effective model complexity, called the Bayesian complexity.
We demonstrate that the Bayesian complexity can be used to assess how many effective parameters a set
of data can support and that it is a useful complement to the model likelihood (the evidence) in model
selection questions. We apply this approach to recent measurements of cosmic microwave background
anisotropies combined with the Hubble Space Telescope measurement of the Hubble parameter. Using
mildly noninformative priors, we show how the 3-year WMAP data improves on the first-year data by
being able to measure both the spectral index and the reionization epoch at the same time. We also find
that a nonzero curvature is strongly disfavored. We conclude that although current data could constrain at
least seven effective parameters, only six of them are required in a scheme based on the �CDM
concordance cosmology.
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I. INTRODUCTION

The quest for a cosmological standard model is being
driven by an increasing amount of high quality observa-
tions. An important and natural question concerns the
number of fundamental parameters of the underlying
physical model. How many numbers are necessary to
characterize the Universe? Or in other words, how complex
is the Universe? Generally the term ‘‘complexity’’ is em-
ployed in a rather loose fashion: a more complex model is
one with a larger number of parameters that can be adjusted
over a large range to fit the model to the observations. In
this paper we will try to measure the effective number of
model parameters that a given set of data can support.
Because of the connection to the data, we will call this
the effective complexity or Bayesian complexity. Our main
purpose is to present a statistically sound quantity that
embodies in a quantitative way the above notion of com-
plexity when a model is compared to the observations.

Bayesian model comparison makes use of an Occam’s
razor argument to rank models in term of their quality-of-
fit and economy in the number of free parameters. A model
with more free parameters will naturally fit the observa-
tions better, but it will also be penalized for the wasted
parameter space that the larger number of parameters
implies. Several studies have made use of Bayesian model
comparison to assess the viability of different models in the
cosmological context [1–3]. In this work we show that
Bayesian complexity is an ideal complement to model
selection in that it allows us to identify the number of
effective parameters supported by the data.

We start by introducing our notation and the fundamen-
tals of Bayesian statistics and model comparison. We then

present the Bayesian complexity and illustrate its use in the
context of a toy model in Sec. III. In Sec. IV we apply it to
observations of cosmic microwave background anisotro-
pies and we conclude in Sec. V.

II. BAYESIAN MODEL SELECTION AND
COMPLEXITY

A. Model comparison

We first briefly review the basic ingredients of Bayesian
statistics and some relevant aspects of information theory.
This serves both to introduce our notation and to remind
the reader of the main points. We will use a fairly compact
notation where possible and refer the reader to e.g. [4] for
the exact mathematical definitions. Specifically, for an
outcome x of a random variable X we will write p�x� for
the probability distribution function (pdf), i.e. the proba-
bility that X takes a certain value x. In the case of a
multidimensional parameter space we will write p�x� as a
short form of the joint probability over all components of x,
p�x1; x2; . . . ; xn�. The conditional probability of x given y
is written p�xjy�.

The starting point of our analysis is Bayes theorem:

 p�xjy; I� �
p�yjx; I�p�xjI�

p�yjI�
: (1)

Here, the quantity I represents a collection of all external
hypotheses and our model assumptions.

Given the data d and a model M with n free parameters
�, statistical inference deals with the task of determining a
posterior pdf for the free parameters of the model,
p��jd;M�. The latter is computed via Bayes theorem as

 p��jd;M� �
p�dj�;M�p��jM�

p�djM�
: (2)

On the right-hand side of this equation, p�dj�;M� is the
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probability of obtaining the observed data given the pa-
rameter value �. Since the observed data are a fixed quan-
tity, we interpret p�dj�;M� as a function of � and we call
it the likelihood, L��� � p�dj�;M�. The prior pdf
p��jM� embodies our state of knowledge about the values
of the parameters of the model before we see the data.
There are two conceptually different approaches to the
definition of the prior: the first takes it to be the outcome
of previous observations (i.e., the posterior of a previous
experiment becomes the prior for the next), and is useful
when updating one’s knowledge about the values of the
parameters from subsequent observations. For the scope of
this paper, it is more appropriate to interpret the prior as the
available parameter space under the model, which then is
collapsed to the posterior after arrival of the data. Thus the
prior constitutes an integral part of our model specification.
In order to avoid cluttering the notation, we will write
���� � p��jM�, with the model dependence understood
whenever no confusion is likely to arise.

The expression in the denominator of (2) is a normal-
ization constant and can be computed by integrating over
the parameters,

 p�djM� �
Z
d�����L���: (3)

This corresponds to the average of the likelihood function
under the prior and it is the fundamental quantity for model
comparison. The quantity p�djM� is called marginal like-
lihood (because the model parameters have been margi-
nalized), or in recent papers in the cosmological context,
the evidence. In the following we shall refer to it as to the
likelihood for the model [5]. The posterior probability of
the model is then, using Bayes theorem again,

 p�Mjd� �
p�djM���M�

p�d�
; (4)

where ��M� is the prior for the model. The quantity in the
denominator on the right-hand side is just a normalization
factor depending on the data alone, which we can ignore.
When comparing two models, M1 versus M2, one intro-
duces the Bayes factor B12, defined as the ratio of the
model likelihoods

 

p�M1jd�
p�M2jd�

�
��M1�

��M2�
B12: (5)

In other words, the prior odds of the models are updated by
the data through the Bayes factor. If we do not have any
special reason to prefer one model over the other before we
see the data, then ��M1� � ��M2� � 1=2, and the pos-
terior odds reduce to the Bayes factor. Alternatively, one
can interpret the Bayes factor as the factor by which our
relative belief in the two model is modified once we have
seen the data.

B. A Bayesian measure of complexity

The usefulness of a Bayesian model selection approach
based on the model likelihood is that it tells us whether the
increased complexity of a model with more parameters is
justified by the data. But the number of free parameters in a
model is only the simplest possible notion of complexity,
which we call input complexity and denote by C0. A much
more powerful definition of model complexity was given
by Spiegelhalter et al. [6], who introduced the Bayesian
complexity, which measures the number of model parame-
ters that the data can constrain:

 C b � �2�DKL�p;�� � dDKL�: (6)

On the right-hand side, DKL�p;�� is the Kullback-Leibler
(KL) divergence between the posterior and the prior, rep-
resenting the information gain obtained when upgrading
the prior to the posterior via Bayes theorem:

 DKL�p;�� �
Z
p��jd� log

p��jd�
����

d�: (7)

The KL divergence measures the relative entropy between
the two distributions (e.g. [4]) [7]. In Eq. (6), dDKL is a
point-estimate for the KL divergence. If all parameters are
well measured, then the posterior pdf will collapse into a
small region around �̂, and thus the KL divergence will
approximately be given by dDKL � logp��̂�=���̂�. By tak-
ing the difference, we compare the effective information
gain to the maximum information gain we can expect
under the model, dDKL. The factor of 2 is chosen so that
Cb ! C0 for highly informative data, as shown below. As a
point estimator for �̂ we employ the posterior mean, de-
noted by an overbar. Other choices are possible, and we
discuss this further below.

We can use Eq. (7) and Bayes theorem to rewrite (6) as

 C b � �2
Z
p��jd;M� logL��� � 2 logL��̂�; (8)

Defining an effective �2 through the likelihood as L��� /
exp���2=2� (any constant factors drop out of the differ-
ence of the logarithms in Eq. (6)) we can write the effective
number of parameters as

 C b � �2��� � �2��̂�; (9)

where the mean is taken over the posterior pdf. This
quantity can be computed fairly easily from a Markov
chain Monte Carlo (MCMC) run, which is nowadays
widely used to perform the parameter inference step of
the analysis.

We thus see that the effective number of parameters of
the model is not an absolute quantity, but rather a measure
of the constraining power of the data as compared to the
predictivity of the model, i.e. the prior. Hence Cb depends
both on the data at hand and on the prior available parame-
ter space. In fact, it is clear that the very notion of ‘‘well-
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measured parameter’’ is not absolute, but it depends on
what our expectations are, i.e. on the prior. For example,
consider a measurement of �tot, the total energy density of
the Universe, expressed in units of the critical density. The
current posterior uncertainty around �tot � 1 is about 0.02.
Whether this means that we have ‘‘measured’’ the Universe
to be flat (i.e. �tot � 1) or not depends on the prediction of
the model we consider. If we take a generic prior in the
range 0 � �tot � 2, then we conclude that current data
have measured the Universe to be flat with moderate odds
(a precise analysis gives odds of 18:1 in favor of the flat
model, see [2]). On the contrary, in the framework of e.g.
landscape theories, the prior range of the model is much
narrower, say j�tot � 1j & 10�5, and therefore current
posterior knowledge is insufficient to deem the parameter
measured.

Equation (9) is conceptually related to the ��2 approach
used, for example, in [8] to analyze how many dark energy
parameters are measured by the data. In that work the
decrease of the �2 value within the confidence regions
encompassing 68% and 95% of the posterior was measured
and compared against the theoretical decrease of a multi-
variate Gaussian distribution with a given number of de-
grees of freedom (see e.g. chapter 15.6 of [9]). This in turn
allowed to deduce the effective number of degrees of
freedom of the �2.

We now turn to an explicit demonstration of the power
and usefulness of coupling the model likelihood with the
Bayesian model complexity in model selection questions,
by analyzing in some detail linear toy models.

III. LINEAR MODELS

Before applying the Bayesian complexity and model
likelihood to current cosmological data, we compute
them explicitly for a linear model and we illustrate their
use in a toy example involving fitting a polynomial of
unknown degree. We show below how the Bayesian com-
plexity tells us how many parameters the data could in
principle constrain given the prior expectations under the
model.

A. Specification of the likelihood function

Let us consider the following linear model

 y � F�� �; (10)

where the dependent variable y is a d-dimensional vector
of observations, � is a vector of dimension n of unknown
regression coefficients and F is a d� n matrix of known
constants that specify the relation between the input vari-
ables � and the dependent variables y [10]. Furthermore, �
is a d-dimensional vector of random variables with zero
mean (the noise). If we assume that � follows a multi-
variate Gaussian distribution with uncorrelated covariance
matrix C � diag��2

1; �
2
2; . . . ; �2

d�, then the likelihood func-
tion takes the form

 p�yj�� �
1

�2��d=2Q
j
�j

exp
�
�

1

2
�b�A��t�b�A��

�
; (11)

where we have defined Aij � Fij=�i and bi � yi=�i. This
can be cast in the form

 p�yj�� � L0 exp	�1
2��� �0�

tL��� �0�
; (12)

with the likelihood Fisher matrix L given by

 L � AtA (13)

and a normalization constant

 L 0 �
1

�2��d=2Q
j
�j

exp
�
�

1

2
�b� �0A�t�b�A�0�

�
: (14)

Here �0 denotes the parameter value that maximizes the
likelihood, given by

 �0 � L�1Atb: (15)

As a shortcut, we will write

 �2��� � �2 lnp�yj�� � �2��0� � ��� �0�
tL��� �0�;

(16)

where �2��0� � �2 lnL0.

B. Model likelihood and complexity

In this section we gain some intuitive feeling about the
functional dependence of the model likelihood and com-
plexity on the prior and posterior for the simple case of
linear models outlined above. The results are then applied
in Sec. III D to an explicit toy model, showing the model
likelihood and complexity in action.

Assuming as a prior pdf a multinormal Gaussian distri-
bution with zero mean and Fisher information matrix P
(we remind the reader that the Fisher information matrix is
the inverse of the covariance matrix), i.e.

 ���� �
jPj1=2

�2��n=2
exp

�
�

1

2
�tP�

�
; (17)

where jPj denotes the determinant of the matrix P, the
model likelihood (3) and model complexity (9) of the
linear model above are given by Eqs. (A3) and (A9),
respectively, (see the appendix).

Let us now consider the explicit illustration of a model
with n parameters, � � ��1; . . . ; �n� and C0 � n. Without
losing generality, we can always choose the units so that
the prior Fisher matrix is the unity matrix, i.e.

 P � Idn: (18)

This choice of units is natural since it is the prior that sets
the scale of the problem. The likelihood Fisher matrix
being a symmetric and positive matrix, it is characterized
by n�n� 1�=2 real numbers, which we choose to be its
eigenvalues 1=�2

i , i � 1; . . . ; n and the elements of the
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orthogonal matrix U that diagonalizes it (corresponding to
rotation angles). Here the �i represent the standard devia-
tions of the likelihood covariance matrix along its eigen-
directions i, expressed in units of the prior width. With
D � diag���2

1 ; . . . ; ��2
n � we have that the likelihood

Fisher matrix is given by L � UDUt and thus Eq. (A9)
gives
 

Cb � C0 � tr	�UDUt � Idn�
�1
 � C0 � tr	�D� Idn�

�1


�
Xn
i�1

1

1� �2
i

: (19)

The complexity only depends on how well we have mea-
sured the eigendirections of the likelihood function with
respect to the prior. Every well-measured direction, (i.e.,
one for which �i � 1) counts for one parameter in Cb,
while directions whose posterior is dominated by the prior,
�i � 1, do not count towards the effective complexity.
This automatically takes into account strong degeneracies
among parameters. Notice also that once an eigendirection
is well measured (i.e. in the limit �i � 1), then the prior
width does not matter anymore.

In contrast, the model likelihood (A3) is given by (as-
suming for simplicity that the mean of the likelihood
corresponds to the prior mean, i.e. �0 � 0)

 p�djM� � L0

Yn
i�1

�i���������������
1� �2

i

q : (20)

Finally, we remark that an important ingredient of the
Bayesian complexity is the point estimator for the KL
divergence. Here we adopt the posterior mean as an esti-
mate, but other simple alternatives are certainly possible,
for instance the posterior peak (or mode), or the posterior
median. The choice of an optimal estimator is still matter
of research (see e.g. Sec. IVand the comments at the end of
Ref. [6]). The important aspect is that the posterior pdf
should be summarized by only one number, namely, the
value plugged into the KL estimator. This is obviously
going to be a very bad description for highly complex
pdf’s, exhibiting for instance long, banana-shaped degen-
eracies. No single number can be expected to summarize
accurately such a pdf. On the other hand, for fairly
Gaussian pdf’s all the different estimators (mean, median
and peak) reduce to the same quantity. This clearly calls for
using normal directions in parameter space [11], which
make the posterior as Gaussian as possible, a procedure
that it would be wise to follow whenever possible for many
other good reasons (e.g., better and faster MCMC
convergence).

C. Effective complexity as a data diagnostics

We now turn to the question of how we can use the
model likelihood and complexity together as a tool for
model selection. We shall see that the Bayesian complexity

provides a way to assess the constraining power of the data
with respect to the model at hand and to break the degen-
eracy among models with approximately equal model
likelihood.

Let us consider two models A and B with different
numbers of parameters, nB > nA (but in general the two
models need not be nested). If the additional parameters of
model B are required by the data, then the likelihood of
model B will be larger and B will have larger posterior
odds, and thus it should be ranked higher in our preference
than model A. However, even if the extra parameters of
model B are not strictly necessary, they can lead to over-
fitting of the data and compensate the Occam’s penalty
factor in (20) sufficiently to lead to a comparable marginal
likelihood for both models. The effective complexity pro-
vides a way to break the degeneracy between the quality-
of-fit term (L0) and the Occam’s razor factor in the mar-
ginal likelihood, and enables us to establish whether the
data is good enough to support the introduction of the
additional parameters of model B.

To summarize, we are confronted with the following
scenarios:

(1) p�djB� � p�djA�: model B is clearly favored over
model A and the increased number of parameters is
justified by the data.

(2) p�djB�  p�djA� and Cb�B�> Cb�A�: the quality of
the data is sufficient to measure the additional pa-
rameters of the more complicated model, but they
do not improve its likelihood by much. We should
prefer model A, with less parameters.

(3) p�djB�  p�djA� and Cb�B�  Cb�A�: both models
have a comparable likelihood and the effective num-
ber of parameters is about the same. In this case the
data is not good enough to measure the additional
parameters of the more complicated model and we
cannot draw any conclusions as to whether the addi-
tional complexity is warranted.

We illustrate these cases by computing the model like-
lihood and effective complexity of a toy model in the
next section.

D. An illustrative example

As a specific example of the linear model described in
Sec. III A, we consider the classic problem of fitting data
drawn from a polynomial of unknown degree. The models
that we test against the data are a collection of polynomials
of increasing order, with input complexity C0 � n, where n
is the order of the polynomial. The question is then whether
our model selection can correctly recover the order m of
the polynomial from which the data are actually drawn.

The data covariance matrix is taken to be diagonal and
with a common standard deviation for all points, s, while
the prior over the polynomial coefficients is a multivariate
Gaussian with covariance matrix given by the identity
matrix. For definitiveness, we will take the underlying
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model from which the data are generated to have m � 6
parameters. First we draw p � 10 data points with noise
s � 1=200. We plot in Fig. 1 the resulting model likelihood
and effective complexity as a function of the input model
complexity, n. The likelihood of the models increases
rapidly until n � m and then decreases slowly, signaling
that n > 6 parameters are not justified. (We plot the loga-
rithm of the logarithm of the model likelihood as the
models with n < 6 parameters are highly disfavored and
would otherwise not fit onto the figure—an example of
case (1) of the list in the previous section). The effective
complexity on the other hand continues to grow until n�
p, at which point the data is unable to constrain more
complex models and Cb becomes constant. We conclude
that the model with n � 6 is the one preferred by data and
that additional parameters are not needed, although the
data could have supported them. This is case (2) in the
list of the previous section.

Next we decrease the number of data points to p � 4, in
which case we obviously cannot recover more than four
parameters. It comes as no surprise that the model like-
lihood stops increasing at n � 4, see Fig. 2. But the effec-
tive complexity also flattens at n � 4, which means that the
data cannot deal with more than four parameters, irrespec-
tive of the underlying model! In this case, corresponding to

point (3) of the list in the previous section, we conclude
that the available data do not support more than 4 effective
parameters. On the other hand, we recognize that the flat-
tening of the model likelihood at n � 4 does not neces-

FIG. 1 (color online). Bayesian effective complexity Cb (solid
black line, left-hand vertical scale) and model likelihood (red
circles, right-hand scale) as a function of the number of parame-
ters, for d � 10 data points with small noise. The dashed blue
line is the number of parameters for reference. The errorbars on
the model likelihood values are smaller than the symbols on this
scale, while the Bayesian complexity is independent of the noise
realization (i.e., error-free) for linear models. The Bayesian
analysis correctly concludes that the best model is the one
with n � 6 parameters.

FIG. 2 (color online). As in Fig. 1, but now using only p � 4
data points. The maximum effective complexity that the data can
support is Cb � 4, and the flattening of the model likelihood at
the same value does not allow to conclude that models with more
parameters are disfavored.

FIG. 3 (color online). As in Fig. 1, but now with p � 10 data
points and large noise. As in Fig. 2, the maximum complexity
supported by the data is smaller than the underlying true model
complexity, m � 6.
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sarily mean that the underlying model has four parameters.
We thus must hold our judgment until better data become
available.

As an alternative to decreasing the number of data
points, we can achieve a similar data degradation effect
by keeping p � 10 data points but by increasing the noise
to s � 1. We obtain a result similar to the previous case,
which is plotted in Fig. 3.

We conclude by emphasizing once more that in general
the outcome of model selection based on assessing the
model likelihood and effective complexity depends on
the interplay of two factors. The first is the predictive
power of the model, as encoded in the prior. The second
is the constraining power of the data.

IV. HOW MANY PARAMETERS DOES THE CMB
NEED?

We now apply the above tools to the question of how
many cosmological parameters are necessary to describe
current cosmic microwave background (CMB) anisotropy
measurements. We make use of the following CMB data:
WMAP, ACBAR, CBI, VSA, and Boomerang 2003. To
provide an additional regularization (especially in view of
including spatial curvature) we also use the HST limits on
the Hubble parameter, H0 � 72� 8 km=s=Mpc. We
should note that this strongly increases the power of the
CMB data. We perform two analyses, using in the first all
three years of WMAP data (WMAP3) and in the second
analysis only the first-year data (WMAP1), always com-
bined with the other data sets.

For each set of cosmological parameters we create a
converged MCMC chain using the publicly available code
COSMOMC [12]. We then compute the Bayesian complexity
from the chain through Eq. (9). The model likelihood is
evaluated with the Savage-Dickey method (see [2] and
references therein): For a model that is nested within a
larger model by fixing one parameter, �f, to a value �0, the
Bayes factor between the two models is given by the
posterior of the larger model at �f � �0 (normalized and
marginalized over all other parameters) divided by the
prior at this point. In this way it is possible to derive all
the model likelihoods in a hierarchy, starting from the most
complex model (which is assigned an arbitrary model
likelihood, in our case 1). Since errors tend to accumulate
through the intermediate steps necessary to reach the sim-
pler models, and as a cross-check, we additionally com-
puted the model likelihoods with nested sampling [3] for
the WMAP1 data. Within the errorbars, we did not find any
appreciable discrepancy between the two methods.

In this analysis we use four basic cosmological parame-
ters, namely

 b4 � f�bh2;�mh2; �?; Asg; (21)

where �b (�m) is the baryon (matter) density relative to

the critical energy density, h � H0=100 km=s=Mpc is the
fudge factor, �? is the ratio of the sound horizon to the last
scattering angular diameter distance and As � lnP�k0�,
with P�k0� the power spectrum of adiabatic density fluctu-
ations at a scale k0 � 0:05 Mpc�1. We then add three more
parameters in various combinations, to study whether they
are necessary and supported by the observations. The addi-
tional parameters are: the reionization optical depth �, the
scalar spectral index ns and the spatial curvature (parame-
terized by its contribution to the Hubble equation, �K).

The scalar spectral index is either fixed to ns � 1 (the
case of a scale invariant power spectrum of initial fluctua-
tions), or else chosen with a Gaussian prior, ns � 1� 0:1.
We find that��ns � 1� � 1=�0:1

�������
2�
p

�  4. We choose the
prior of the reionization optical depth to reflect our current
lack of understanding of how reionization proceeds. We
choose it flat within 0 � � � 0:15 and then add an expo-
nential falloff:

 ���� / exp
�
�
�� 0:15

0:05

�
for � > 0:15: (22)

The models without this parameter have � � 0, and ��� �
0� � 5. The curvature contribution is either set to zero,
�K � 0, if we do not include the parameter, or else is used
with a flat prior�1 � �K � 1. The value of the prior for a
flat universe is ���K � 0� � 1=2. We find that adding
curvature as a free parameter when using the WMAP
3 yr data leads to a non-Gaussian posterior for which the
mean as a point-estimate for the KL divergence in Eq. (6) is
not representative. We opt here for a slightly modified
estimator, given by the average of the �2 evaluated at the
mean and the mode of the posterior. For a Gaussian pos-
terior this reduces to the mean point-estimator but it ap-
pears to be somewhat more stable.

We quote our results in Table I (WMAP3) and Table II
(WMAP1), while Fig. 4 gives a graphical representation.
The model likelihoods are quoted relative to the model
with the most parameters. We find that using WMAP1 we
can measure all the parameters for the models with four
and five parameters. For C0 > 5, the effective complexity
increases more slowly than the number of input parame-
ters, but we can still measure at least six parameters with
CMB� HST. With WMAP3 we can measure all six pa-
rameters of the b4 � ns � � model, as well as �K. We
conclude that the new WMAP3 data augmented by the
HST determination ofH0 can measure all seven parameters
considered in this analysis.

Taking into account the model likelihood values, we find
that the models b4, b4 ��K and (to a lesser extent) b4 �
ns ��K as well as b4 � ���K are strongly disfavored.
This shows that �K � 0 is preferred by current data, in
agreement with the result of Ref. [2]. In general, adding in
a nonzero spatial curvature leads to a well measurable
decrease in the model probability that, together with the

MARTIN KUNZ, ROBERTO TROTTA, AND DAVID R. PARKINSON PHYSICAL REVIEW D 74, 023503 (2006)

023503-6



increase in effective model complexity, reinforces our
belief that �K can be safely neglected for the time being.
Of course this result is partially a reflection of our choice of
prior on �K. However, it is important to remember that had
we halved the range of this prior, the likelihoods for models
with nonzero curvature would have only doubled. This
would not change the results significantly. Alternatively,
an inflation-motivated prior of the type j�Kj � 1 would
render the parameter unmeasured and irrelevant. In this
case adding it would not change the effective complexity or
the model likelihood at all.

We also find that the basic set b4 must be augmented by
either ns or �. The inclusion of both parameters at the same
time was optional with the first-year WMAP data only, but
using WMAP3 we find that b4 � ns � � has a significantly
higher model likelihood than all other models investigated
here. Also, where with WMAP1 we only gained half an
effective parameter when going from b4 � � or b4 � ns to
b4 � ns � �, we now gain one full parameter. Thus we can
now measure both parameters at the same time.

Overall, we conclude that b4 � � was a good and suffi-
cient base model until a few months ago. Now b4 � ns � �

should be used. A wider prior on ns would have only a
minimal impact on the complexity of models including a
tilt, since ns seems to be rather well-measured when con-
sidered alone (ie, not in combination with �). We find that a
model with 6 parameters is sufficient to explain the current
CMB data, even though all seven effective parameters can
be constrained now. This analysis demonstrates that the
Bayesian complexity estimator (9) works with real-world
data and gives useful additional information for model
comparison.

FIG. 4. We plot the model likelihood (normalized to the model
with the most parameters) versus the Bayesian effective com-
plexity for the models of Table I (using WMAP 3 yr data). A
downward-pointing arrow indicates the Bayesian complexity of
models that lie outside the boundary of the figure.

TABLE II. Model likelihood and complexity as inferred from
the first-year WMAP data, for comparison with the values in
Table I. We see how the WMAP3 data increases the model
likelihood of b4 � ns � � relative to the simpler models b4 � �
and b4 � ns.

Model Model likelihood Effective complexity

b4 � ns ��K � � 1 6:2� 0:1
b4 � ns ��K 0:06� 0:01 6:0� 0:3
b4 � ns � � 42� 5 5:5� 0:02
b4 ��K � � 0:68� 0:15 5:6� 0:2
b4 � ns 4:5� 0:9 4:9� 0:03
b4 ��K �1:5� 0:5� � 10�4 5:0� 0:09
b4 � � 17� 5 4:8� 0:03
b4 �2:3� 0:6� � 10�3 4:0� 0:05

TABLE I. Relative model likelihood (normalized to the model with the most parameters) with
WMAP 3 yr data and effective Bayesian complexity for the models discussed in the text. C0

gives the number of parameters of the model. The error on the effective complexity was
computed from random subchains and represents only the statistical error.

Model Model likelihood C0 Effective complexity Comments

b4 � ns ��K � � 1 7 6:9� 0:3 Too many parameters
b4 � ns ��K 0:035� 0:005 6 6:3� 0:2 �K disfavored
b4 � ns � � 48� 2 6 6:0� 0:04 ns � � favored
b4 ��K � � 0:04� 0:01 6 6:4� 0:3 �K disfavored
b4 � ns 2:2� 0:3 5 5:0� 0:04 ns necessary
b4 ��K �1:5� 0:5� � 10�5 5 4:8� 0:04 �K disfavored
b4 � � 3:5� 1 5 4:9� 0:04 � necessary
b4 �1:5� 0:5� � 10�3 4 4:0� 0:04 Strongly disfavored
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V. CONCLUSIONS

In this work we introduced the Bayesian complexity as a
measure of the effective number of parameters in a model.
We discussed extensively its properties and its usefulness
in the context of linear models, where it can be computed
analytically. We showed that it corresponds to the number
of parameters for which the width of the posterior proba-
bility distribution is significantly narrower than the width
of the prior probability distribution. These parameters can
be considered to have been well measured by the data
given our prior assumptions in the model.

We also showed that for linear models the Bayesian
complexity probes the trace of the posterior covariance
matrix, while the model likelihood is sensitive to the
determinant. We argued that the Bayesian complexity al-
lows to test for cases where the data is not informative
enough for the model likelihood to be a reliable indicator
of model performance, and provided an explicit example.

Finally, we applied the combination of model likelihood
and Bayesian complexity to the question of how many (and
which) parameters are measured by current CMB data,
complemented by the HST limit on the Hubble parameter.
We limited ourselves to the family of �CDM models with
a power-law spectrum of primordial perturbations. We
demonstrated that—in addition to the energy density in
baryons and matter, the CMB peak location parameter �?
and the amplitude of the initial perturbations—we need to
consider now both the reionisation optical depth and the
scalar spectral index. Nonflat models are disfavoured. The
effective complexity shows that the CMB data can measure
all seven parameters in this scheme.

As the Bayesian complexity is very easy to compute
from a MCMC chain, we hope that it will be used routinely
in future data analyses in conjunction with the model
likelihood for model building assessment. It will help to
determine if the data is informative enough to measure the
parameters under consideration. Further work is needed to
study the performance of the Bayesian complexity in situ-
ations with a strongly non-Gaussian posterior.
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APPENDIX: MODEL LIKELIHOOD AND
COMPLEXITY IN THE LINEAR CASE

Here we compute first the model likelihood (3) for the
linear model (12), using the Gaussian prior (17). An analo-
gous computation can be found in [6]. Returning to Bayes

theorem (1), the posterior pdf is given by a multinormal
Gaussian with Fisher information matrix F

 F � L� P (A1)

and mean �� given by

 

�� � F�1L�0: (A2)

The model likelihood (3) evaluates to

 p�djM� � L0
jFj�1=2

jPj�1=2
exp

�
�

1

2
�t0�L� LF

�1L��0

�

� L0
jFj�1=2

jPj�1=2
exp

�
�

1

2
��t0L�0 � ��tF ���

�
:

(A3)

This can be easily interpreted by looking at its three
components: the quality-of-fit of the model is encoded in
L0, which represents the best-fit likelihood. Thus a model
that fits the data better will be favored by this term. The
term involving the determinants of P and F is a volume
factor (the so called Occam’s factor). As jPj � jFj, it
penalizes models with a large volume of wasted parameter
space, i.e. those for which the parameter space volume
jFj�1=2 that survives after arrival of the data is much
smaller than the initially available parameter space under
the model prior, jPj�1=2. Finally, the exponential term
suppresses the likelihood of models for which the parame-
ters values that maximize the likelihood, �0, differ appre-
ciably from the expectation value under the posterior, ��.
Therefore when we consider a model with an increased
number of parameters we see that its model likelihood will
be larger only if the quality-of-fit increases enough to
offset the penalizing effect of the Occam’s factor.

Let us now turn to the computation of the Bayesian
complexity, Eq. (9). Using the posterior mean (denoted
by an overbar) as a point estimator for the effective chi-
square, we obtain from (16)

 �2� ��� � �2��0� � � ��� �0�
tL� ��� �0�: (A4)

The expectation value of the �2 under the posterior is given
by

 �2��� � �2��0� � tr�Lh��� �0�
t��� �0�i�: (A5)

We concentrate on the second term and write ��� �0� �
��� ��� � � ��� �0� � u� v. The total term in the expec-
tation value then becomes hutu� utv� vtu� vtvi. The
first term of this expression is just the posterior covariance
matrix hutui � F�1. The last term combines with �2��0� to
�2� ���. The cross terms vanish since hui � 0.

All taken together, we obtain for the complexity

 C b � tr�Lh��� ���t��� ���i� (A6)

 � tr�LF�1� (A7)
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Using the relation (A1) we can rewrite the complexity as

 C b � trf�F� P�F�1g (A8)

 � C0 � trfPF�1g: (A9)

Thus while the model likelihood depends on the determi-

nant of the Fisher matrices, the complexity depends on
their trace. Another important point worth highlighting is
that for linear models the complexity does not depend on
the degree of overlap between the prior and the posterior,
nor on the noise realization (as long as the noise covariance
matrix is known).
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