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We extract parameters relevant for distinguishing among single-field inflation models from the
Wilkinson Microwave Anisotropy Probe (WMAP) three-year data set, and also from WMAP in
combination with the Sloan Digital Sky Survey (SDSS) galaxy power spectrum. Our analysis leads to
the following conclusions: (1) the Harrison—Zel’dovich model is consistent with both data sets at a 95%
confidence level; (2) there is no strong evidence for running of the spectral index of scalar perturbations;
(3) potentials of the form V / �p are consistent with the data for p � 2, and are marginally consistent
with the WMAP data considered alone for p � 4, but ruled out by WMAP combined with SDSS. We
perform a ‘‘Monte Carlo reconstruction’’ of the inflationary potential, and find that: (1) there is no
evidence to support an observational lower bound on the amplitude of gravitational waves produced
during inflation; (2) models such as simple hybrid potentials which evolve toward an inflationary late-time
attractor in the space of flow parameters are strongly disfavored by the data, (3) models selected with even
a weak slow-roll prior strongly cluster in the region favoring a red power spectrum and no running of the
spectral index, consistent with simple single-field inflation models.
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I. INTRODUCTION

Inflation [1] has become the dominant paradigm for
understanding the initial conditions for structure formation
and for cosmic microwave background (CMB) tempera-
ture anisotropies. In the inflationary picture, primordial
density and gravitational-wave fluctuations are created
from quantum fluctuations, ‘‘redshifted’’ beyond the hori-
zon during an early period of superluminal expansion of
the universe, then ‘‘frozen’’ [2–4]. Perturbations at the
surface of last scattering are observable as temperature
anisotropies in the CMB, as first detected by the Cosmic
Background Explorer satellite [5,6]. The latest and most
impressive confirmation of the inflationary paradigm has
been recently provided by the three-year data from the
Wilkinson Microwave Anisotropy Probe (WMAP) satellite
[7–10]. The WMAP collaboration has produced new full-
sky temperature maps in five frequency bands from 23 to
94 GHz based on the first three years of the WMAP sky
survey. The new maps, which are consistent with the first-
year maps and more sensitive, incorporate improvements

in data processing made possible by the additional years of
data and by a more complete analysis of the polarization
signal. WMAP data support the inflationary model as the
mechanism for the generation of superhorizon curvature
fluctuations.

The goal of this paper is to make use of the recent
WMAP three-year data (WMAP3) to discriminate among
the various single-field inflationary models. As such, this
paper represents a complete update of our previous analy-
sis [11] of the first-year WMAP data.

For single-field inflation models, the relevant parameter
space for distinguishing among models is defined by the
scalar spectral index n, the ratio of tensor-to-scalar fluctu-
ations r, and the running of the scalar spectral index
dn=d lnk. We employ Monte Carlo reconstruction, a sto-
chastic method for ‘‘inverting’’ observational constraints to
generate an ensemble of inflationary potentials compatible
with observation [12,13]. In addition to encompassing a
broader set of models than usually considered (large-field,
small-field, hybrid and linear models), Monte Carlo recon-
struction makes it possible easily to include effects to
higher order in slow roll.

The paper is organized as follows: In Sec. II we will
quickly review single-field inflation models and their ob-
servables. In Sec. III we define the inflationary model
space as a function of the slow-roll parameters � and �.
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In Sec. IV we describe our analysis method as well as our
results. Since a study of the implications of the WMAP3
data for single field models of inflation has been already
performed by the WMAP collaboration themselves [7], we
will also specify briefly the differences between our analy-
sis and theirs. In Sec. V we describe a Monte Carlo re-
construction method to determine an ensemble of
inflationary potentials compatible with observations. In
Sec. VI we present our conclusions.

II. SINGLE-FIELD INFLATION AND THE
INFLATIONARY OBSERVABLES

In this section we briefly review scalar field models of
inflationary cosmology, and explain how we relate model
parameters to observable quantities. Inflation, in its most
general sense, can be defined to be a period of accelerating
cosmological expansion during which the universe evolves
toward homogeneity and flatness. Within this broad frame-
work, many specific models for inflation have been pro-
posed. We limit ourselves here to models with ‘‘normal’’
gravity (i.e., general relativity) and a single order parame-
ter for the vacuum, described by a slowly rolling scalar
field �, the inflaton.

A scalar field in a cosmological background evolves
with an equation of motion ��� 3H _�� V 0��� � 0: The
evolution of the scale factor is given by the scalar-field
dominated Friedmann-Robertson-Walker (FRW) equation,

 H2 �
8�

3m2
Pl

�
1

2
_�2 � V���

�
;

�
�a
a

�
�

8�

3m2
Pl
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We have assumed a flat FRW metric g�� �
diag�1;�a2;�a2 � a2�, where a2�t� is the scale factor of
the universe. Inflation is defined to be a period of accel-
erated expansion, �a > 0. A powerful way of describing the
dynamics of a scalar-field dominated cosmology is to
express the Hubble parameter as a function of the field
�, H � H���, which is consistent provided � is mono-
tonic in time. The equations of motion become [14–17]:
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These are completely equivalent to the second-order equa-
tion of motion. The second of the above equations is
referred to as the Hamilton-Jacobi equation, and can be
written in the useful form
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�

1�
1

3
����

�
�

�
8�

3m2
Pl

�
V���; (3)

where � is defined to be
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The physical meaning of ���� can be seen by expressing
Eq. (1) as
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�a
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�
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so that the condition for inflation, � �a=a�> 0, is equivalent
to � < 1. The scale factor is given by

 a / eN � exp
�Z t
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Hdt

�
; (6)

where the number of e-folds N is
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We will frequently work within the context of the slow-
roll approximation, which is the assumption that the evo-
lution of the field is dominated by the drag from the
cosmological expansion, so that �� ’ 0 and _� ’
�V 0=3H. The equation of state of the scalar field is domi-
nated by the potential, so that p ’ ��, and the expansion
rate is approximately H2 ’ 8�V���=3m2

Pl. The slow roll
approximation is consistent if both the slope and curvature
of the potential are small, V0; V00 	 V. In this case the
parameter � can be expressed in terms of the potential as
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We will also define a second ‘‘slow-roll parameter’’ � by
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Slow roll is then a consistent approximation for �; �	 1.
Inflation models not only explain the large-scale homo-

geneity of the universe, but also provide a mechanism for
explaining the observed level of inhomogeneity as well.
During inflation, quantum fluctuations on small scales are
quickly redshifted to scales much larger than the horizon
size, where they are frozen as perturbations in the back-
ground metric. The metric perturbations created during
inflation are of two types: scalar, or curvature perturba-
tions, which couple to the stress-energy of matter in the
universe and form the ‘‘seeds’’ for structure formation, and
tensor, or gravitational-wave perturbations, which do not
couple to matter. Both scalar and tensor perturbations
contribute to CMB anisotropy. Scalar fluctuations can
also be interpreted as fluctuations in the density of the
matter in the universe. Scalar fluctuations can be quantita-
tively characterized by the comoving curvature perturba-
tion PR. As long as the equation of state � is slowly
varying, the curvature perturbation can be shown to be [1]
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The fluctuation power spectrum is in general a function of
wave number k, and is evaluated when a given mode
crosses outside the horizon during inflation, k � aH.
Outside the horizon, modes do not evolve, so the amplitude
of the mode when it crosses back inside the horizon during
a later radiation- or matter-dominated epoch is just its
value when it left the horizon during inflation. Instead of
specifying the fluctuation amplitude directly as a function
of k, it is convenient to specify it as a function of the
number of e-folds N before the end of inflation at which
a mode crossed outside the horizon.

The spectral index n for PR is defined by

 n� 1 �
d lnPR

d lnk
; (11)

so that a scale-invariant spectrum, in which modes have
constant amplitude at horizon crossing, is characterized by
n � 1.

The power spectrum of tensor fluctuation modes is given
by [1]

 P1=2
T �kN� �

�
4H

mPl

����
�
p

�
N
: (12)

The ratio of tensor-to-scalar modes is then PT=PR � 16�,
so that tensor modes are negligible for �	 1.1

III. THE INFLATIONARY MODEL SPACE

To summarize the results of the previous section, infla-
tion generates scalar (density) and tensor (gravitational-
wave) fluctuations which are generally well approximated
by power laws: PR�k� / k

n�1, PT�k� / knT . In the limit of
slow roll, the spectral indices n and nT vary slowly or not at
all with scale. We can write the spectral indices n and nT to
lowest order in terms of the slow-roll parameters � and �
as:

 n ’ 1� 4�� 2�; nT ’ �2�: (13)

The tensor/scalar ratio is frequently expressed as a quantity
r, which is conventionally normalized as

 r � 16� �
PT

PR

: (14)

The tensor spectral index is not an independent parameter,
but is proportional to the tensor/scalar ratio, given to lowest
order in slow roll by nT ’ �2� � �r=8. This is known as
the consistency relation for inflation. A given inflation
model can therefore be described to lowest order in slow

roll by three independent parameters, PR, PT , and n. If we
wish to include higher-order effects, we have a fourth
parameter describing the running of the scalar spectral
index, dn=d lnk.

Calculating the CMB fluctuations from a particular in-
flation model reduces to the following basic steps: (1) from
the potential, calculate � and �. (2) From �, calculate N as
a function of the field �. (3) Invert N��� to find �N.
(4) Calculate PR, n, and PT as functions of�, and evaluate
them at � � �N. For the remainder of the paper, all
parameters are assumed to be evaluated at � � �N , where
N varies from 46 to 60.

With the normalization fixed, the relevant parameter
space for distinguishing between inflation models to lowest
order in slow roll is then the r� n plane. (To next order in
slow-roll parameters, one must introduce the running of n.)
Different classes of models are distinguished by the value
of the second derivative of the potential, or, equivalently,
by the relationship between the values of the slow-roll
parameters � and �. Each class of models has a different
relationship between r and n. For a more detailed discus-
sion of these relations, the reader is referred to
Refs. [18,19].

Even restricting ourselves to a simple single-field infla-
tion scenario, the number of models available to choose
from is large [1]. It is convenient to define a general
classification scheme, or ‘‘zoology’’ for models of infla-
tion. We divide models into three general types: large-field,
small-field, and hybrid, with a fourth classification, linear
models, serving as a boundary between large- and small-
field models.

First order in � and � is sufficiently accurate for the
purposes of this section, and for the remainder of this
section we will only work to first order. The generalization
to higher order in slow roll will be discussed in the
following.

A. Large-field models: �� < � 
 �

Large-field models have inflaton potentials typical of
‘‘chaotic’’ inflation scenarios [20], in which the scalar field
is displaced from the minimum of the potential by an
amount usually of order the Planck mass. Such models
are characterized by V00���> 0, and �� < � 
 �. The
generic large-field potentials we consider are polynomial
potentials V��� � �4��=��p, and exponential potentials,
V��� � �4 exp��=��.

For the case of an exponential potential, V��� /
exp��=��, the tensor/scalar ratio r is simply related to
the spectral index as

 r � 8�1� n�; (15)

but the slow-roll parameters have no dependence on the
number of e-folds N.

For inflation with a polynomial potential, V��� / �p,
we have

1This normalization convention is different from that used in
our analysis of the first-year WMAP data [11], which used the
convention r � 10�. In this paper, we have adopted the more
standard normalization convention r � 16�.
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p� 2
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(16)

so that tensor modes are large for significantly tilted
spectra.

B. Small-field models: � <��

Small-field models are the type of potentials that arise
naturally from spontaneous symmetry breaking (such as
the original models of ‘‘new’’ inflation [21,22]) and from
pseudo Nambu-Goldstone modes (natural inflation [23]).
The field starts from near an unstable equilibrium (taken to
be at the origin) and rolls down the potential to a stable
minimum. Small-field models are typically characterized
by V 00���< 0 and �<��. Typically � (and hence the
tensor amplitude) is close to zero in small-field models.
The generic small-field potentials we consider are of the
form V��� � �4�1� ��=��p�, which can be viewed as a
lowest-order Taylor expansion of an arbitrary potential
about the origin. The cases p � 2 and p > 2 have very
different behavior. For p � 2, n� 1 ’ ��1=2���mPl=��

2

and there is no dependence upon the number of e-foldings.
On the other hand

 r � 8�1� n� exp��1� N�1� n��: (17)

For p > 2, the scalar spectral index is

 n ’ 1�
2

N

�
p� 1

p� 2

�
; (18)

independent of �mPl=��. Assuming �<mPl results in an
upper bound on r of

 r < 8
p

N�p� 2�

�
8�

Np�p� 2�

�
p=�p�2�

: (19)

C. Hybrid models: 0 < � < �

The hybrid scenario [24–27] frequently appears in mod-
els which incorporate supersymmetry into inflation. In a
typical hybrid-inflation model, the scalar field responsible
for inflation evolves toward a minimum with nonzero
vacuum energy. The end of inflation arises as a result of
instability in a second field. Such models are characterized
by V00���> 0 and 0< �< �. We consider generic poten-
tials for hybrid inflation of the form V��� � �4�1�
��=��p�. The field value at the end of inflation is deter-
mined by some other physics, so there is a second free
parameter characterizing the models. Because of this extra
freedom, hybrid models fill a broad region in the r� n
plane. For ��N=�� � 1 (where �N is the value of the
inflaton field when there are N e-foldings till the end of
inflation) one recovers the same results as the large-field
models. On the contrary, when ��N=�� 	 1, the dynamics
are analogous to small-field models, except that the field is
evolving toward, rather than away from, a dynamical fixed

point. While in principle ‘‘hybrid’’ models can populate a
broad region of the inflationary parameter space, the pres-
ence of a dynamical fixed point means that there is a simple
subclass of hybrid models that live in a narrow band of
parameter space along a line with r ’ 0, n > 1, and
dn=d lnk ’ 0. We will see below that while the WMAP3
data do not rule out the entire region which we label here as
‘‘hybrid,’’ the simplest hybrid models evolving near the
dynamical fixed point are clearly disfavored by the data.

An example of a model which falls into the hybrid
region of the r� n plane away from the dynamical fixed
point is a potential with a negative power of the scalar field,
V��� � V0�1� ��mPl=��p�, used in intermediate infla-
tion [28] and dynamical supersymmetric inflation [29].
The power spectrum is blue: the spectral index given by
n� 1 ’ 2�p� 1�=��p� 2��Ntot � N��, where Ntot is the
total number of e-foldings, and the parameter r is generally
negligible. However, the model exhibits running of the
spectral index which would be potentially detectable by
future experiments,

 

dn
d lnk

� �
1

2

�
p� 2

p� 1

�
�n� 1�2: (20)

For example, for p � 2 and n � 1:2, the running is
dn=d lnk � �0:05 [30]. When the running is sizable, the
tensor contribution is totally negligible,

 r	 P1=2
R �n� 1��3p�5�=�p�2�: (21)

D. Linear models: � � ��

Linear models, V��� / �, live on the boundary between
large-field and small-field models, with V 00��� � 0 and
� � ��. The spectral index and tensor/scalar ratio are
related as

 r � 8
3�1� n�: (22)

E. Other models

This enumeration of models is certainly not exhaustive.
There are a number of single-field models that do not fit
well into this scheme, for example, logarithmic potentials
V��� � V0�1� �Cg2=8�� ln��=��� typical of supersym-
metry [1], where C counts the degrees of freedom coupled
to the inflaton field and g is a coupling constant. For this
kind of potential, one gets n� 1 ’ ��1=N��
�1� 3Cg2=16�2� and r ’ �Cg2=�2��1=N�. This model
requires an auxiliary field to end inflation and is more
properly categorized as a hybrid model, but falls into the
small-field region of the r� n plane.

F. Beyond first order

The four classes of inflation models, categorized by the
relationship between the slow-roll parameters as �� <
� 
 � (large field), � 
 �� (small field, linear), and 0<
�< � (hybrid), cover the entire r� n plane and are in that
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sense complete at first order in the slow-roll parameters.
However, this feature is lost going beyond first order:
models can evolve from one region to another. This feature
is manifest when changing the parameter N, and is par-
ticularly relevant for those models for which the running of
the observables with the scale is sizable [31]. Therefore, it
is important to realize that the lowest-order correspon-
dence between the slow-roll parameters and the class of
models does not always survive to higher order in slow roll.
For instance, for potentials of the form V��� �
�4f��=��, the parameter � is generally fixed by CMB
normalization, leaving the mass scale � and the number of
e-folds N as free parameters. For some choices of poten-
tial, for example V / exp��=�� or V / 1� ��=��2, the
spectral index n varies as a function of �. These models
therefore appear for fixed N as lines on r� n plane.
Changing N results in a broadening of the lines. For other
choices of potential, for example V / 1� ��=��p with
p > 2, the spectral index is independent of �, and each
choice of p describes a point on the zoo plot for fixed N. A
change in N turns each of these points into lines, which
smear together into a continuous region.

IV. ANALYSIS AND RESULTS

The method we adopt is based on the publicly available
Markov Chain Monte Carlo (MCMC) package COSMOMC

[32]. We sample the following eight-dimensional set of
cosmological parameters, adopting flat priors on them: the
physical baryon and CDM densities, !b � �bh2 and
!c � �ch2, the ratio of the sound horizon to the angular
diameter distance at decoupling, 	s, the scalar spectral
index, its running and the overall normalization of the
spectrum, n, dn=d ln k and A at k � 0:002 Mpc�1, the
tensor contribution r, and, finally, the optical depth to
reionization, 
. Furthermore, we consider purely adiabatic
initial conditions, we impose flatness, and we use the
inflation consistency relation to fix the value of the tensor
spectral index nT . We also restrict our analysis to the case
of three massless neutrino families; introducing a neutrino
mass in agreement with current neutrino oscillation data
does not change our results in a significant way.

We include the three-year data [7] (temperature and
polarization) with the routine for computing the likelihood
supplied by the WMAP team and available at the LAMBDA
web site.2 We marginalize over the amplitude of the
Sunyaev-Zel’dovich signal, but the effect is small: includ-
ing/excluding the correction changes our conclusions on
the best fit value of any single parameter by less than 2%,
and always well within the 68% C.L. contours. We treat
beam errors with the highest possible accuracy (see
Ref. [9], Appendix A.2), using full off-diagonal tempera-
ture covariance matrix, Gaussian plus lognormal likeli-
hood, and fixed fiducial C‘’s. The MCMC convergence

diagnostic is done on 8 chains though the Gelman and
Rubin ‘‘variance of chain mean’’/‘‘mean of chain varian-
ces’’ R statistic for each parameter. Our 1�D and 2�D
constraints are obtained after marginalization over the
remaining ‘‘nuisance’’ parameters, again using the pro-
grams included in the COSMOMC package. In addition to
the CMB data, we also consider the constraints on the real-
space power spectrum of galaxies from the Sloan Digital
Sky Survey (SDSS) [33]. We restrict the analysis to a range
of scales over which the fluctuations are assumed to be in
the linear regime (k < 0:2h�1 Mpc). When combining the
matter power spectrum with CMB data, we marginalize
over a bias b considered as an additional nuisance parame-
ter. Furthermore, we make use of the HST measurement of
the Hubble parameter H0 � 100h kms�1 Mpc�1 [34] by
multiplying the likelihood by a Gaussian likelihood func-
tion centered around h � 0:72 and with a standard devia-
tion � � 0:08. Finally, we include a top-hat prior on the
age of the universe: 10< t0 < 20 Gyrs.

A. Results

As now common practice, we plot the likelihood con-
tours obtained from our analysis on three different planes, r
vs n, dn=d lnk vs n, and r vs dn=d lnk: we do so in Figs. 1–
3. Presenting our results on these planes is useful for
understanding the effects of theoretical assumptions and/
or external priors.

We consider two different choices of data sets: the
WMAP3 data set alone, and WMAP3 plus the additional
information of the SDSS. By analyzing these different data
sets we can check the consistency of the SDSS large-scale
structure data with WMAP3, something that is not com-
pletely trivial since the WMAP3 data seems to prefer
models with a lower value for the �8 parameter than the
one inferred from the SDSS data (see Refs. [9,33]).

In Fig. 1, we show the 68% and 95% likelihood contours
on the r vs n plane in the case of WMAP3 only (left panel)
and WMAP3� SDSS (right panel). We also consider a
prior on the running: the results on the top panel are
obtained allowing the possibility of dn=d lnk � 0 while
on the bottom panel assume no running. The WMAP3-only
case including running exhibited relatively poor conver-
gence due to a degeneracy in the four-dimensional parame-
ter space of r, n, dn=d lnk, and normalization. Adding the
SDSS data set removed the degeneracy and substantially
improved the convergence of the MCMC code.

Let us first investigate the case of no running.
Marginalizing over all the remaining nuisance parameters
we constrain n and r to 0:94< n< 1:04 and r < 0:60 at
95% C.L. Models with n < 0:9 are therefore ruled out at
high significance, as are models with n > 1:05. The data
clearly set interesting constraints on tensor modes. Models
with n < 1 must have r < 0:4 at 95% C.L. Models with
n < 0:9 must have a negligible tensor component.
Including the SDSS data further reduces the limit on the2http://lambda.gsfc.nasa.gov/
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amplitude of the gravitational wave component with a
relatively smaller effect on the spectral index parameter.
For WMAP3� SDSS we constrain n and r to 0:93< n<
1:01 and r < 0:31. (Table I summarizes the one-
dimensional limits on the parameters.)

If we allow running the main effect is to open the
contours toward higher value of n and r. With running,
marginalizing over all the remaining nuisance parameters,
we constrain n and r to 1:02< n< 1:38 and r < 1:09 at
95% C.L. for WMAP3 alone and 0:97< n< 1:21 and r <
0:38 in the case of WMAP3 plus SDSS.

Models with n � 1 are therefore in very good agreement
with CMB data in the presence of a tensor component or

running different from zero. Of particular interest is the
Harrison—Zel’dovich (HZ) model: n � 1, r � 0,
dn=d lnk � 0. As we see from the bottom panel of
Fig. 1, pure HZ spectra are not ruled out at more than
95% C.L. from CMB data alone. In particular, we found
that, considering the whole sets of models in our 8-D chain,
the HZ best-fit model is at ��2=2 � 2:04, 2.77, and 3.96
with respect to the best fit in the case of no running and no
tensors, including tensors but no running and including
tensors and running. When we include the SDSS data we
found that the HZ best fit model is at ��2=2 � 3:07 with
respect to the best fit in the case of no running and no
tensor, ��2=2 � 3:4 with respect to the best fit with no
running and ��2=2 � 5:1 with respect to the overall best
fit. Since ��2=2 � 6:4 at 95.4% confidence level for 6
degrees of freedom, those numbers clearly indicate that
even when the SDSS data is included, the HZ spectrum is
in reasonable agreement with the data.

The fact that the scale-invariant value n � 1 is consis-
tent with the data at the 95% C.L. when no running is
imposed, considerably weakens the bounds on inflationary
models found in Ref. [35] where the original WMAP3
error bars were adopted concluding that n � 1 was ruled
out at more than 99% C.L.

In Figs. 2 and 3 a degeneracy is evident: an increase in
the spectral index n is equivalent to a negative scale
dependence (dn=d lnk < 0). We emphasize, however, that
this behavior depends strictly on the position of the pivot
scale k0: choosing k0 � 0:05h Mpc�1 would change the
direction of the degeneracy. Models with n 1:1 need a
negative running at more than about the 95% C.L. (about
4� in the case of WMAP3� SDSS). It is interesting also
to note that models with a red spectral index, n < 1:0, are
in better agreement with the data with a zero or positive
running (see Figs. 1 and 2), while models with a sizable
gravity wave background need a negative running (see
Fig. 3). For the WMAP3 alone case the running is bounded
by �0:02 * dn=d lnk * �0:17 at 95% C.L. (0:007 *

dn=d lnk * �0:13 for WMAP3� SDSS). We found that
the best fit from WMAP3 alone with dn=d lnk � 0 is at

TABLE I. One-dimensional confidence limits on inflationary parameters, marginalized over
all other parameters, for WMAP3 alone and WMAP3� SDSS.

No running/running Limits on n, r95% C.L. Data set

no running 0:94< n< 1:04 WMAP3 ONLY
r < 0:60 WMAP3 ONLY

0:93< n< 1:01 WMAP3� SDSS
r < 0:31 WMAP3� SDSS

running 1:02< n< 1:38 WMAP3 ONLY
r < 1:09 WMAP3 ONLY

�0:17< dn=d lnk <�0:02 WMAP3 ONLY
0:97< n< 1:21 WMAP3� SDSS

r < 0:38 WMAP3� SDSS
�0:13< dn=d lnk < 0:007 WMAP3� SDSS

FIG. 1 (color online). Constraints on the n� r plane for differ-
ent choices of experimental data sets. The analyses in the top
panels include a running spectral index, while the analyses in the
bottom panels are without running. The shaded regions indicate
68% and 95% C.L.
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��2=2 � 1:2 (��2=2 � 0:2 when including SDSS) with
respect to the overall best fit. The current data, therefore,

do not suggest the presence of running at more than 95%
C.L.

Finally, we compare our results with those presented in
Spergel, et al. [7]. While there is qualitatively good agree-
ment, a tension appears when we compare our contour
plots in Fig. 4 (the no running case) with those presented
in Fig. 14 of Ref. [7]. Models with a pure HZ spectrum
appear to be ruled out by WMAP3 alone at about the 99%
C.L. in Ref. [7], while our analysis indicates broader con-
tours, with the Harrison-Zel’dovich spectrum inside the
95% C.L. region. Similarly, the contours in Ref. [7] appear
to rule out V��� � �4, while our analysis indicates that
this potential is still marginally consistent with the
WMAP3 data alone at 95% confidence. In order to better
understand this discrepancy, we compared our results di-
rectly with the chains made public by the WMAP team and
available at the LAMBDA web site.3 We found that the error
contours derived from the publicly available chains are
considerably larger than those shown in Fig. 14 of
Ref. [7]: error contours from our analysis of the WMAP
chains are plotted as dashed lines in Fig. 4.4 None of the
contours are as tight as those shown in Spergel et al., and
the discrepancy is significant enough to influence impor-
tant conclusions about the model space, in particular, the
consistency of a Harrison-Zel’dovich spectrum with the

FIG. 4 (color online). The n, r parameter space WMAP3 alone
(open contours) and WMAP3� SDSS (filled contours), with a
prior of dn=d lnk � 0. The line segments show the predictions
for V��� � m2�2 and V��� � �4 for N � �46; 60�. The
dashed lines show the 68% C.L. and 95% C.L. contours from
the chains made public by the WMAP team, which do not
include an HST prior on H0 or an age prior. The scale of the
plot is chosen to allow direct comparison with Fig. 14 of Spergel
et al. [7]. The shaded regions indicate 68% and 95% C.L.

FIG. 3 (color online). Constraints on the dn=d lnk� r plane
for different choices of experimental data sets. The shaded
regions indicate 68% and 95% C.L.

FIG. 2 (color online). Constraints on the n� dn=d lnk plane
for different choices of experimental data sets. The shaded
regions indicate 68% and 95% C.L.

3http://lambda.gsfc.nasa.gov.
4The difference between the WMAP-team contours and our

contours as plotted in Fig. 4 can be accounted for by the fact that,
unlike the WMAP-team analysis, we include priors on H0 from
the HST Key Project data and a top-hat age prior. We have
independently reproduced the dashed line contours shown in
Fig. 4 with our own analysis.
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data. There appears to be a clear inconsistency between our
results and contours shown in Spergel et al., Figs. 12 and
14.

V. MONTE CARLO RECONSTRUCTION

In this section we describe Monte Carlo reconstruction,
a stochastic method for inverting observational constraints
to determine an ensemble of inflationary potentials com-
patible with observation. The method is described in more
detail in Refs. [12,13]. In addition to encompassing a
broader set of models than we considered in the previous
section, Monte Carlo reconstruction allows us easily to
incorporate constraints on the running of the spectral index
dn=d lnk as well as to include effects to higher order in
slow roll.

We have defined the slow-roll parameters � and � in
terms of the Hubble parameter H��� in a previous section.
Taking higher derivatives of H with respect to the field, we
can define an infinite hierarchy of slow roll-parameters
[36]:

 � �
mPl

�

�
1

2

�
H00

H

�
�

�
H0

H

�
2
�
;

‘H �

�
m2

Pl

4�

�
‘ �H0�‘�1

H‘

d�‘�1�H

d��‘�1�
:

(23)

Here we have chosen the parameter � � 2�� 4� ’ n� 1
to make comparison with observation convenient.

It is convenient to use N as the measure of time during
inflation. As above, we take te and �e to be the time and
field value at end of inflation. Therefore, N is defined as the
number of e-folds before the end of inflation, and increases
as one goes backward in time (dt > 0) dN < 0):

 

d
dN
�

d
d lna

�
mPl

2
����
�
p

���
�
p d

d�
; (24)

where we have chosen the sign convention that
���
�
p

has the
same sign as H0���:

 

���
�
p
� �

mPL

2
����
�
p

H0

H
: (25)

Then � itself can be expressed in terms of H and N simply
as

 

1

H

dH
dN
� �: (26)

Similarly, the evolution of the higher-order parameters
during inflation is determined by a set of ‘‘flow’’ equations
[12,37,38],
 

d�
dN
� ���� 2��;

d�
dN
� �5��� 12�2 � 2�2H�;

d�‘H�

dN
�

�
‘� 1

2
�� �‘� 2��

�
�‘H� �

‘�1H: (27)

The derivative of a slow-roll parameter at a given order is
higher order in slow roll.

A boundary condition can be specified at any point in the
inflationary evolution by selecting a set of parameters �, �,
2H, . . . for a given value of N. This is sufficient to specify
a ‘‘path’’ in the inflationary parameter space that specifies
the background evolution of the spacetime. Taken to infi-
nite order, this set of equations completely specifies the
cosmological evolution, up to the normalization of the
Hubble parameter H. Furthermore, such a specification is
exact, with no assumption of slow roll necessary. In prac-
tice, we must truncate the expansion at finite order by
assuming that the ‘H are all zero above some fixed value
of ‘. We choose initial values for the parameters at random
from the following ranges:
 

N � �46; 60�

� � �0; 0:8�

� � ��0:5; 0:5�
2H � ��0:05; 0:05�

3H � ��0:025; 0:025�;

� � �

M�1H � 0: (28)

Here the expansion is truncated to order M by setting
M�1H � 0. In this case, we still generate an exact solution
of the background equations, albeit one chosen from a
subset of the complete space of models. This is equivalent
to placing constraints on the form of the potential V���,
but the constraints can be made arbitrarily weak by eval-
uating the expansion to higher order. For the purposes of
this analysis, we choose M � 5. The results are not sensi-
tive to either the choice of order M (as long as it is large
enough) or to the specific ranges from which the initial
parameters are chosen.

Solutions to the truncated flow equations are solutions
for which all of the derivatives of the Hubble constant
above order M� 1 vanish:

 

d‘H

d�‘
� 0; ‘ � M� 2; (29)

with a simple polynomial solution [39],

 H��� � H0�1� A1�� � � � � AM�1�M�1�: (30)

The Hamilton-Jacobi equation (3) can be applied to this
solution to derive an analytic form for the potential in
terms of the parameters A1; . . . ; AM�1. The set of boundary
conditions in Eq. (28) then consist of a weak slow-roll prior
on the polynomial fit for H���: the inflaton must be slowly
rolling at least at one point in its evolution. Thus, while the
flow equations in and of themselves simply define an
expansion in H���, the choice of boundary condition and
the requirement that inflation last at least 46 e-folds com-
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prise a well-defined physical prior on the inflationary
model space.

Some interesting recent papers have explored alternative
methods for constraining the ‘‘model space’’ of inflation.
In particular, Ref. [40] incorporates the lowest-order flow
parameters directly into the Monte Carlo Markov Chain fit,
although they do not include effects to higher order in slow
roll. References [41,42] apply a Bayesian model selection
approach to the problem, but also do not consider higher-
order effects which in principle contribute to a running
spectral index. Our analysis extends these results by in-
cluding running of the spectral index as well as effects to
higher order in slow roll.

Once we obtain a solution to the flow equations
���N�; ��N�; ‘H�N��, we can calculate the predicted val-
ues of the tensor/scalar ratio r, the spectral index n, and the
‘‘running’’ of the spectral index dn=d lnk. To lowest order,
the relationship between the slow-roll parameters and the
observables is especially simple: r � 16�, n� 1 � �, and
dn=d lnk � 0. To second order in slow roll, the observ-
ables are given by [36,43],

 r � 16��1� C��� 2��� (31)

for the tensor/scalar ratio, and

 n� 1� �� �5� 3C��2� 1
4�3� 5C���� 1

2�3�C��
2H�

(32)

for the spectral index. The constant C � 4�ln2� �� � 5 �
0:081 451 4, where � ’ 0:577 is Euler’s constant.
Derivatives with respect to wave number k can be ex-
pressed in terms of derivatives with respect to N as [44]

 

d
dN
� ��1� ��

d
d lnk

: (33)

The scale dependence of n is then given by the simple
expression

 

dn
d lnk

� �

�
1

1� �

�
dn
dN

; (34)

which can be evaluated by using Eq. (32) and the flow
equations. For example, for the case of V / �4, the ob-
servables to lowest order are

 r ’
16

N � 1
; n� 1 ’ �

3

N � 1
;

dn
d lnk

’ �
3

N�N � 1�
:

(35)

The final result following the evaluation of a particular path
in the M-dimensional ‘‘slow-roll space’’ is a point in ‘‘ob-
servable parameter space,’’ i.e., �r; n; dn=d lnk�, corre-
sponding to the observational prediction for that
particular model.

The reconstruction method works as follows:

(1) Specify a ‘‘window’’ of parameter space: e.g., cen-
tral values for n� 1, r, or dn=d lnk and their asso-
ciated error bars.

(2) Select a random point in slow roll space, ��; �; ‘H�,
truncated at order M in the slow roll expansion.

(3) Evolve forward in time (dN < 0) until either
(a) inflation ends (� > 1), or (b) the evolution
reaches a late-time fixed point (��‘ H � 0; � �
const).

(4) If the evolution reaches a late-time fixed point,
calculate the observables r, n� 1, and dn=d lnk at
this point.

(5) If inflation ends, evaluate the flow equations back-
ward N e-folds from the end of inflation. Calculate
the observable parameters at that point.

(6) If the observable parameters lie within the specified
window of parameter space, compute the potential
and add this model to the ensemble of ‘‘recon-
structed’’ potentials.

(7) Repeat steps 2 through 6 until the desired number of
models have been found.

We performed the Monte Carlo reconstruction using the
more restrictive of the data sets considered, combining the
WMAP3 data with the Sloan Digital Sky Survey. We ran
the reconstruction code long enough (10 703 502 itera-
tions) to collect 10 000 models consistent with the
WMAP3� SDSS error bars: 4115 are within the 68%
C.L. contours, and 5885 are within the 95% C.L. contours.

To illustrate the degree of overlap between the various
classes of models, the predictions for different models are
shown in the top panel of Fig. 5, including the effect of the
uncertainty in the number of e-folds N. The different
classes of potential do not have significant overlap, and it
is therefore possible to distinguish one from another
observationally.

Figure 5 also shows the points generated by Monte Carlo
reconstruction in the n, r parameter space. Since there is no
measure on the space of initial conditions, the distribution
of points generated by the flow equations cannot be inter-
preted in a rigorously statistical fashion: the error bars are
those generated from the data using COSMOMC, and the
points plotted are points generated by the flow equations
consistent with those errors, including running of the spec-
tral index as a parameter. The clustering of the models in
the parameter space, however, is significant: selecting
models based on even an extremely weak assumption of
slow-roll results in a strong clustering of the models in the
region favoring a red spectrum and dn=d lnk � 0.

In this sense, the preference for running and a blue
spectrum present in the data itself contains very little
information relevant to constraining slow-roll inflation
models: it can be interpreted simply an artifact of an
‘‘accidental’’ parameter degeneracy in the data. Allowing
running as a parameter but assuming slow roll inflation
gives constraints on the inflationary model space largely
consistent with an analysis which assumes negligible run-
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ning as a prior on the parameter space from the beginning.
In other words: there is no evidence for inflation with a
measurable running of the spectral index.

From the flow Eqs. (27) it is evident that the line along
the r � 0 axis, with � � ‘H � 0 is a fixed point of the
flow evolution, including taking the flow equations to
infinite order.5 For parameters on the ‘‘red’’ side of scale
invariance, i.e. �< 0, this fixed point is unstable: flow
moves away from the fixed point as N ! 0, and toward the
fixed point as N ! 1. Conversely, the fixed point for �>
0 is stable: models evolve toward this fixed point at late
times, N ! 0. Integrating the flow equations forward in
time yields one of two possible outcomes. One possibility
is that the condition � � 1 may be satisfied for some finite
value of N, which defines the end of inflation. We identify
this point as N � 0 so that the primordial fluctuations are
actually generated when N � �46; 60�. Alternatively, the
solution can evolve toward an inflationary fixed point with
r � 0 and n > 1, in which case inflation never stops. In

reality, inflation must stop at some point, presumably via
some sort of instability, such as the hybrid inflation mecha-
nism [24–27]. Examples of potentials which fall into this
class of models are the simplest hybrid potentials,

 V��� � �4

�
1�

�
�
�

�
p
�
: (36)

Here we take the observables for such models to be the
values at the late-time attractor. Since models on the at-
tractor are by definition those for which the variation in the
slow-roll parameters with N vanishes, such models also
predict zero running of the scalar spectral index. We find
that the WMAP3 data strongly disfavor models which
evolve to a late-time asymptote with r � 0, n > 1, and
dn=d lnk � 0. The 95% confidence limit for a blue spec-
trum with no tensors and no running (i.e., not marginalized
over r) from WMAP3 alone is n < 1:0007, and from
WMAP3� SDSS is n < 1:001. Of more than 10� 106

models tested, only one model consistent with the data
relaxed to the late-time asymptote, with a spectral index
n � 1:0004 and r � 0:000 000 2; for all intents and pur-
poses a Harrison-Zel’dovich spectrum. Every other model
in the Monte Carlo reconstruction set was of the ‘‘non-
trivial’’ type, with inflation ending naturally by evolving
through � � 1 at late times. We note that the level of
running required to accommodate a blue spectrum is se-
vere: even dynamical supersymmetric inflation, which pre-
dicts a blue spectrum and negative running [Eq. (20)], does
not produce a strong enough running to match the data, and
is also ruled out to more than 95% C.L. by WMAP3�
SDSS for n > 1:001.

We can also place constraints on the energy scales
relevant to inflation, in particular, the ‘‘height’’ of the
potential V �4, and the ‘‘width’’ of the potential, typi-
cally quantified as the field variation �� during inflation.
Given a path in the slow-roll parameter space, the form of
the potential is fixed, up to normalization [13,46–48]. The
starting point is the Hamilton-Jacobi equation,

 V��� �
�

3m2
Pl

8�

�
H2���

�
1�

1

3
����

�
: (37)

We have ��N� trivially from the flow equations. In order to
calculate the potential, we need to determine H�N� and
��N�. With � known,H�N� can be determined by inverting
the definition of �, Eq. (26). Similarly, ��N� follows from
the first Hamilton-Jacobi equation, Eq. (2):

 

d�
dN
�
mPL

2
����
�
p

���
�
p
: (38)

Using these equations and Eq. (37), the form of the poten-
tial can then be fully reconstructed from the numerical
solution for ��N�. The only necessary observational input
is the normalization of the Hubble parameter H, which
enters the above equations as an integration constant. Here
we use the simple condition that the density fluctuation

FIG. 5 (color online). Inflationary models plotted against the
68% and 95% WMAP3� SDSS error contours. Top panel: the
predictions of various specific inflationary potentials (solid
bands) plotted against the error bars from WMAP3� SDSS
with a prior of dn=d lnk � 0. Bottom panel: 10 000 models
generated by flow Monte Carlo consistent with the WMAP3�
SDSS data sets including running as a parameter, indicated by
the larger error contours. The contours with a dn=d lnk � 0 prior
are plotted as a reference, and were not used in the Monte Carlo
reconstruction. (Some data points fall outside the error contours
plotted because likelihoods for the models were calculated using
the full three-dimensional likelihood function L�n; r; dn=d lnk�,
and the contours were obtained by marginalizing over dn=d lnk).

5See Refs. [12,45] for a detailed discussion of the fixed-point
structure of the slow roll space.
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amplitude (as determined by a first-order slow roll expres-
sion) be of order 10�5,

 

��
�
’
H
mPl

1�������
��
p � 10�5: (39)

A more sophisticated treatment would perform a full nor-
malization to the CMB data [49,50]. The value of the field,
�, also contains an arbitrary, additive constant. Figure 6
shows the reconstructed potentials consistent with the
WMAP3� SDSS data set.

We see that the energy scale for inflation favored by the
flow Monte Carlo gives V0 between 5� 1014 GeV and 2�
1016 GeV, although without a detection of a nonzero ten-
sor/scalar ratio, it is not possible to put a purely observa-
tional lower limit on the height of the inflationary potential.
Inflationary potentials with very low energy scales (in
particular those with ��	 mPl during inflation) require
the imposition of a symmetry to suppress the mass term for
the inflaton [51–53]. Such potentials (corresponding to the
region labeled V��� / 1� ��=��p in Fig. 5) are consis-
tent with the WMAP3 data and predict an unobservably
small value for the tensor/scalar ratio r. Even if one wished
to consider such models fine-tuned (see, e.g. Ref. [54]) and
therefore disfavored, the range of energy scales favored by
the flow Monte Carlo (Fig. 6) is consistent with tensor/
scalar ratios as low as r 10�5, a level unlikely to be
detectable by any currently foreseen experiments.
References [55,56] suggest that fine-tuning considerations
force the tensor/scalar ratio for a red spectrum to detectable
levels of r 0:01. We see no evidence of such an effect in
the flow analysis, for which no explicit tuning of the
potential is performed.

VI. CONCLUSIONS

In this paper, we presented an analysis of the recent
WMAP three-year data set with an emphasis on parameters
relevant for distinguishing among the various possible
models for inflation. Our results are in good agreement
with other analyses of the data [57,58], but show significant
inconsistencies with the results reported by the WMAP
team in Figs. 12 and 14 of Ref. [7].

We found that the WMAP3 data alone are consistent
within 95% C.L. with a scale-invariant power spectrum,
n � 1, with no running of the spectral index, dn=d lnk � 0
and no tensor component. The Harrison-Zel’dovich spec-
trum is therefore still not ruled out at high significance, a
conclusion in accord with Refs. [41,59]. While a detection
of a running spectral index would be of great significance
for inflationary model building [60,61], no clear evidence
for running is present in the WMAP3 data. The data are,
however, consistent with strongly negative running com-
bined with a large tensor/scalar ratio and a ‘‘blue’’ power
spectrum.

The inclusion of the Sloan Digital Sky Survey data sets
in the analysis has the effect of reducing the error bars and
gives a better determination of the inflationary parameters.
For instance, the inclusion of SDSS rules out quartic
chaotic models of inflation of the form V���  �4.
Chaotic inflation with a quadratic potential V��� 
m2�2 is consistent with all data sets considered.

In addition, we applied the Monte Carlo reconstruction
technique to generate an ensemble of inflationary poten-
tials consistent with observation. Our results may be sum-
marized as follows: Models which evolve to a late-time
fixed point in the space of flow parameters are strongly
disfavored by the data. Of more than 10� 106 models
analyzed in the flow Monte Carlo, one evolved to a late-
time inflationary asymptote indistinguishable from a
Harrison-Zel’dovich spectrum. The rest were characterized
by a dynamical end to inflation, with the first slow-roll
parameter � evolving to unity in finite time. The late-time
attractor in flow space corresponds to models with a blue
power spectrum (n > 1) and negligible r and dn=d lnk, and
we conclude that such models are inconsistent with the
data for n > 1:001. This is a significant constraint on the
inflationary model space. In particular, the data rule out the
simplest models of hybrid inflation of the form V��� �
V0 �m2�2 as well as models such as V��� / 1�
��=��p, which predict some negative running. This of
course does not rule out all models for which inflation
ends via a hybrid mechanism. Some hybrid models are
characterized by a red spectrum, for example, ‘‘inverted’’
hybrid models and models with logarithmic potentials
inspired by (global) supersymmetry. Finally, we find that
there is no evidence to support any lower bound on the
amplitude of gravitational waves. Tensor/scalar ratios as
low as r 10�5 were produced by the flow Monte Carlo
without explicit tuning of the inflationary potential.

FIG. 6 (color online). Potentials generated by Monte Carlo
reconstruction consistent with WMAP3� SDSS to 68% C.L.
in the light shaded (yellow) region and 95% C.L. in the darker
shaded (cyan) region. The WMAP3 data place an upper limit of
about 2� 1016 GeV on the energy scale of inflation. No lower
limit is possible without a detection of a tensor mode signal. The
concave-up line at the bottom of the figure is the single model in
107 models generated which converged to an inflationary fixed
point at late time.

INFLATION MODEL CONSTRAINTS FROM THE . . . PHYSICAL REVIEW D 74, 023502 (2006)

023502-11



ACKNOWLEDGMENTS

We thank Rachel Bean, Olivier Dore, Richard Easther,
Justin Khoury, Hiranya Peiris, and Licia Verde for helpful
conversations. We acknowledge support provided by the
Center for Computational Research at the University at

Buffalo. WHK is supported in part by the National Science
Foundation under Grant No NSF-PHY-0456777. EWK is
supported in part by NASA No. (NAG5-10842). AM is
supported by MURST through COFIN Contract
No. 2004027755.

[1] For reviews, see D. H. Lyth and A. Riotto, Phys. Rep. 314,
1 (1999); W. H. Kinney, astro-ph/0301448.

[2] A. A. Starobinsky, Pis’ma Zh. Eksp. Teor. Fiz. 30, 719
(1979) [JETP Lett. 30, 682 (1979)].

[3] V. F. Mukhanov and G. V. Chibisov, JETP Lett. 33, 532
(1981).

[4] J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, Phys.
Rev. D 28, 679 (1983).

[5] C. L. Bennett et al. Astrophys. J. 464, L1 (1996).
[6] K. M. Gorski et al. Astrophys. J. 464, L11 (1996).
[7] D. N. Spergel et al., astro-ph/0603449.
[8] L. Page et al., astro-ph/0603450.
[9] G. Hinshaw et al., astro-ph/0603451.

[10] N. Jarosik et al., astro-ph/0603452.
[11] W. H. Kinney, E. W. Kolb, A. Melchiorri, and A. Riotto,

Phys. Rev. D 69, 103516 (2004).
[12] W. H. Kinney, Phys. Rev. D 66, 083508 (2002).
[13] R. Easther and W. H. Kinney, Phys. Rev. D 67, 043511

(2003).
[14] L. P. Grishchuk and Yu. V. Sidorav, in Fourth Seminar on

Quantum Gravity, edited by M. A. Markov, V. A. Berezin,
and V. P. Frolov (World Scientific, Singapore, 1988).

[15] A. G. Muslimov, Classical Quantum Gravity 7, 231
(1990).

[16] D. S. Salopek and J. R. Bond, Phys. Rev. D 42, 3936
(1990).

[17] J. E. Lidsey et al., Rev. Mod. Phys. 69, 373 (1997).
[18] S. Dodelson, W. H. Kinney, and E. W. Kolb, Phys. Rev. D

56, 3207 (1997).
[19] W. H. Kinney, Phys. Rev. D 58, 123506 (1998).
[20] A. D. Linde, Phys. Lett. 129B, 177 (1983).
[21] A. D. Linde, Phys. Lett. 108B, 389 (1982).
[22] A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48, 1220

(1982).
[23] K. Freese, J. Frieman, and A. Olinto, Phys. Rev. Lett. 65,

3233 (1990).
[24] A. D. Linde, Phys. Lett. B 259, 38 (1991).
[25] A. D. Linde, Phys. Rev. D 49, 748 (1994).
[26] E. J. Copeland, A. R. Liddle, D. H. Lyth, E. D. Stewart, and

D. Wands, Phys. Rev. D 49, 6410 (1994).
[27] A. D. Linde and A. Riotto, Phys. Rev. D 56, 1841 (1997).
[28] J. D. Barrow and A. R. Liddle, Phys. Rev. D 47, R5219

(1993).
[29] W. H. Kinney and A. Riotto, Astropart. Phys. 10, 387

(1999).
[30] W. H. Kinney and A. Riotto, Phys. Lett. B 435, 272

(1998).
[31] W. H. Kinney and A. Riotto, J. Cosmol. Astropart. Phys.

03 (2006) 011.

[32] A. Lewis and S. Bridle, Phys. Rev. D 66, 103511 (2002);
Available from http://cosmologist.info.

[33] M. Tegmark, A. J. S. Hamilton, and Y. Xu, Mon. Not. R.
Astron. Soc. 335, 887 (2002).

[34] W. L. Freedman et al., Astrophys. J. 553, 47 (2001).
[35] L. Alabidi and D. H. Lyth, astro-ph/0603539.
[36] A. R. Liddle, P. Parsons, and J. D. Barrow, Phys. Rev. D

50, 7222 (1994).
[37] M. B. Hoffman and M. S. Turner, Phys. Rev. D 64, 023506

(2001).
[38] D. J. Schwarz, C. A. Terrero-Escalante, and A. A. Garcia,

Phys. Lett. B 517, 243 (2001).
[39] A. R. Liddle, Phys. Rev. D 68, 103504 (2003).
[40] H. Peiris and R. Easther, astro-ph/0603587.
[41] D. Parkinson, P. Mukherjee, and A. R. Liddle, astro-ph/

0605003.
[42] C. Pahud, A. R. Liddle, P. Mukherjee, and D. Parkinson,

astro-ph/0605004.
[43] E. D. Stewart and D. H. Lyth, Phys. Lett. B 302, 171

(1993).
[44] A. R. Liddle. and M. S. Turner, Phys. Rev. D 50, 758

(1994).
[45] S. Chongchitnan and G. Efstathiou, Phys. Rev. D 72,

083520 (2005).
[46] H. M. Hodges and G. R. Blumenthal, Phys. Rev. D 42,

3329 (1990).
[47] E. J. Copeland et al., Phys. Rev. Lett. 71, 219 (1993).
[48] E. Ayon-Beato, A. Garcia, R. Mansilla, and C. A. Terrero-

Escalante, Phys. Rev. D 62, 103513 (2000).
[49] E. F. Bunn, D. Scott, and M. White, Astrophys. J. Lett.

441, L9 (1995).
[50] R. Stompor, K. M. Gorski, and A. J. Banday, Mon. Not. R.

Astron. Soc. 277, 1225 (1995).
[51] L. Knox and M. S. Turner, Phys. Rev. Lett. 70, 371 (1993).
[52] W. H. Kinney and K. T. Mahanthappa, Phys. Rev. D 53,

5455 (1996).
[53] R. Easther, W. H. Kinney, and B. A. Powell, astro-ph/

0601276.
[54] G. Efstathiou and S. Chongchitnan, astro-ph/0603118.
[55] L. A. Boyle, P. J. Steinhardt, and N. Turok, Phys. Rev.

Lett. 96, 111301 (2006).
[56] J. Bock et al., astro-ph/0604101.
[57] A. Lewis, astro-ph/0603753.
[58] U. Seljak, A. Slosar, and P. McDonald, astro-ph/0604335.
[59] J. Magueijo and R. D. Sorkin, astro-ph/0604410.
[60] R. Easther and H. Peiris, astro-ph/0604214.
[61] J. M. Cline and L. Hoi, astro-ph/0603403.

KINNEY, KOLB, MELCHIORRI, AND RIOTTO PHYSICAL REVIEW D 74, 023502 (2006)

023502-12


