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The coincidence problem of late cosmic acceleration is a serious riddle in connection with our
understanding of the evolution of the Universe. In this paper we show that an interaction between the
dark energy component (either phantom or quintessence) and dark matter can alleviate it. In this scenario
the baryon component is independently conserved. This generalizes a previous study [S. del Campo, R.
Herrera, and D. Pavón, Phys. Rev. D 71, 123529 (2005).] in which neither baryons nor phantom energy
were considered.
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I. INTRODUCTION

According to the conventional picture, the present ac-
celerated expansion of the Universe is driven by the nega-
tive pressure of an unknown and unclustered component
(dubbed ‘‘dark energy’’) that currently contributes about
70% of the total density. The remaining 30% is shared
between cold dark matter (�dm � 25%) and cold baryons
(�b � 5%) [1–5]. The two latter, being pressureless, red-
shift with expansion faster than the dark energy compo-
nent. Then, the cosmic coincidence problem arises, ‘‘Why
are the densities of matter and dark energy of precisely the
same order today?’’ [6]. Clearly, this is one outstanding
riddle in our understanding of the Universe. To solve it one
is forced to adopt an evolving dark energy field (either
quintessence or phantom energy) or accept an incredibly
tiny cosmological constant and admit that the ‘‘coinci-
dence’’ is just a coincidence that hopefully might be some-
what alleviated with the help of the anthropic idea [7]. Here
we take the view that before resorting to the second option
we should further explore the first one. Yet, an evolving
dark energy cannot solve the problem either unless a
suitable interaction (coupling) with matter is allowed
[8,9]. Note that the coupling alters the rate at which both
matter and dark energy redshift with expansion; this is why
it can potentially alleviate the aforesaid problem.

Interestingly, rather than in connection with the coinci-
dence problem, which was not even formulated at the
moment, this interaction was first proposed as a mecha-
nism to reduce the value of the cosmological constant [10].
Notice that in the absence of underlying symmetry that
would suppress the coupling matter-dark energy there is no
a priori reason to dismiss it. In the last years, various
proposals at the fundamental level for the coupling leading
to a constant ratio matter/dark energy at late times were
advanced (see e.g., [11] and references therein), and spe-

cific phenomenological models have been built and con-
trasted with observational data (high redshift supernovae
and cosmic microwave background (CMB) anisotropies)
and seen to pass the tests [12]. Further, the Akaike [13] and
Bayesian informative criteria [14] when applied to high
redshift supernovae data suggest a transfer of energy from
the phantom component to the matter component; yet, the
conventional �CDM model is still preferred [15].

While a constant ratio matter/dark energy at late times
(including the present one) would clearly alleviate the
coincidence problem it should be noted that a much less
strong condition would serve. It would suffice that nowa-
days the aforesaid ratio varies only slowly (i.e., less faster
than the scale factor) and be of order unity (‘‘soft coinci-
dence’’). Recently, it was found within this approach that
the quintessence scenario was favored over the tachyon
scenario for the latter would imply an excessive amount of
pressureless matter today [8]. However, in order to circum-
vent the tight constraints on long-range forces [16] the
baryon component was left aside altogether. This may be
justified because the analysis was restricted to times about
the present one which, as said above, is characterized,
among other things, by a low value to the baryon density.
In this paper we generalize the analysis by including
baryons in the energy density budget as an independently
conserved component and extend the study to earlier
times—though not to the radiation dominated era. As
dark energy components quintessence and phantom are
separately considered.

The outline of the paper is as follows. In Sec. II we
present the model. In Sec. III we constrain it with recent
high redshift supernovae data. Finally, in Sec. IV we dis-
cuss and summarize our findings. As usual, a zero subscript
or superscript attached to any quantity means that it should
be evaluated at the present epoch.

II. THE INTERACTING MODEL

We consider a spatially flat Friedmann-Lemaitre-
Robertson-Walker universe dominated by a three-
component system, namely, cold baryonic matter, cold
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nonbaryonic dark matter, and dark energy, such that the
two latter components do not conserve separately but
interact with each other in a manner to be specified below.
The energy density and pressure of the dark energy, assum-
ing it is a quintessence field, are given by

 �� �
1
2

_�2 � V��� and P� �
1
2

_�2 � V���; (1)

respectively. If the dark energy is a phantom field we have
instead,

 �� � �
1
2

_�2 � V��� and P� � �
1
2

_�2 � V���: (2)

The upper-dot stands for derivative with respect to the
cosmic time and V��� denotes both the quintessence field
potential and phantom potential. As is usually done, we
postulate that the dark energy component (either quintes-
sence or phantom) obeys a barotropic equation of state, i.e.,
P� � w��� with w� a negative constant of order unity (a
distinguishing feature of dark energy fields is a high nega-
tive pressure).

We assume that the dark matter and dark energy com-
ponents are coupled through a source (loss) term (say, Q)
that enters the energy balances

 _� dm � 3H�dm � Q; (3)

and

 _�� � 3H��� � P�� � �Q: (4)

In view of Eq. (1) the last expression can alternatively be
written as _�� ��� 3H _�� V0� � �Q. In the case that the
scalar field is of phantom type the corresponding equation
reads _�� ��� 3H _�� V 0� � Q, where the prime denotes
derivative with respect to �.

We consider that the baryon component is conserved
whence its energy density redshifts as

 �b � �0
b

�
a0

a

�
3
: (5)

Defining �m � �b � �dm and using Eqs. (3) and (5) we
obtain

 _�m � 3H�m � Q: (6)

Likewise, we assume that the interaction is related to the
total energy density of matter (baryonic plus dark) by Q �
3c2H�m, where c2 is a small positive-definite constant. As
we shall see this choice ensures that the ratio between the
energy densities, r�a� 	 �m=��, is a monotonous decreas-
ing function of the scale factor, and such that around
present time it varies very slowly. By very slowly we
mean that j � _r=r�0 j& H0. This contrasts with previous
studies in which r was demanded to asymptotically ap-
proach a fixed value at late times.

Clearly,

 _r 	
d
dt

�
�m
��

�
�
�m
��

�
_�m
�m
�

_��
��

�
: (7)

In virtue of the above expressions the last equation boils
down to

 _r � 3Hr�c2�1� r� � jw�j�; (8)

whose solution reads

 r � r0�
�
c2r0 �

�
a
a0

�
3�
�c2�1� r0� � jw�j�

�
�1
; (9)
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FIG. 1. Evolution of the ratio �m=�� as given by Eq. (9) for
c2 � 10�5 (upper panel) and c2 � 10�3 (lower panel). In both
panels r0 � 3=7 with w� � �0:8 (quintessence) and w� �
�1:1 (phantom). Not shown is the behavior of r for a! 0 as
the model does not apply to such early times.
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with � 	 jw�j � c2 > 0. Figure 1 depicts the monotonous
decrease of r from values higher than unity at early times to
a nearly constant value at present time (which we have
fixed as 3=7) irrespective of whether the dark energy is a
quintessence field or a phantom field. Notice that for
vanishing scale factor r tends to the finite, constant value
�=c2. However, our model should not be extrapolated to
such early stage.

One may wonder about the size of c2. Obviously it
should not be large. In any case it must be lower than
jw�j=�1� r0�; otherwise, by Eq. (8), the Universe would
have been dominated by the dark energy from the begin-
ning of the expansion and galaxies would not have come
into existence. On the other hand, it should not be very
small for it would have a negligible impact and our model
would be hardly distinguishable (depending on the value of
w�) from the standard quintessence or phantom models.

Because c2 ought to be a small quantity—though not
very small—the right-hand side of Eq. (9) always stays
above zero, becoming negligible only for a
 a0. The
closer c2 is to jw�j=�1� r0�, the more alleviated the
coincidence problem gets. In particular, for c2 > �j w� j
�1=3��1� r0�

�1 the current rate, j � _r=r�0 j , results lower
than H0 (bear in mind that the corresponding rate in case
the dark energy were just the cosmological constant is
3H0), whereby the criterion of ‘‘soft coincidence’’ is sat-
isfied and the coincidence problem gets significantly
alleviated.

From Eq. (6) along with the expression for Q we get

 �m � �0
m

�
a0

a

�
3�1�c2�

: (10)

Thus, the densities of dark matter and dark energy are
given by

 �dm �

�
a0

a

�
3
�
�0
m

�
a0

a

�
�3c2

� �0
b

�
; (11)

and

 ���
�0
m

r0�

�
a0

a

�
3�1�c2�

�
c2r0�

�
a
a0

�
3�
�c2�1�r0��jw�j�

�
;

(12)

respectively. Obviously, the constant c2 could be deter-
mined if either �m, given by Eq. (10) above, or the ratio
�b=�m / a�3c2

, were accurately known at different red-
shifts. The above expression for �dm may suggest that this
quantity becomes negative at small scale factor. That is so;
however, if one takes into account that �0

b=�
0
m is about 0.2,

for reasonable values of c2, this only occurs well in the
radiation era, i.e., beyond the range of applicability of our
model.

As Fig. 1 shows, r � 10 at sufficiently early times (e.g.,
at redshifts larger than, say, 3). This is consistent with the
analysis of Caldwell et al. [17] who found that at the epoch

of the last scattering (z ’ 1, 100) as well as at the onset of
structure formation (z� 103) �� (the energy density of
the dark energy in units of the critical density) should not
exceed 0.1.

On the other hand, from Eqs. (3) and (5) alongside the
condition Q> 0 it follows that the baryon density never
dominates the matter density (i.e., �b=�dm < 1 always).
This is in keeping with the widely accepted scenario of
cosmic structure formation, in which after the last scatter-
ing the baryonic matter freely falls into the deep potential
wells created by the dark matter. If �b were larger than �dm

at early times, then the aforesaid scenario could be spoiled.
By combining Friedmann’s equation

 3H2 � ���b � �dm � ��� �� 	 8�G�; (13)

with Eqs. (10)–(12) we get the Hubble function

 

H�a��
H0�������������������
�1�r0��

p �
a0

a

�
�3=2��1�c2�

�

�
jw�jr0�

�
a
a0

�
3�
�c2�1�r0��jw�j�

�
1=2
; (14)

whereH0 �
�������������������������������
�1� r0���

0
�=3

q
, which will be needed below

both to obtain the luminosity distance—a previous step to
draw the likelihood contours—and the deceleration pa-
rameter, q � � �a=�aH2�. The evolution of the latter as a
function of the redshift is depicted in Fig. 2.

In this model the Universe began accelerating only
recently, at redshifts about 0.65. As we have checked
numerically this behavior is scarcely sensitive to the value
of the c2 parameter provided this lies in the range 10�5 
c2  10�1 (this is why we content ourselves with present-
ing just two plots of q vs z). The larger c2, the larger the
transition redshift.

Using Eq. (1) (respectively, Eq. (2)) the potential for the
quintessence field (respectively, phantom field) in terms of
the scale factor reads

 

V���a�� � �1� jw�j�
�0
m

2r0�

�
a0

a

�
3�1�c2�

�
c2r0 �

�
a
a0

�
3�

� �c2�1� r0� � jw�j�
�
: (15)

To obtain the potential as a function of � we must first
express the latter in terms of a. To this end, we write

 

_� 2 � �

�
d�
da

Ha
�

2
; (16)

where the plus (minus) sign corresponds to the quintes-
sence field (phantom field). And in virtue of Eqs. (12), (13),
and (16) it follows that
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���0 �

�����������������������������
�3�1� jw�j�

�

s
1

3�

��
ln=�a�

�
c����������
jw�j

q ln<�a�
�
� C

�
; (17)

where

 =�a� � �c2r0 � 2c2�a=a0�
3��1� r0� � �r0 � 2�a=a0�

3��jw�j

� 2
����������������������������������������������������������������������������������������������������
jw�j�a=a0�
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q ���������������������������������������������������������������������������������������
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;

 <�a� �
�3��a=a0�

�3�

c3r0

����������
jw�j

q �c4�1� r0��a=a0�
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��a=a0�

3��
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q ����������������������������������������������������������������������������������������������������
jw�j�a=a0�

3� � c2��a=a0�
3� � r0��a=a0�

3� � 1��
q ���������������������������������������������������������������������������������������

�r0 � �a=a0�
3��jw�j � c

2�1� r0��a=a0�
3�

q
�;

and C denotes the integration constant

 C � ln=�a0� �

����������
c2

jw�j

vuut ln<�a0�:

The dependence of the potential on the field � is shown in Fig. 3.
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FIG. 2. The deceleration parameter as a function of the red-
shift, z � �a0=a� � 1. Here r0 � 3=7 and c2 � 10�3.
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Clearly, this potential must be understood as an effective
one. It should be noted that these effective potentials
(quintessence and phantom potentials) are similar to those
used in inflationary models, where the Universe undergoes
an accelerated period at very early times. Thus, our poten-
tials describe an accelerated phase at present time, and
simultaneously alleviate the coincidence problem.

III. COMPARING WITH SUPERNOVAE DATA

In this section we use two independent supernovae
type Ia (SNIa) data sets, namely, the ‘‘gold’’ sample com-
piled by the High-Z Supernovae Search Team (HZT) [3],
and the Supernova Legacy Survey (SNLS) sample [4], to
constrain the parameters of the model. The gold sample,
collected from different sources, comprises 157 SNIa, of
redshifts up to 1.5 (14 of which, discovered by the Hubble
space telescope, lie in the interval 1< z < 1:5), with re-
duced calibration errors coming from systematics. The
SNLS sample is smaller, 71 SNIa, with redshifts below
unity. However, the technique employed guarantees that no
source is lost and the data are of a higher quality.

Figures 4 and 5 depict the best fit of the phantom model
(solid line) and the quintessence model (dashed line) to the
gold sample and the SNLS sample, respectively. For the
sake of comparison the flat �CDM model is also shown. In
plotting the graphs the expression for the distance modu-
lus, � � 5 logdL � 25, was employed. Here dL �
�1� z�

Rz
0 H

�1�z0�dz0, is the luminosity distance in
megaparsecs.

Figures 6 and 7 portray the two-dimensional likelihood
contours for the case that the dark energy component is a
quintessence field, based on the gold [3] and the SNLS
sample [4], respectively. Both set of contours were calcu-
lated by running through a grid of models on a four-
dimensional parameter space. The prior �m ��� � 1
was used and the present value of the Hubble parameter
was allowed to vary in the interval 60<H0 <
70 km=s=Mpc. The rest of the priors are 10�5 < c2 <
0:3, and �1<w� <�0:6. The constraints obtained on
the free parameters from the HZT data are: �� �

0:74�0:06
�0:07, w��1��<�0:9, c2�1��< 0:13. The latter pa-

rameter shows large degeneracy and only in this case we
find an upper limit. In its turn, the constraints obtained on
the free parameters from the SNLS data are: �� �

0:83�0:08
�0:09, w��1��<�0:62. Unfortunately, the c2 parame-

ter is practically not constrained in this case.
Similarly, Figs. 8 and 9 show the corresponding contours

for the phantom model using identical sets of data and the
priors 10�5 < c2 < 0:3, �5<w� <�0:6. The con-
straints obtained on the free parameters from the first set
(HZT) are: �� � 0:48� 0:06, w� � �3:0� 1:1. Again,
the interaction parameter c2 shows a wide degeneracy. In
its turn, the constraints obtained from the SNLS data set
are: �� � 0:71�0:12

�0:13, w� � �1:1� 0:4, with no real con-
straint on c2 given its large degeneracy.

As is usual in scenarios of late acceleration, this model
prefers a lower contribution of dark energy. The fact that

FIG. 5. Distance modulus vs redshift for the best fit quintes-
sence model, �� � 0:74, w� � �0:99, c2 � 10�5, �2 �

111:09 (dashed line), and the phantom model, �� � 0:70, w� �
�1:10, c2 � 0:035, �2 � 111:02 (solid line). The flat �CDM
model is also included, �� � 0:72, w� � �1, �2 � 111:03
(dotted line). The data points correspond to the SNLS sample
[4].

FIG. 4. Distance modulus vs redshift for the best fit quintes-
sence model, �� � 0:71, w� � �0:99, c2 � 10�5, �2 � 177
(dashed line), and the phantom model, �� � 0:40, w� �
�4:63, c2 � 0:20, �2 � 173 (solid line). The flat �CDM model
is also included, �� � 0:70, w� � �1, �2 � 178 (dotted line).
The data points correspond to the gold sample of SNIa [3].
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FIG. 6. Likelihood contours for the quintessence model displaying the 68%, 95%, and 99.99% confidence intervals. The likelihood
are marginalized over the rest of the parameters. The bottom panels show the probability functions for the quintessence energy density
normalized to the critical density (left panel), and the equation of state parameter of the quintessence fluid (right panel). The data
points correspond to the gold sample of SNIa [3].

FIG. 7. Same as Fig. 6 except that the data points correspond to the SNLS data set of Ref. [4].
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FIG. 9. Same as Fig. 8 except that the data points correspond to the SNLS data set of Ref. [4].

FIG. 8. Likelihood contours for the phantom model displaying the 68%, 95%, and 99.99% confidence intervals. The likelihood are
marginalized over the rest of the parameters. The bottom panels show the probability functions for the phantom energy density
normalized to the critical density (left panel), and the equation of state parameter of the phantom fluid (right panel). The data points
correspond to the gold sample of SNIa [3].
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phantom models prefer a lower value of �� is only natural
given their low value of w�. It interesting to see that the
SNLS data favor a higher value for �� (both for phantom
and quintessence models) than HZT’s.

IV. DISCUSSION

We studied a model of late cosmic acceleration by
assuming that the dark matter and dark energy components
are coupled to each other so that there is a transfer of
energy from the latter to the former, while the baryon
component is conserved. By suitably choosing the interac-
tion term Q, the ratio between both dark sources of gravity
is seen to evolve, at present time, less faster than the scale
factor. This considerably alleviates the coincidence prob-
lem albeit it does not solve it in full. Clearly, to achieve the
latter one should derive the present value of the aforesaid
ratio, or at least show that it has to be of order unity. For the
time being, r0 ought to be understood as an input parame-
ter. This also holds for a handful of key observational
quantities such as the present value of the cosmic back-
ground radiation temperature, the cosmological constant
H0, or the ratio between the number of baryons and
photons.

The transition deceleration-acceleration occurs recently,
at redshifts lower than unity (see Fig. 2). This contrasts
with other interacting models in which the transition is
predicted to take place much earlier, at redshifts as high as
10 [18].

It is noteworthy that the expression for the potential,
Eq. (15), is identical irrespective of whether the dark
energy component is a phantom or a quintessence field.

Both when the dark energy is a quintessence or a phan-
tom field the model fits rather well the HZT data set, and in
the latter case clearly better than the concordance model
�CDM does (�2

phantom � 173, �2
quintessence � 177, �2

� �

178). Yet, the Bayesian information criterion (BIC) [14],
given by the formula BIC � �2 � p lnN, where p is the
number of free parameters of the model (2 for the �CDM
model, 4 for dark energy models) andN the number of data
points, distinctly favors the �CDM model for it yields a
lower figure (BICquintessence ’ 197, BICphantom ’ 193,
BIC� ’ 188).

The fits to the SNLS data are rather similar (�2
phantom �

111:02, �2
quintessence � 111:09, �2

� � 111:03). However,
the Bayesian information criterion again sides with the
�CDM model (BICquintessence ’ BICphantom ’ 128, BIC� ’

119).
We have not used the Akaike criterion because it favors

models with larger number of parameters [19].
Thus, from the point of view of the Bayesian informa-

tion criterion the �CDM model is preferred, and the soft
coincidence model for quintessence seems clearly disfa-
vored if not discarded. As for the phantom model, the
situation appears somewhat undecided. While, regarding
the BIC, it lags behind the concordance model it shows a
better fit to the HZT sample of supernovae and alleviates
the coincidence problem. We may summarize by saying
that the SNIa data are not yet conclusive thereby richer
supernovae statistics, especially at redshifts larger than
unity, are needed to come to a verdict.

Unfortunately, the supernovae constraints on the c2 pa-
rameter is rather poor. This is coherent with the fact that the
interaction dark energy-dark matter affects the luminosity
distance only at third order in the redshift [20].
Nevertheless, we hope to be able to break the degeneracy
by submitting the model to further tests such as the CMB
temperature anisotropies and the distribution of matter at
cosmological scales. This will be the subject of a future
work.
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