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We apply the standard theory of the elastic body to obtain a set of equations describing the behavior of
an acoustic gravitational wave detector, fully taking into account the three-dimensional properties of the
mass, the readout, and the signal. We show that the advantages given by a dual detector made by two
nested oscillators also can be obtained by monitoring two different acoustic modes of the same oscillator,
thus easing the detector realization. We apply these concepts and by means of an optimization process we
derive the main figures of such a single mass dual detector designed specifically for the frequency interval
2–5 kHz. Finally we calculate the standard quantum limit sensitivity of this detector.
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I. INTRODUCTION

Direct detection of gravitational waves (GW), for phys-
ics and astrophysics study, is one of the great challenges of
contemporary experimental physics. Resonant mass bar
detectors [1–3], the first historically to come to continuous
operation, have been improved by 4 orders of magnitude in
energy sensitivity during the last 40 years, so that they can
detect energy changes of a 2300 kg bar as little as a few
hundred of quanta of vibration at about 1 kHz with a
bandwidth up to 100 Hz [4,5]. Methods to further enlarge
the bandwidth by a multimode mechanical matching net-
work were proposed in the past [6–8], but, until now, only
two-mechanical-mode systems have worked their way into
operating detectors.

Even though the direct and unambiguous detection of
GW remains an important goal in today’s experimental
physics, the scientific interest is moving toward the possi-
bility of studying the physical and astrophysical features of
the radiation. In fact, gravitational waves will yield unique
information about the coherent bulk motions of matter
generating the radiation, revealing features of their source
which could not be investigated by electromagnetic, cos-
mic ray, or neutrino studies [9]. In order for acoustic
detectors to take part in this ‘‘observatory phase,’’ a sub-
stantial improvement should be achieved both in terms of
absolute sensitivity and detection bandwidth. In fact only a
detector sensitive in a wide frequency range, with a good
sky coverage for most of the time, will permit to follow the
star system evolution during a long time interval, improv-
ing the signal reconstruction and the detection probabil-
ities. Wide band acoustic detectors were recently proposed
and their expected sensitivity analytically evaluated in two

ideal configurations [10,11]; a precise analytical evaluation
of the limit sensitivity of such detectors is still lacking, due
to the complexity of the problem.

Present acoustic gravitational wave detectors consist of
a test mass, which is strained under the effect of the
gravitational wave. A position meter monitors a relevant
dimension of the test mass, and thereby deduces the
equivalent force signal. The sensitivity evaluations are
traditionally made by modeling the test mass as a simple
mechanical oscillator with a properly chosen effective
mass. This approximation is very good when a narrow
band detector sensitive around one of its internal reso-
nances is considered: the detector behavior within its
bandwidth is essentially determined by this resonant
mode. On the contrary, this approximation is seriously
limited when applied to a wide band detector. In this case
the detector is also sensitive at frequencies where many
internal resonant modes of the test mass will equally
contribute to the output signal, each with different ampli-
tudes and phases according to their resonant frequencies.
The resulting test-mass dimension variation is then ob-
tained as the sum of a number of contributions and can
be enhanced or reduced by the phase relation of the internal
resonant modes.

Acoustic detectors work at or between the resonant
frequencies of the lowest quadrupolar normal modes of
the test mass, which are set by the geometry and material
properties. GW sensitive modes in a practical test mass (up
to a few meters in diameter) range from about 1 to several
kHz. As a general rule, large test masses give better sensi-
tivities and lower frequencies, at the expenses of a greater
realization difficulty. The current predictions of the ex-
pected rates of GW signals in the kHz band are in rapid
evolution, and a full discussion of this topic goes beyond
the sake of this paper. We point out that a variety of sources*Corresponding author: bonaldi@science.unitn.it
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have been considered recently to give possibly significant
GW emission in the acoustic frequency range. As an ex-
ample we give the design guidelines for a detector sensitive
in the 2–5 kHz range: it would observe a number of
interesting phenomena [12–14] in a frequency range not
easily covered by interferometric detectors due to the laser
shot noise contribution [15].

In Sec. II we develop the general mathematical frame-
work of the complete test mass� readout system, lead-
ing to a set of formulas in which the response of the full
detector is related to an external GW force field and to the
readout backaction force. We also evaluate the standard
quantum limit (SQL) sensitivity of the detector in the ideal
case and propose an optimization strategy accounting for
the presence of antiresonance frequencies in the transfer
functions and the noise properties of the readout. Then in
Sec. III we calculate the SQL sensitivity of a single-mass
dual acoustic detector specifically designed to be sensitive
in a broad frequency range. By an in-depth study of the
phase relations between the acoustic modes, we obtain the
geometrical conditions which optimize the detector sensi-
tivity. As our calculation takes into account only plane
strain resonant modes of the test mass, we validate the
results by a finite element method (FEM) simulation of the
full three-dimensional body. Conclusions and limits of the
current work are summarized in Sec. IV.

II. WIDE BAND RESONANT GW DETECTOR
GENERAL MODEL

The detector consists of a test mass and a readout
system, which monitors a properly chosen physical observ-
able of the test mass, namely, an average of the surface
displacement over a sensitive area. Provided that all exter-
nal noise sources are reduced down to a negligible level,
the test mass changes its dimensions due to the combined
effects of the external GW force, the backaction force from
the readout and the thermal noise force. In contrast with the
lumped model case (which holds for a narrow band reso-
nant detector), the effects of these forces need to be eval-
uated differently when the detector is considered as an
elastic body. In fact, the GW equivalent force is applied
on the volume of the body, while the backaction force is
applied on the body surface. As a consequence, we need to
define two distinct transfer functions for the system, one
describing the effects of the GW force and the other the
effects of the backaction (BA) force; they are called,
respectively, GW transfer function and BA transfer func-
tion. A complete description of the detector requires the
knowledge of the position and extension of the surfaces on
the test mass which the readout samples. In the most
general case the readout sensitivity will be position depen-
dent, and a weight function must be defined in order to
fully describe the interaction with the test mass.

In the following, vectors are indicated by bold
characters.

A. Test mass mode expansion

The equations of the motion of an elastic body of density
�, forced by a force density F�r; t�, can be summarized as
[16]

 �
@2u�r; t�
@t2

� L�u�r; t�� � F�r; t�; (1)

with the appropriate initial and boundary conditions. Here
u�r; t� is the displacement field of the elastic body and
L�u�r; t�� is defined as

 L�u� � �����r�r � u� ��r2u: (2)

The Lamè coefficients � and� depend on the Poisson ratio
�p and on the Young modulus Y of the material:

 � �
Y�p

�1� �p��1� 2�p�
; � �

Y
2�1� �p�

: (3)

We define the displacement normal modes wn�r� as the
solutions of the eigenvalue problem,

 � �!2
nwn � L�wn�; (4)

with the boundary conditions on wn given by the require-
ment that components of the stress normal to the test-mass
surfaces vanish on the test-mass surfaces. The normal
modes constitute an orthogonal complete system, and can
be normalized to satisfy the condition

 

Z
V
�wn�r� � wm�r�dV � M�nm; (5)

where the volume integral is performed on the test-mass
volume V and M is its total mass.

The solution of Eq. (1) may then be written as a super-
position of the normal modes:

 u �r; t� �
X
n

wn�r�qn�t�: (6)

The sum runs over an infinite number of elements, as
normal modes constitute an infinite enumerable set within
the continuum mechanics mathematical framework [17].
The functions qn�t� in Eq. (6) represent the time develop-
ment of the (n)th mode, with initial value given by

 qn�0� �
1

M

Z
V
dV�u�r; 0� � wn�r�: (7)

The evaluation of the explicit form of qn�t� is straightfor-
ward [18] when the driving force can be factorized as

 F�r; t� � Gt�t�Gr�r�: (8)

In fact Eq. (1) becomes

 �
X
n

wn�r�
@2qn�t�

@t2
�
X
n

qn�t�L�wn�r�� � Gt�t�Gr�r�;

and we can apply Eq. (4), multiply by wm and integrate
using Eq. (5), obtaining
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 M
@2qm�t�

@t2
�M!2

mqm�t� � Gt�t�
Z
V
dVGr�r� � wm�r�:

The time development of the (m)th mode is the same of a
forced harmonic oscillator. In the frequency domain (here
and in the following we indicate the Fourier transform with
a tilda) we have then

 

~q m�!� �
1

M

~Gt�!�

�!2
m �!

2�

Z
V
dVGr�r� � wm�r�: (9)

In the hypothesis of dissipation due to the material struc-
ture, the system losses can be modeled in the frequency
domain by including explicitly a damping term [19]. We
have then

 ~q m�!��
1

M

~Gt�!�

�!2
m�!2�� i!2

m�m�!�

Z
V
dVGr�r� �wm�r�:

(10)

The function �n�!� represents the phase lag between the
mass displacement at a given frequency and a monochro-
matic driving force. Experimentally, �n�!� is found to be
roughly constant (this is usually referred to as ‘‘structural
damping’’) and, for low loss materials, it is �n�!� 	 1. It
can be shown that the normal mode expansion is possible
only if the damping term is homogeneous over the test-
mass volume, as any inhomogeneity of the structure damp-
ing causes a coupling between different modes [20]. When
the losses are frequency independent, the material quality
factor Q � 1=� can be used equivalently in place of the
phase lag.

B. Readout

To detect the external force we measure the resulting
strain on some test-mass surface S. In the small displace-
ment approximation the observable physical quantity, X, of
the system may be defined as

 X�t� �
Z
S
dsP�r� � u�r; t�: (11)

Here P�r� is a weighting function and the integral is
performed on the chosen surface S of the test mass. We
can decide freely the portions of the test-mass surface
which are sampled and their relative weight in the con-
struction of our output variable X�t�: the spatial form of the
weight function P�r� reflects our measurement strategy and
detection scheme. For example, in an optical readout, P�r�
is proportional to the beam spot power profile [21], while
in a capacitive readout [22] we have P�r� � 1=S0 on the
surface S0 of the electrodes and P�r� � 0 outside (as
border effects are usually negligible).

By Eqs. (6) and (11) the observable physical quantity of
the system is

 X�t� �
X
n

qn�t�
Z
S
dsP�r� � wn�r�; (12)

or, in the frequency domain

 

~X�!� �
~Gt�!�
M

X
n

�
R
V dVGr�r� �wn�r���

R
S dsP�r� �wn�r��

�!2
n�!2�� i!2

n�n�!�
:

(13)

This equation allows us to evaluate the motion of the
system when the specific form of the driving force spatial
dependence and of the readout weight function are given.
Then we evaluate the detector response when driven by the
relevant forces: a GW, the readout backaction force, and
the thermal noise.

In the case of a linearly polarized gravitational wave
propagating along the z axis, the force density applied on
the system may be written in cylindrical coordinates �r; ��
as [23]

 Gt�t� �
1
2�

�h�t�;

Gr�r� 
W�r� � r cos�2��  �ir � r sin�2��  �i�;

(14)

where h�t� is the metric perturbation associated to the GW,
 � 0 for the GW� polarization and  � �=4 for the�
polarization. When we substitute these in Eq. (13), the
system response to a metric perturbation h becomes

 

~X�!� � ~h�!�HGW�!�; (15)

where the detector output is fully described by the GW
transfer function HGW�!�:

 HGW�!�

�
1

2V

X
n

�!2�
R
V dVW�r� �wn�r���

R
SdsP�r� �wn�r��

�!2
n�!2�� i!2

n�n�!�
:

(16)

The second relevant force applied to the system is the
readout backaction. Being exerted by the readout, this
force is applied proportionally to the weight function P�r�:

 F BA�t; r� � FBA�t�P�r�: (17)

The test-mass response to this input force can again be
evaluated by Eq. (13), if the backaction surface force
Eq. (17) is considered in place of the volume force field
Gt�t�Gr�r�:

 

~X�!� � TBA�!� ~FBA�!�

�
~FBA�!�
M

X
n

�
R
s dsP�r� � wn�r��2

�!2
n �!

2� � i!2
n�n�!�

: (18)

The BA transfer function of the system, relative to the
backaction force, is then

 TBA�!� �
1

M

X
n

�
R
s dsP�r� � wn�r��2

�!2
n �!

2� � i!2
n�n�!�

; (19)

and the resulting displacement can be considered as the
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coherent sum of the contributions of independent harmonic
oscillators, each corresponding to a normal mode of the
system and moving under the same driving force FBA�t�.
We note that the displacements contributed by different
modes also could be in opposite directions, but it is only the
resulting sum that is physically observable.

C. Readout optimization and SQL

The readout noise properties are defined in terms of the
single sided power spectral densities Sxx�!� and Sff�!�.
Here Sxx�!� is the equivalent input displacement noise
power spectral density contributed by the readout; Sff�!�
is the equivalent force noise power spectrum density due to
the readout that drives the system through the BA transfer
function TBA [Eq. (19)]. Under the hypothesis of uncorre-
lated noise sources, the readout contribution to the noise on
the observable X is

 SXX�!� � Sxx�!� � jTBA�!�j2Sff�!�: (20)

A useful figure for expressing the readout performance
is its energy resolution expressed as number of energy
quanta:

 	r�!� �

����������������������������
Sxx�!�Sff�!�

q
@

: (21)

The uncertainty relation for a continuous linear measure-
ment requires that [24]

 	r�!� � 1; (22)

and the readout is called ‘‘quantum limited’’ when this
limit is achieved. It is also helpful to define the readout
noise stiffness 
r as

 
r�!� �
�������������������������������
Sff�!�=Sxx�!�

q
: (23)

If we now write the power spectral densities Sxx�!� and
Sff�!� in terms of 	r and 
r,

 Sxx�!� � @	r�!�=
r�!�; (24)

 Sff�!� � @	r�!�
r�!�; (25)

the Eq. (20) becomes

 SXX�!� � @	r�!�
�

1


r�!�
� jTBA�!�j2
r�!�

�
: (26)

It is straightforward to demonstrate that for each ! the
readout noise contribution is minimized, giving the SQL
[24] for the detector, if the following equations are both
satisfied:

 	r�!� � 1; (27)

 
r�!� �
1

jTBA�!�j
: (28)

Equivalently the following must hold:

 Sxx�!� � @jTBA�!�j; Sff�!� �
@

jTBA�!b�j
: (29)

These relations show that, as obvious, the best detector
performances require the use of a quantum limited readout
and, less trivial, the noise stiffness must be properly
matched to the test-mass mechanical impedance TBA�!�.
The total displacement noise becomes

 SXX�!� � 2@jTBA�!�j; (30)

and can be transformed into an equivalent input GW
spectral density through the GW transfer function
HGW�!� [Eq. (16)]. The detector sensitivity is then

 Shh�!� � 2@
jTBA�!�j

jHGW�!�j
2 : (31)

We point out that the SQL here derived is calculated
taking into account the volume properties of test mass,
signal, and readout: this is in contrast to the usual deriva-
tion of the SQL for a GW detector, in which a one-
dimensional model is considered.

In principle a wide bandwidth detector, designed to be
sensitive in a angular frequency range !min !max could
reach the SQL at every frequency, provided that a readout
satisfying Eq. (29) on the full interval !min !max can be
designed. The elastic body BA transfer function TBA�!� is
a rapidly varying function (as we show below in Fig. 4(b)]:
sharp magnitude peaks, corresponding to the resonant
normal modes of the system, alternate with magnitude
dips called antiresonances. Unfortunately, the noise prop-
erties of a practical wide bandwidth readout have a smooth
frequency dependence over the detector sensitivity range
and cannot match these structures of the BA transfer
function, preventing the possibility of reaching the SQL
on a wide frequency range.

The origin of antiresonances is well explained within the
modal expansion model. We show in the appendix that in
the backaction response TBA�!� there must be an antire-
sonance following a resonance, without exception and
regardless of the complexity of structures. An optimized
readout should have a high backaction force noise spectral
density at the antiresonances frequencies, where the detec-
tor is quite insensitive. On the contrary it must have low
backaction noise at frequencies where resonances of
TBA�!� occur, in order to avoid the resonance amplifica-
tion of the readout force noise. The optimization process
will approach the best performances by averaging among
these conflicting requirements.

The frequency dependence of the readout noise proper-
ties depends on its actual design. In order to show the
optimization strategy, we work out here the simple case
of a readout with constant noise properties:

 	r�!� � 	0; (32)
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r�!� � 
0: (33)

The readout contribution to the equivalent input dis-
placement noise on the variable X becomes now

 SXX�!� � @	0

�
1


0
� jTBA�!�j

2
0

�
; (34)

and the detector sensitivity is simply

 Shh�!� �
@	0

jHGW�!�j2

�
1


0
� jTBA�!�j

2
0

�
: (35)

We find again that for best performances the use of a
quantum limited readout (	0 � 1) is required, and the
noise stiffness 
0 must be properly matched to the readout.
The optimization strategy necessarily depends on the char-
acteristic of the expected GW sources. In fact, for a given
GW signal ~h�!�, the measurement’s signal to noise ratio
S=N is defined as

 

S
N
�

����������������������������������������
2

�

Z �1
0

j~h�!�j2

Shh�!�
d!

s
: (36)

D. Thermal noise

In order to reach the sensitivity shown in Eq. (35),
technical noises must be reduced down to a negligible
level. Among all possible technical noise sources, the
one due to the fluctuations of the body volume (the so-
called brownian or thermal noise) often ends up as a barrier
preventing the achievement of the SQL.

In the case of a system at equilibrium with a bath at
temperature T, with a single coordinate p, and a force F
that represents the interaction between the system and the
externals, the single sided thermal noise power spectrum of
the coordinate is predicted by the fluctuation-dissipation
theorem [25] to be

 Spp�!� � �
4kBT
!
=m�TF�!��; (37)

where TF�!� is the transfer function

 TF�!� �
~p�!�
~F�!�

: (38)

When the system coordinate X is a linear combination
weighted by a function P�r�, as in Eq. (11), the thermal
noise on X can be evaluated by the system response to a
force F�t�P�r� applied to the test-mass surface [26]. The
thermal noise power spectral density on the output variable
is then given by the BA transfer function TBA�!�
[Eq. (19)]:

 SXX�!; T� � �
4kBT
!
=m�TBA�!��

� �
4kBT
!

X
n

�!2
n�n�!�
M

�
j
R
s dsP�r� � wn�r�j2

�!2
n �!2�2 �!4

n�2
n�!�

: (39)

The mechanical thermal noise of the system can be
reduced in principle below the readout contributed noise
by reducing the detector temperature T. If the thermal
noise evaluated in Eq. (39) must be well below the readout
SQL noise given by Eq. (30), then

 �
4kBT
!
=m�TBA�!�� 	 2@jTBA�!�j: (40)

Note that the BA transfer function TBA enters in both
sides of Eq. (40) but with different meanings: the left-hand
side is essentially the incoherent superposition of the ther-
mal noises generated by each normal mode of the system,
while the right-hand side is the coherent superposition of
the normal mode responses.

The effect of the detector thermal noise on the S=N can
be easily evaluated if the sensitivity Shh [Eq. (35)] is
generalized as

 Shh�!; T� �
@	0�

1

0
� jTBA�!�j

2
0� � SXX�!; T�

jHGW�!�j
2 ; (41)

where the detector thermal noise SXX�!; T� is given by
Eq. (39). In the case of structural damping, the thermal
noise contribution to Shh�!; T� is proportional to the prod-
uct T�.

III. A CASE STUDY: THE SINGLE-MASS DUAL
DETECTOR

On the basis of the optimization process described in
Sec. II C, we can estimate the SQL sensitivity of specific
detector configurations, provided that the eigenvalue prob-
lem Eq. (4) for the test mass is solved. As an example, we
consider a hollow cylinder test mass [Fig. 1(a)]. If we limit
our evaluation to GW propagating along the z axis, the
symmetry axis of the system, the corresponding force does
not depend on z: the system response can be well described
by plane strain solutions, where the displacements are
functions of x and y only and the displacement along z
vanishes. The analytical plain strain solutions are well
known [27] and we use them to evaluate the detector
sensitivity; we make use of FEM simulations to confirm
that the main features of the detector are maintained when
a real three-dimensional test mass is considered.

We show in the following that, thanks to the effect of its
lowest order quadrupolar resonant modes, this single test-
mass detector offers the same advantages of the two-nested
mass configuration (namely, the dual detector), recently
proposed [10,11,28]: the large bandwidth, set by the fre-
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quency difference between the lowest order GW sensitive
modes of each test mass, and the backaction reduction
effect, determined by the antiresonance frequency placed
between these modes. To fully exploit the dual detector
properties, we consider to implement a pair of selective
readouts. These readouts [11] are sensitive to the two
independent components of the quadrupolar modes and
reject other classes of modes, which are not excited by
GWs.

The selective readouts R� and R� (Fig. 2) measures the
inner diameters of the hollow cylinder and combines them
to obtain X� � d2 � d1 and X� � d4 � d3. In each diame-
ter evaluation the test-mass inner surface displacement is
averaged over two opposite areas spanning the full cylinder
length. These detection schemes are implemented by the
weight function

 P ��r� � ��r� rint�P����ir (42)

 P ��r� � ��r� rint�P�

�
��

�
4

�
ir; (43)

with

 P� �
1

S0

X1

m�0

X4

n�0

��1�n�m�
�
�� ��1�m�� n

�
2

�
; (44)

where ��x� represents the unit step function and 2� is the
angle subtended by each measured surface [Fig. 1(b)]. The
value � � 0:2 rad is used in the following: it represents a
good compromise between the requirements of wide sam-
pling area and the possibility of implementing two read-
outs rotated by �=4 on the same test mass. The
normalization S0 is the area of each measured surface,
evaluated as S0 ’ 2�rintL; as shown in Fig. 1, rint is the
inner radius of the hollow cylinder. It is straightforward to
demonstrate that, according to Eq. (41), the detector sensi-
tivity does not depend on the chosen normalization S0.

A. Detector response

The plain strain normal modes of the motion of the
cylinder in the x� y plane are a solution to the eigenstate
problem [Eq. (4)], when the following additional boundary
conditions are applied:

 uz 
 0;
@�ur; uz; u��

@z

 0; (45)

where �ur; u�; uz� are components of the displacement u�r�
in a cylindrical coordinate system. The analytical expres-
sions of the normal modes of a hollow cylinder in the plane
strain approximation are functions of the kind [27]:

 w �a;n�r� � fa;n�r� cos�a��ir � ga;n�r� sin�a��i�;

w�a;n�r� � �fa;n�r� sin�a��ir � ga;n�r� cos�a��i�;
(46)

where the functions fa;n, ga;n are linear combinations of
Bessel functions of the coordinate r, with coefficients
determined by the boundary conditions. The integer a
represents the angular symmetry of the mode, while n
identifies the mode order within the angular family; modes
within a given family are ordered by increasing frequency
with increasing n. The orthogonal displacement fields w�a;n,
w�a;n represent the same radial distribution of the deforma-
tion, mutually rotated by �

2a : for this reason they share the
same eigenvalue !a;n. We call �a;n � !a;n=�2�� the reso-
nant frequency of the mode. The displacement ws

a;n is an
element of an orthogonal complete system and is normal-
ized to satisfy the condition (with s, t � � or �):

 

Z
V
dV�ws

a;n�r� � wt
b;m�r� � M�st�ab�nm: (47)

Any plane strain displacement up may be written as linear
superposition of these basis functions, with time-
dependent coefficients determined by the force acting on

FIG. 1. (a) Test mass and readout: the displacements induced
by a GW propagating along the z axis are measured in eight
regions (in black) spanning the whole cylinder height L.
(b) Section of the detector: the angle � determines the extent
of the measuring surfaces and represents a compromise between
the requirements of wide sampling area and the possibility of
implementing eight independent sampling areas on the test mass.
The value � � 0:2 rad is used throughout the paper.

FIG. 2. Sections of the detector showing the detail of the
readout measurement strategy. The measuring surfaces are ar-
ranged in two independent readout configurations: the readout
R� measures the difference X� � d2 � d1, while R� measures
the difference X� � d4 � d3. It will be shown that R� and R�
are sensitive, respectively, to the � and � components of a GW
propagating along the z axis. Both readouts are mainly sensitive
to the quadrupolar modes of the test mass.
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the body:

 u p�r; t� �
X
s;a;n

ws
a;n�r�qsa;n�t�: (48)

The plain strain approximation holds in presence of an
external force when this vanishes, with its first derivatives,
along the z axis:

 G r�r� � iz � 0;
@Gr�r�
@z

� 0: (49)

Moreover, the same conditions must hold for the weight
function of the readout used to measure the displacement:

 P �r� � iz � 0;
@P�r�
@z

� 0: (50)

The plane strain solutions are exact for an infinite length
cylinder, as the fulfillment of plane strain condition re-
quires the application, over the terminal sections, of ten-
sion or pressure adjusted so as to keep constant the length
of all longitudinal filaments (that is the body height). In the
case of a finite length cylinder the solutions can be con-
sidered exact only if a surface force opposite to the internal
stress is applied to the end surfaces of the cylinder.
According to the Saint-Venant principle [16], we infer
that the plane strain approximation is good when the length
of the cylinder is large compared to its diameter. In this
case, stress and strain in the interior are practically inde-
pendent of the presence of a force distribution applied on
the ends, in all the portions of the cylinder except com-
paratively small slices near its ends.

On the basis of the solutions Eq. (46), for instance, we
can evaluate the effect of a � polarized GW propagating
along the z axis, say W��r�, given by Eq. (14) with  � 0.
This wave can excite only the family of the w� plane strain
quadrupolar (a � 2) modes, as we have

 

Z
V
dVW��r� � w�2;n�r� � 0; (51)

due to the quadrupolar symmetry of the force field. The
resulting displacement would be the superposition of the
displacement contributed by an infinite number of modes
with a � 2, but we find that the main contribution is given
by the two modes of lowest frequency, w�2;1�r� and w�2;2�r�.
These modes induce an elliptical strain of the inner surface
of the cylinder, as shown in Fig. 3. We remind the reader
that these modal shapes remain unchanged over the whole
frequency range (namely, also far from their resonance),
whatever the frequency of the driving force, while their
relative strength varies according to Eq. (10).

As discussed in the appendix, the relative phase between
the two contributions depends on the sign of the modal
constants, which in this case, [according to Eq. (16)] are
determined by the convolution of the GW spatial force
W�r� over the modal shape and by the readout weight
function P��r� [Eq. (42)]:
 

C�2;n/
�Z

V
dVW�r� �w�2;n�r�

��Z
S
dsP��r� �w�2;n�r�

�
: (52)

The two modes induce a similar deformation of the inner
surface, but given by different deformations of the cylinder
interior: the w�2;1 is a flexural mode and it does not change
the cylinder thickness rext � rint, while w�2;2 is a bulk mode
which changes the thickness. It is then not surprising that
the analytical evaluation of Eq. (52) results in two modal
constants with opposite sign. For this reason, when the
detector is driven by a GW at frequency �GW, we recover
the characteristics of a dual detector [10]; namely, the
contribution of the two modes

(i) subtracts at low frequencies (�GW < �2;1), when
they follow in phase the driving force.

(ii) is enhanced when the modes get out of phase in the
interval ��2;1  �2;2�, thanks to the � phase lag of
the mode �2;1 which is driven above its resonant
frequency. This frequency range determines ap-
proximately the detector bandwidth.

(iii) subtracts at higher frequencies (�GW > �2;2) when
both modes get out of phase because they are driven
above their resonance.

The resulting GW transfer function is shown in Fig. 4(a):
the sensitivity peaks due to the quadrupolar modes can be
seen clearly. Figure 4(b) shows the BA transfer function
TBA, evaluated on the basis of the readout weight function
P��r�with� � 0:2 rad. An antiresonance shows up within
the range �2;1  �2;2, as expected on the basis of the
discussion in the appendix. The frequency of the antireso-
nance depends not only on the modal constants of the first
two quadrupolar modes but also by the contribution of all
modes sensed by the readout. We observed that a conver-

FIG. 3. Modal shape of the first two plane strain quadrupolar
modes. The continuous lines show the deformation of internal
and external surfaces and of twelve radial lines traced ideally
inside the cylinder section. The shape of the cross section at null
deformation is shown as a dashed line. Both modes induce
deformations of the inner surface of the cylinder and then
contribute to the detector output. (a) First quadrupolar mode
w�2;1�r�: both the inner and outer surfaces change their shape. The
cylinder thickness rext � rint remains approximately constant
(flexural mode). (b) Second quadrupolar mode w�2;2�r�: the outer
surface remains essentially unchanged and the deformation in-
volves only inner portions of the cross section. This deformation
is then obtained by a change of the cylinder thickness (bulk
mode).
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gence better than 1% is obtained if all modes with fre-
quency below 30 kHz are considered in the evaluation
(about 15 modes).

In Fig. 4 we also show the transfer functions (both BA
and GW type) obtained by a three-dimensional FEM har-
monic analysis. These harmonic analysis are performed in
the range 0 10 kHz using the ANSYS [29] full method of
solving dynamic equations, proved to be an accurate
method of evaluating the elastic body dynamical imped-
ance [30]. The FEM code calculates the transfer functions
from the displacement averaged over the readout surface
according to the weight function Eq. (42). To evaluate TBA,
a unit external force is applied onto the readout surfaces
according to Eq. (17). The GW volume force field Eq. (14)
is applied to evaluate HGW. As expected, the resonant
modes found in the plane strain approximation are essen-
tially confirmed by the 3D FEM evaluation, but other
modes appear that cannot be obtained in the plane strain
framework. Thanks to the readout capability of rejecting
non-GW sensitive modes, the displacement induced by
these additional modes is efficiently averaged out and the
detector dynamical performances do not differ from that
evaluated in the plain strain approximation. This fact con-
firms that the body dynamics is modified only weakly by

the absence of the balancing force applied at the bottom
and top surfaces of the cylinder.

The FEM code is not limited to plane strain evaluation
and also can calculate the sensitivity pattern of the detector
for GWs arriving from an arbitrary direction ��;’� with an
arbitrary polarization  . We point out that the use of FEM
to calculate the directional sensitivity is applicable to
acoustic detectors of arbitrary shape, in particular, to all
of the resonant spherical and bar detectors. Following the
approach introduced in Ref. [31], we separate the radiation
into its two linear polarization components, described by
 � 0 and  � �=4 in the wave front plane of the GW.
When ��;’� � �0; 0� these force fields reduce, respec-
tively, to the � and � GW described by Eq. (14).

The frequency response to a GW is scaled down for a
wave from any direction with respect to the z-propagating
case, as shown in Fig. 4(a) in the case of a wave traveling
along the y axis. We evaluated the scaling factor as a
function of the signal direction ��;�� and polarization  
at a fixed frequency (3000 Hz). For each readout R� and
R�, the normalized output for a circularly polarized GW is
obtained by quadratically averaging the response to  � 0
and  � �=4 waves. The antenna pattern shown in
Fig. 5(a) refers to circularly polarized signals and shows
the maximum response between the two readouts.

The dual detector is then omnidirectional, in the sense
that no blind directions show up in its antenna pattern. On
the other hand it is not isotropic, and the lowest response
for a circularly polarized GW is still 30% of the response to
an optimally oriented GW, i.e. propagating along z. In
general, the two linear polarization components of the
GW excite two independent linear combinations of
w�2;n�r� and w�2;n�r�, which are separately read by R� and
R�, respectively. Therefore, it is relevant to point out that
the single-mass dual detector can resolve both amplitude
polarizations of the impinging GW if its propagation di-
rection ��;�� is known [32]. This is not the case of the
operating interferometric or resonant bar detectors, which
measures only one linear polarization component of the
GW.

The presence of two independent readout channels
which monitor different signal polarizations also enhance
the possibilities of setting up vetoing strategies in joint
observations with other GW detectors, by exploiting
Riemann tensor properties to discriminate noise events.
In addition, the two independent readouts are affected by
independent intrinsic noise sources, such as thermal and
amplifier noises, so that they can be considered as coming
from different detectors as long as environmental distur-
bances are negligible.

B. Detector design and optimization

In this section we determine the optimal detector figures
on the basis of the analysis developed in Sec. II. As usual, a
low dissipation material is required to reduce the effect of
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FIG. 4. Transfer functions for the R� readout with � � 0:2 rad
describing the dynamical response of a hollow cylinder single-
mass dual detector (material: molybdenum, outer radius rext �
0:5 m, height L � 3 m, form ratio rint=rext � 0:3).
(a) Analytical (continuous line) and FEM evaluated (gray line)
GW transfer function for a signal propagating along z axis.
Dashed line: 3D FEM evaluated response under a � polarized
GW traveling along the y axis. (b) BA transfer function.
Continuous line: analytical plain strain evaluation. Gray line:
3D FEM simulation.

MICHELE BONALDI et al. PHYSICAL REVIEW D 74, 022003 (2006)

022003-8



the thermal noise. Molybdenum represents an interesting
choice [33], as it shows low mechanical losses (T�< 5�
10�9 K) for acoustic modes down to 50 mK. Moreover,
thanks to its higher density and sound velocity values,
molybdenum would allow better sensitivities than an alu-
minum detector dimensioned to operate in the same fre-
quency range.

In this section we choose to optimize the detector ge-
ometry by requiring a specific frequency band, namely, the
interval 2–5 kHz. This requirement fixes the frequency of
the first two quadrupolar modes as �2;1 ’ 2 kHz and �2;2 ’

5 kHz. As shown in Fig. 6, the frequency �2;2 depends
essentially on the outer radius rext and on the material
sound velocity vs. A frequency �2;2 � 5 kHz could be
obtained with a molybdenum test mass with rext �
0:5 m. The height of the cylindrical test mass is fixed to
L � 3 m. The inner radius, through the form factor
rint=rext, determines the frequency of the first quadrupolar
mode and the placement of the antiresonance within the
bandwidth. In order to better understand the effect of the
detector geometry on the sensitivity, we evaluate the sen-
sitivity of the detector for different values of the form
factor in the range 0:1< rin=rext < 0:8.

As discussed in Sec. II C, the optimization process re-
quires a balancing of the noise figures. For this sake we
must evaluate as a function of 
0 the minimum detectable
value of a specific GW signal by the use of Eq. (36). As

burst GW signals are expected in the required frequency
range, a sine-Gaussian is considered as test wave form

 h�t� � h0 sin�!0�t� t0��e���t�t0�
2=2�; (53)

with central frequency f0 � !0=2� and  � 2=f0. For
GW detectors it is customary to quote performance in
terms of the minimum detectable value (at S=N � 1) of
the root sum square amplitude hrss:

 hrss �

�����������������������������Z �1
�1

dtjh�t�j2
s

�

���������������������������������������
1

�

Z �1
0

d!jh�!�j2
s

: (54)

In order to estimate the detector performances on its full
bandwidth, four different central frequencies were used for
the burst of Eq. (53). The calculation also was performed as
a function of the amount of dissipation (T� value) consid-
ered in the test mass. As shown in Fig. 7 for the case
rint=rext � 0:3 and 	0 � 1, the optimal value of the noise
stiffness is 
0 ’ 1:7� 1011 N=m. This number is indepen-
dent of the T� value and, according to Eq. (24), corre-
sponds to a readout displacement power noise of
Sxx ’ 6� 10�46 m2=Hz and backaction force power noise
of Sff ’ 1:8� 10�23 N2=Hz.

We see in Fig. 7 that, at the optimal 
0, the thermal noise
induced by a finite dissipation value T� � 10�8 K reduces
the sensitivity of less than 20%. This dissipation is a good
compromise between sensitivity and feasibility and can be
assumed as the reference T� value for the case 	0 � 1. In
the general case, the optimal T� value is determined by the
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FIG. 6. Frequency of the normal modes in the plane strain
approximation. The left axis shows the reduced value of the
frequency, while the right axis shows the actual value of the
frequency in the case of a molybdenum test mass with rext �
0:5 m and vs � 5650 m=s. The frequency �2;1 of the first quad-
rupolar mode (flexural mode) is strongly dependent on the form
factor, while the frequency �2;2 of the second quadrupolar mode
(bulk mode) is essentially constant. The antiresonance frequency
(a.r.) is evaluated accounting for the contribution of the number
of modes needed to obtain a 5% convergence. We point out that
while the mode frequencies are solutions of the eigenvalue
problem Eq. (4) and do not depend on the chosen readout, the
antiresonance frequency is evaluated specifically for the selec-
tive readout shown in Fig. 1(b). A number of non-GW sensitive
modes are also shown as dotted lines.

((

FIG. 5. Antenna pattern of a hollow cylinder single-mass dual
detector (material molybdenum, outer radius rext � 0:5 m,
height L � 3 m, form ratio rint=rext � 0:3, � � 0:2 rad).
(a) Antenna pattern of the detector equipped with the readouts
R� and R�. The antenna pattern is represented by the modulus of
the vector to the plotted surface. Per each direction, we show the
maximum of the antenna patterns of the readout channels for
circularly polarized signals. (b) Section of the antenna pattern
across the x� y plane. This is the worst case for the detector,
which is maximally sensitive for GW traveling along the z axis;
nonetheless, no blind directions show up. The response ranges
from 30% to 55% of the optimal case.
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readout energy sensitivity 	0. In fact, according to Eq. (41),
the readout contributed noise grows linearly with 	0 and
we find that a value T�< 10�8	0 K is needed to limit the
thermal noise contribution within the 20% of the readout
noise. On the contrary, the optimal value of the noise
stiffness 
0 is mainly determined by the BA transfer func-
tion TBA�!� and remains unchanged.

Figure 8 shows the detector performances at the optimal
noise stiffness averaged over the four test frequencies and
then plotted against the form factor. Different values of
energy sensitivity were considered with their correspond-
ing optimal value of T�. The noise stiffness was optimized
for each point on the graph and found essentially constant


0 ’ 1:7� 1011 N=m. The dependence on the inner radius
is not strong, but the best sensitivity is obtained for 0:2<
rin=rext < 0:5, that is when the antiresonance is located
approximately in the middle of the bandwidth. The GW
sensitivity Shh of this optimal detector (molybdenum,
rint � 0:15 m, rext � 0:5 m, height 3 m) is shown in Fig. 9.

IV. CONCLUSIONS

In this paper we discuss wide band (i.e., nonresonant)
acoustic GW detectors in the framework of the elastic
theory of continuous bodies, and we take fully into account
the three-dimensional properties of signal, test mass, and
readout. Once the readout (i.e. its spatial weight function)
is chosen, transfer functions are calculated for the GW tidal
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force, the backaction noise pressure exerted by the readout
and the thermal noise of the test mass. The SQL sensitivity
limit of acoustic GW detectors is then derived.

On the basis of this analysis we design a new kind of
acoustic GW wide band detector: the single-mass dual
detector, formed by a hollow cylinder equipped with two
sets of selective readout displaced �=4 apart. This detector
would offer the same advantages of a dual detector,
namely, the kHz-wide frequency range of sensitivity and
the backaction reduction effect: moreover, we show that
such a detector has no blind directions for impinging GWs,
being in this sense omnidirectional even if not isotropic.
These findings are analytically derived in the plain strain
approximation and then extended to the full three-
dimensional body by means of FEM numerical analysis.
We also show that the single-mass dual detector can mea-
sure simultaneously both the amplitude and the polariza-
tion of the impinging GW. From the practical viewpoint,
the single-mass dual detector removes the technological
challenge of nesting two independent resonators which is
one of the key issues of the recently proposed dual
detectors.

The general treatment of a GW acoustic detector is then
applied to the single-mass dual detector in an optimization
process that gives the mass dimensions and readout noise
properties resulting in the best sensitivity in the 2–5 kHz
frequency range. We show that a molybdenum hollow
cylinder single-mass dual (outer radius rext � 0:5 m,
height L � 3 m, form ratio rint=rext � 0:3, and readout
angular aperture � � 0:2 rad) can show a sensitivity at
the level of 1 2 � 10�23=

������
Hz
p

in the frequency interval
2 5 kHz and truly free from noise resonances, provided
that T�< 10�8 K, as already achieved for this material.

The nonresonant readouts for a dual detector would be
evolutions both conceptually and in technology of the
resonant readouts used in the GW bar detectors: the opto-
mechanical one [21], based on Fabry-Perot cavities, and
the capacitive one [5], based on SQUID amplifiers. The
main improvements needed to make these readouts suit-
able in a dual detector configuration can be summarized as

(a) The wide band sensitivity.—The deformation of the
test mass which forms the detector needs to be
measured by devices that do not show mechanical
resonances in the kHz-wide frequency interval of
high sensitivity.

(b) The selectivity.—The dual detector properties can be
fully exploited by a readout scheme which is geo-
metrically selective to the fundamental quadrupolar
modes. This selectivity also is effective in reducing
down to a negligible level the acoustic modes not
sensitive to GW that would appear in the detector
bandwidth. Moreover, the readout system must
sense the deformation of the resonant masses on a
wide surface, in order to be less sensitive to the
acoustic modes resonating at higher frequencies,
which do not carry any gravitational signal. In this

way, the thermal noise of the detector is minimized,
while preserving the sensitivity to the signal.

Without the resonant amplification stage, the displace-
ment sensitivity of readout employed in running GW bar
detectors ranges in the 10�19 m=

������
Hz
p

decade over a band-
width of hundreds of Hz centered at about 1 kHz. In order
to meet the requirement of a dual detector, an improvement
is needed by about a factor of 104 and these performances
must be extended to cover the wider dual bandwidth. For
passive readouts, as the capacitor-SQUID system used in
the AURIGA detector [2], a factor of 103 improvement in
the displacement sensitivity is foreseeable after specific
R&D devoted to increase the bias field (presently limited
to about 1% of the material breakdown electric field [34])
and to increase the capacitor area (the transducer efficiency
scales as the square root of the capacitance) and after a
reduction of the operating temperature down to the 0.1 K
range (the SQUID amplifier additive noise is linearly pro-
portional to the thermodynamic temperature). For active
readouts as the optomechanical one [21], the
10�23 m=

������
Hz
p

range is reachable in principle by increasing
both the finesse (up to 106) and the light power (up to a few
Watts); however, such figures could end up not to be
compatible with a cryogenic operation. Therefore, for
both technologies we can consider as a reasonable goal a
sensitivity at the level of 10�22 m=

������
Hz
p

over the bandwidth
of a dual detector. A factor of 10 further could be gained
via broadband mechanical lever amplifiers, as currently
under investigation.

The wide-area and selectivity requirements could be
satisfied easily by capacitive readouts. In fact, they are
currently implemented on surfaces of 0:05 m2, and many
capacitors could be properly connected to obtain the re-
quired total surface and selectivity, as shown in Ref. [11].
For the optomechanical readout, the implementation of
selectivity based on crossed cavities is under study; in
order to meet the requirement of the wide area, some of
us have proposed a new configuration of the Fabry-Perot
optical resonator, the folded Fabry-Perot [35], and its
experimental investigation has started already [36].
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APPENDIX: MODAL ANALYSIS

The complex behavior observed in a typical transfer
function [Fig. 10(a)] is not surprising, as it is well known
that structures with low modal density [37] exhibit a pro-
nounced resonance-antiresonance behavior in their transfer
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function [38]. Antiresonances provide important informa-
tion on the dynamic behavior of the structure under con-
sideration and have been applied to several engineering
problems, as reported in [39] and references therein.

Considerable insight may be gained by considering the
origin of antiresonances. Within the modal expansion
model, the system transfer function can be written in the
form:

 T�!� �
X
n

Cn
�!2

n �!
2� � iDn�!�

; (A1)

where the explicit form of the modal constants Cn and the
dissipative factor Dn can be obtained by a straightforward
comparison with Eq. (13). As usual, the resonant frequen-
cies represent the zeros of the denominator polynomial,
that in the case of small damping are approximately given

by the eigenvalues !n. The eigenvalues are determined by
the mechanical properties of the system and by the bound-
ary conditions applied when solving Eq. (4). The antireso-
nance frequencies are the zeros of the numerator
polynomial resulting from the sum, and their position on
the frequency axis depends on the values of the modal
constants Cn. In Fig. 10, we show jT�!�j as a sum of the
contributions of each resonant mode for a four-mode sys-
tem with Ci > 0.

Some of the important features of the transfer function
can be understood by using a simpler example with just
two modes and no dissipation:

 T�!� �
C1�!

2
2 �!

2� � C2�!
2
1 �!

2�

�!2
2 �!

2��!2
1 �!

2�
: (A2)

If both modal constants are positive, a zero of the numera-
tor polynomial !ar is invariably present in the range
�!1; !2� between the two resonances, at a frequency de-
pending on the relative weight between the modal con-
stants C1 and C2:

 !ar �

������������������������
!2

1 �
C1

C2
!2

2

1� C1

C2

vuuut : (A3)

Positive modal constants appear in all transfer functions
where the driving force is applied with the same spatial
weight of the readout, as for the BA transfer function TBA

[Eq. (19)]. In this case there must be an antiresonance
following a resonance, without exception and regardless
of the complexity of structures [38]. On the other hand,
modal constants with opposite signs result in a smooth
minimum between the two resonances, located at

 !min �

��������������������������������������������������
!2

1

1�
���������
� C1

C2

q �
!2

2

1�
���������
� C2

C1

q
vuuut : (A4)

Modal constants of the detector GW transfer function
[Eq. (16)] can be negative or positive, depending on the
integrals performed over the modes. In this case, the sign is
essentially determined by the phase relation between a
specific mode and the GW excitation force and by the
phase relation between this mode and the weight function.
Then we expect a mixture of antiresonances and smooth
minima.

We point out that this simple model is only indicative:
the actual position of antiresonances and smooth minima
between resonances depends on the contribution of the
other modes, as shown in Fig. 10.

[1] ALLEGRO http://gravity.phys.lsu.edu. [2] AURIGA http://www.auriga.lnl.infn.it.
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FIG. 10. Typical transfer function for a four-modes system
where the driving force is applied with the same spatial weight
of the readout. The resonance-antiresonance behavior is due to
the superposition of the single mode responses and, in the
hypotheses of low modal density and small damping, an anti-
resonance is invariably present between the two resonances.
(a) Continuous line: transfer function obtained when the mode
1 and mode 2 contributions are only considered. Dashed line:
transfer function obtained from the contribution of all the four
modes; the position of the first antiresonance is changed by the
presence of the higher frequency modes contributions.
(b) Transfer functions of each mode.
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